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Algebraic Extensions, I

Now that we have described simple extensions, we can expand our
focus to other field extensions. A natural class of extensions are
those in which every element is algebraic:

Definition

The field extension K/F is algebraic if every α ∈ K is algebraic
over F : in other words, if every α is a root of a nonzero polynomial
in F [x ].

Our goal for today is to study algebraic extensions. It turns out
that we will able to “bootstrap” quite a lot of results from some
comparatively easy observations, as you will see.



Algebraic Extensions, II

We start with the simplest possible case (pun intended): namely,
the situation of a simple extension:

Proposition (Simple Algebraic Extensions)

A simple extension F (α)/F is algebraic if and only if it has finite
degree. Furthermore, if [F (α) : F ] = n, then every element in F (α)
satisfies a nonzero polynomial of degree at most n in F [x ].

The point here is just to use the structure of simple extensions
that we identified last time.



Algebraic Extensions, III

Proof:

If F (α) is algebraic then α ∈ F (α) is algebraic over F . If the
minimal polynomial for α has degree n, then as we showed
earlier, [F (α) : F ] = n, so the extension has finite degree.

Conversely, suppose F (α)/F has degree n and let β ∈ F (α).
Observe the set {1, β, β2, . . . , βn} has n + 1 elements, so
since F (α) only has dimension n over F , it must be linearly
dependent.

In other words, there exist ci ∈ F , not all zero, with
c0 + c1β + · · ·+ cnβ

n = 0: thus, β is the root of a nonzero
polynomial in F [x ], so β is algebraic over F . The second
statement is also immediate.



Algebraic Extensions, IV

As an immediate but very useful corollary, we see that finite-degree
extensions are algebraic:

Corollary

Finite-degree extensions are algebraic.

Proof:

By the previous proposition, any element of a degree-n
extension satisfies a polynomial of degree at most n, and is
therefore algebraic.

We will remark that there exist algebraic extensions of infinite
degree, so the converse of this result is not true.



Algebraic Extensions, V

Next we analyze extensions with a finite number of generators:
K = F (α1, α2, . . . , αn) for some αi ∈ K .

If any of the αi are transcendental over F , then clearly K is
non-algebraic since it contains a transcendental element.

On the other hand, if all of the αi are algebraic over F , it
seems reasonable to hypothesize that K itself will also be
algebraic over F , since every element of K is a combination of
algebraic elements.

The key idea is to observe that we can obtain K as a “tower”
of simple extensions by adjoining the αi one at a time.



Algebraic Extensions, VI

To illustrate, suppose K = F (α, β, γ).

Then K contains F (α) along with β, and so it contains the
extension field F (α)(β).

But F (α, β) is by definition the smallest subfield of K
containing α and β, so F (α, β) is contained in F (α)(β).

On the other hand, since F (α, β) contains F (α) and β, since
F (α)(β) is the smallest subfield of K containing F (α) and β,
we see that F (α)(β) is contained in F (α, β).

Thus, F (α, β) = F (α)(β), so F (α, β)/F (α) is a simple
extension.



Algebraic Extensions, VI

We continue to suppose K = F (α, β, γ).

We just observed that F (α, β)/F (α) is a simple extension
generated by β.

In the same way, we can see that K = F (α, β, γ)/F (α, β) is
also a simple extension.

Thus, we can obtain K from F using a chain of 3 simple
extensions F (α, β, γ)/F (α, β)/F (α)/F .

In order to show that the resulting field K will be algebraic if
each αi is algebraic, we need to know how extension degrees
behave in these towers of field extensions.



Algebraic Extensions, VII

Theorem (Degrees in Towers)

If L/K and K/F are both field extensions, then so is L/F , and
[L : F ] = [L : K ] · [K : F ] (where if one side is infinite, then so is
the other). In particular, [K : F ] divides [L : F ].

Although we will not need it, in fact a more general statement is
true: if V is a K -vector space and K/F is a field extension, then
(under the same operations) V is also an F -vector space, and
dimF V = [K : F ] · dimK V .

The theorem is the special case where V is the K -vector space L.



Algebraic Extensions, VIII

Proof:

First suppose that [K : F ] = n with basis {a1, a2, . . . , an} and
[L : K ] = m with basis {v1, v2, . . . , vm} are both finite.

We claim that the set β of the mn pairwise products aivj for
1 ≤ i ≤ n and 1 ≤ j ≤ m is a basis for L/F .

First, we observe that no two of these pairwise products are
equal, so this set actually does have mn elements.

To see this, suppose aivj = akvl so that aivj − akvl = 0. If
j 6= l then vj , vl would be K -linearly dependent (contrary to
our assumption), and if j = l then cancelling vj (which is
nonzero since it is a basis element) would yield ai = ak .



Algebraic Extensions, IX

Proof (continued):

To see that β is a spanning set, for any w ∈ L by the
hypothesis that {v1, v2, . . . , vm} spans L/K , we may write
w = b1v1 + · · ·+ bmvm for some bi ∈ K . Furthermore, since
the bi ∈ K , by the hypothesis that {a1, a2, . . . , an} spans
K/F , we may write bi = ci ,1a1 + · · ·+ ci ,nan for some ci ,j ∈ F .

Now substituting in the expressions for the bi in terms of the
ci ,j and the ai to the expression for w yields

w = b1v1 + · · ·+ bmvm

= (c1,1a1 + · · ·+ c1,nan)v1 + · · ·+ (cm,1a1 + · · ·+ cm,nan)vm

= c1,1a1v1 + · · ·+ cm,nanvm

and therefore w is an F -linear combination of the elements of
β, meaning that β is a spanning set.



Algebraic Extensions, X (Marks The Spot)

Proof (continued more):

To see that β is linearly independent, suppose we had a linear
combination c1,1a1v1 + · · ·+ cm,nanvm = 0 for some ci ,j ∈ F .

By the previous slide’s calculation (in reverse) if we set
bi = ci ,1a1 + · · ·+ ci ,nan then bi ∈ K for each i and
b1v1 + · · ·+ bmvm = 0. Since the vi are linearly independent
over K , this means bi = 0 for each i .

Then since bi = ci ,1a1 + · · ·+ ci ,nan and the ai are linearly
independent over F , we conclude that ci ,j = 0 for each i , j ,
and so β is also linearly independent, hence a basis.

This establishes the case where [L : K ] and [K : F ] are finite.



Algebraic Extensions, XI

Proof (continued still more):

For the infinite-degree cases, if [K : F ] =∞ then any basis of
K/F is an infinite linearly-independent subset of L/F ,
meaning that [L : F ] =∞ as well.

Likewise, if [L : K ] =∞, then any basis of L/K is an infinite
K -linearly independent subset, which is also clearly F -linearly
independent (since any linear dependence over F would also
hold over K ), and so [L : F ] =∞ again.

Finally, if [L : F ] =∞, then at least one of [L : K ] and [K : F ]
must be infinite, since if both are finite then our proof above
shows that [L : F ] is also finite.



Algebraic Extensions, XII

We can apply this result to establish that an extension generated
by finitely many elements is algebraic precisely when all of the
generators are algebraic, and also bound the resulting extension’s
degree:

Corollary (Finite Algebraic Extensions)

If K/F is a field extension with K = F (α1, α2, . . . , αn), then K/F
is algebraic if and only if each of the αi are algebraic over F . In
this case, [K : F ] ≤

∏n
i=1[F (αi ) : F ], and every element of K is a

polynomial (with coefficients from F ) in the αi .

In particular, this result says F (α1, α2, . . . , αn) = F [α1, α2, . . . , αn]
when the αi are algebraic over F .



Algebraic Extensions, XIII: Triskaidekaphilia

Proof:

If any of the αi are transcendental over F then K is not
algebraic over F .

So now suppose each of the αi are algebraic.

As noted earlier, we may obtain K as a chain of simple
extensions K/F (α1, . . . , αn−1)/ · · · /F (α1, α2)/F (α1)/F .

By hypothesis, for each 1 ≤ i ≤ n, αi is algebraic over F , so
αi is also algebraic over F (α1, . . . , αi−1), since the minimal
polynomial for αi over F may also be thought of as a
polynomial over F (α1, . . . , αi−1).



Algebraic Extensions, XIV

Proof (continued):

Therefore, since a simple extension is algebraic if and only if it
has finite degree, we see that
[F (α1, . . . , αi ) : F (α1, . . . , αi−1)] is finite for each i .

Then by the multiplicativity of extension degrees (and a trivial
induction), we conclude that
[K : F ] =

∏n
i=1[F (α1, . . . , αi ) : F (α1, . . . , αi−1)] is finite.

Since finite-degree extensions are algebraic, this means K/F is
algebraic as claimed.



Algebraic Extensions, XV

Proof (continued more):

For the second statement, consider the minimal polynomial
m(x) of αi over F and the minimal polynomial m′(x) of αi

over F (α1, . . . , αi−1).

Since m(x) is also a polynomial in F (α1, . . . , αi−1) having αi

as a root, by properties of minimal polynomials we see that
m′(x) divides m(x), so deg m′ ≤ deg m.

Converting to a statement about extension degrees yields
[F (α1, . . . , αi ) : F (α1, . . . , αi−1)] ≤ [F (αi ) : F ], and then
taking the product from i = 1 to n yields
[K : F ] ≤

∏n
i=1[F (αi ) : F ].



Algebraic Extensions, XVI

Proof (continued yet more):

For the last statement, since E [β] = E (β) when β is algebraic
over E , by an easy induction we see that every element of K
is a polynomial in the αi .

Remark: More explicitly, every element of K is an F -linear
combination of elements of the form αc1

1 α
c2
2 · · ·αcn

n , where each ci
is an integer with 0 ≤ ci ≤ [F (αi ) : F ].

This also follows by a straightforward induction, using the fact
that every element of E (β) is of the form
b0 + b1β + · · ·+ bd−1β

d−1 where [E (β) : E ] = d , as both the
base case and inductive step.



Algebraic Extensions, XVII

We can also show that every finite-degree extension is generated
by a finite set of algebraic elements, and that an algebraic
extension of an algebraic extension is also algebraic:

Corollary (Characterization of Finite Extensions)

If K/F is a field extension, then K/F has finite degree if and only
if K = F (α1, . . . , αn) for some elements α1, . . . , αn ∈ K that are
algebraic over F .

The point here is that this is a very easy condition to check if we
are given a set of generators for K/F , and inversely tells us we can
always find a finite set of generators for a finite-degree extension.



Algebraic Extensions, XVIII

Proof:

We already showed that F (α1, . . . , αn)/F is finite if
α1, . . . , αn are algebraic over F , which is the reverse direction.

For the forward direction, suppose K/F has finite degree:
then by definition, K has a finite basis {α1, . . . , αn} as an
F -vector space, and so K = F (α1, . . . , αn).

Furthermore, since F (αi ) is a subfield of the finite-degree
extension K/F , we see that [F (αi ) : F ] is also finite (by the
multiplicativity of extension degrees): thus αi is algebraic over
F for each i , as required.



Algebraic Extensions, XIX

We also see that an algebraic extension of an algebraic extension is
algebraic:

Corollary (Towers of Algebraic Extensions)

If L/K is an algebraic extension, and K/F is an algebraic
extension, then L/F is an algebraic extension.

These results are obvious if the extensions have finite degree: the
content is when one of the extensions has infinite degree (but is
still algebraic).



Algebraic Extensions, XX: Dos Equis

Proof:

Let α ∈ L: then since α is algebraic over K it is the root of
some polynomial p(x) = a0 + a1x + · · ·+ anxn with the
ai ∈ K .

Since K/F is also algebraic, each of the ai are algebraic over
F , and so the extension E = F (a0, a1, . . . , an) has finite
degree over F .

Furthermore, E (α)/E also has finite degree, because α is the
root of a nonzero polynomial in E [x ].

Thus, since E (α)/E and E/F both have finite degree, so does
E (α)/F : this means α satisfies a polynomial of finite degree
over F , so α is algebraic over F .

This holds for all α ∈ L, so L is algebraic over F .



Algebraic Extensions, XXI

We can also extend these results on degree to general “composite
fields”:

Definition

If K1 and K2 are subfields of K , the composite field K1K2 is the
intersection of all subfields of K containing both K1 and K2.

We can also consider composites of an arbitrary collection of
subfields (namely, the intersection of all subfields containing
every field in the collection), although we generally will not
need to bother much with infinite composites.

Like with subfields generated by a set, it is easy to see that
the composite field is the smallest subfield of K that contains
both K1 and K2, and is also equal to K1(K2) and K2(K1).



Algebraic Extensions, XXII

We can say some things about the extension degree of a composite
extension:

Proposition (Degrees of Composites)

If K1/F and K2/F are both finite-degree subextensions of K/F ,
then lcm([K1 : F ], [K2 : F ]) ≤ [K1K2 : F ] ≤ [K1 : F ] · [K2 : F ]. In
particular, if the degrees [K1 : F ] and [K2 : F ] are relatively prime,
then equality always holds.



Algebraic Extensions, XXIII

Proof:

For the upper bound, suppose K1/F has basis α1, . . . , αn and
K2/F has basis β1, . . . , βm.

Then K1K2 contains F and each of α1, . . . , αn, β1, . . . , βm
hence it contains F (α1, . . . , αn, β1, . . . , βm).

On the other hand, F (α1, . . . , αn, β1, . . . , βm) contains both
K1 and K2, hence also K1K2.

So, K1K2 = F (α1, . . . , αn, β1, . . . , βm) = K1(β1, . . . , βm).

Thus, β1, . . . , βm span K1K2/K1, so [K1K2 : K1] ≤ [K2 : F ].

Then [K1K2 : F ] = [K1K2 : K1] · [K1 : F ] ≤ [K1 : F ] · [K2 : F ]
as claimed.



Algebraic Extensions, XXIV

Proof (continued):

For the lower bound and the second statement, note that
[K1K2 : F ] must be divisible by both [K1 : F ] and [K2 : F ],
since we have the towers K1K2/K1/F and K1K2/K2/F .

Therefore, [K1K2 : F ] is divisible by lcm([K1 : F ], [K2 : F ]),
hence is greater than or equal to it.

If m and n are relatively prime, the lcm is simply the product,
so the upper and lower bounds are the same, meaning that we
get equality.



Examples of Extensions, I

By using our results on simple and composite extensions, along
with the multiplicativity of field degrees in towers, we can often say
a great deal about extensions of small degree.

The goal here is to show how much we can now say about a
number of different examples, using the various results we
have developed so far, along with a few additional tricks.



Examples of Extensions, II

First, as an ur-example, we can characterize quadratic extensions:

Proposition (Quadratic Extensions)

Suppose F is a field of characteristic not equal to 2 and K/F is a
quadratic extension (i.e., degree 2). Then K = F (α) for any
α ∈ K not in F , and in fact we can take K = F (β) for some
element with β2 ∈ F and β 6∈ F .

The last statement says (essentially) that K = F (
√

D) for
some D ∈ F that is not a square in F . (It is hard to be more
precise than this, because it is difficult to define what “

√
D”

means without ultimately being circular!)

In particular, the quadratic extensions of Q (inside C) are
precisely the extensions Q(

√
D) that we have previously

described.



Examples of Extensions, III

Proof:

Suppose K/F is a quadratic extension.

If α ∈ K is not in F , then the set {1, α} is F -linearly
independent, and since [K : F ] = 2 it must therefore be a
basis for K .

Thus, K = F (α).



Examples of Extensions, IV

Proof (continued):

For the second statement, consider the minimal polynomial
for any α ∈ K not in F .

Since K = F (α) and [K : F ] = 2 we see that the minimal
polynomial for α has degree 2: say, x2 + bx + c .

Then α2 + bα + c = 0, so completing the square (here is
where we require the characteristic not to be equal to 2, since
we must divide by 2 to do this) and setting β = α + b/2
yields (α + b/2)2 + (c − b2/4) = 0.

Setting β = α + b/2 shows that β2 = (b2 − 4c)/4 ∈ F .

Furthermore, β is not in F since otherwise this would imply
that α = β − b/2 was in F .

Thus, K = F (β) for some β with β2 ∈ F and β 6∈ F , as
claimed.



Examples of Extensions, V

Example: Determine the degree of L = Q(
√

2,
√

3) over Q.

The field Q(
√

2,
√

3) is a finite algebraic extension of Q, and
since [Q(

√
2) : Q] = [Q(

√
3) : Q] = 2 we see that the

extension degree is at least 2 and at most 4.

In particular, by the remark following the corollary on finite
algebraic extensions, we see that Q(

√
2,
√

3) = Q[
√

2,
√

3] =
{a + b

√
2 + c

√
3 + d

√
6 : a, b, c , d ∈ Q}, which establishes

that the latter ring is in fact a field. (Notice how much
simpler this argument is than the explicit calculations we
performed earlier!)



Examples of Extensions, V

Example: Determine the degree of L = Q(
√

2,
√

3) over Q.

In fact, since Q(
√

2) is a subfield of Q(
√

2,
√

3), the extension
degree [Q(

√
2,
√

3) : Q] must in fact be divisible by 2, so it is
either 2 or 4.

To determine which of these cases holds we need to compute
[Q(
√

2,
√

3) : Q(
√

2)], which is either 1 or 2 since
[Q(
√

3) : Q] = 2.

If [Q(
√

2,
√

3) : Q(
√

2)] = 1, then the degree of the minimal
polynomial of

√
3 over Q(

√
2) is 1, which is to say,√

3 ∈ Q(
√

2).

But this is not true: if
√

3 = a + b
√

2 for a, b ∈ Q then
squaring yields 3 = (a2 + 2b2) + 2ab

√
2, so since

√
2 is

irrational, one of a, b would be zero (otherwise we could write√
2 = (3− a2 − 2b2)/(2ab)). However, we cannot have

a =
√

3 or b
√

2 =
√

3 because
√

3 and
√

6 are also irrational.



Examples of Extensions, VI

Example: Determine the degree of L = Q(
√

2,
√

3) over Q.

Therefore, we must have [Q(
√

2,
√

3) : Q] = 4.

This implies some other things: for example,
[Q(
√

2,
√

3) : Q(
√

2)] = 2, and in turn this means that the
minimal polynomial for

√
3 over Q(

√
2) must have degree 2.

Since
√

3 is a root of x2 − 3, that means the polynomial
x2 − 3 is irreducible in Q(

√
2).

Furthermore, since {1,
√

2,
√

3,
√

6} is a spanning set for
Q(
√

2,
√

3), the fact that [Q(
√

2,
√

3) : Q] = 4 tells us that
this set is a basis (and thus linearly independent), which is
also not so easy to prove directly.



Examples of Extensions, VII

Example: Determine the degree of L = Q(
√

3, 3
√

3) over Q.

If we let K1 = Q( 3
√

3) and K2 = Q(
√

3), then L = K1K2.

Furthermore, [K1 : Q] = 3 and [K2 : Q] = 2 since K1 is
generated by a root of the irreducible polynomial x3 − 3 and
K2 is generated by a root of the irreducible polynomial x2 − 3.

Then from our result on the degree of a composite extension,
we know that [L : Q] ≤ [K1 : Q] · [K2 : Q] = 6.

Furthermore, since K1 and K2 are both subfields of L, we see
that [L : Q] is divisible by both [K1 : Q] = 2 and [K2 : Q] = 3,
and hence by 6.

Therefore, since [L : Q] ≤ 6, the only possibility is to have
[L : Q] = 6.



Examples of Extensions, VIII

Example: Determine the degree of L = Q(
√

3, 3
√

3) over Q.

Another approach is to observe that L contains the element
α =
√

3/ 3
√

3 = 31/6.

But since
√

3 = α3 and 3
√

3 = α2 we conclude that L = Q(α).

Then since α is a root of the (Eisenstein) irreducible
polynomial x6− 3, we see that L = Q(α) has degree 6 over Q.

Indeed, we even get a basis, namely {1, α, α2, α3, α4, α5}.



Examples of Extensions, IX

Example: Determine the degree of L = Q( 3
√

2, e2πi/3 3
√

2) over Q.

If we let K1 = Q( 3
√

2) and K2 = Q(e2πi/3 3
√

2), then L = K1K2.

Furthermore, from our earlier discussion of these fields, we
know that [K1 : Q] = [K2 : Q] = 3, since both fields are
generated by an element whose minimal polynomial over Q is
x3 − 2.

Then [L : Q] = [L : K ] · [K : Q] so [L : Q] is divisible by 3, and
we also know that [L : Q] ≤ [K1 : Q] · [K2 : Q] = 9.

We might expect [L : Q] to be 9, but in fact, it is not!



Examples of Extensions, X

Example: Determine the degree of L = Q( 3
√

2, e2πi/3 3
√

2) over Q.

To see why not, observe that L also contains the element
ζ = e2πi/3 = (−1 + i

√
3)/2, and one can verify that

ζ2 + ζ + 1 = 0.

Thus, ζ is a root of the polynomial x2 + x + 1, which is
irreducible over Q, and so for K3 = Q(ζ) we have
[K3 : Q] = 2.

Since Q(ζ) is also a subfield of L, we see that [L : Q] is
divisible by 2. Since it is also divisible by 3 and ≤ 9, the only
possibility is for [L : Q] = 6.



Examples of Extensions, XI

Example: Determine the degree of L = Q( 3
√

2, e2πi/3 3
√

2) over Q.

In fact, it is not hard to see that L = Q( 3
√

2, ζ) = K1K3.

Specifically, the point is that the field Q( 3
√

2, ζ) contains both
generators 3

√
2, e2πi/3 3

√
2 for L.

Inversely L contains both generators for K1K3. Thus, the
fields contain each other’s generators, so they are the same.

With this description L = K1K3, it is much easier to see that
[L : Q] = 6, since [K1 : Q] = 3 and [K1 : Q] = 2.



Examples of Extensions, XII

Example: Determine the degree of L = Q( 3
√

2, e2πi/3 3
√

2) over Q.

We will make some remarks about why the degree of the
composite is strictly less than the product of the field degrees
is that the minimal polynomial of e2πi/3 3

√
2.

Specifically, the reason is that x3 − 2, is not irreducible over
K1, since it factors as x3 − 2 = (x − 3

√
2)(x2 + 3

√
2x + 3

√
4),

and the other generator e2πi/3 3
√

2 is a root of the second,
quadratic factor.

Thus, to generate L/K1, we need only adjoin the root of a
quadratic polynomial, not a cubic polynomial.

Another way to approach this is to see that the basis
{1, e2πi/3 3

√
2, e4πi/3 3

√
4} for K2/Q is not linearly independent

over K1, because 2 + ( 3
√

4)[e2πi/3 3
√

2] + ( 3
√

2)[e4πi/3 3
√

4] = 0.



Algebraic Elements, I

If K/F is any field extension, we can also consider the collection of
all elements of K that are algebraic over F . This is a subfield:

Proposition (Algebraic Elements)

If K/F is any field extension and α, β ∈ K are algebraic over F ,
then so are α± β, αβ, and α−1 (the latter presuming α 6= 0). In
particular, the collection of all elements of K that are algebraic
over F is a subfield of K .

We can use this observation to construct infinite algebraic
extensions.



Algebraic Elements, II

Proof:

The field F (α, β) has finite degree over F when α and β are
both algebraic over F , hence F (α, β) is algebraic over F .

Then every element in F (α, β) is algebraic over F , including
(in particular) α± β, αβ, and α−1.

The second statement follows immediately from the first one,
upon applying the subfield criterion.



Algebraic Elements, III

Example: Consider the collection Q of all elements of C that are
algebraic over Q.

We claim that every element of Q has finite degree over Q,
but that Q/Q is an infinite (algebraic) extension.

The first statement follows immediately from our discussion of
algebraic elements.

To show that [Q : Q] =∞, notice that (for any positive
integer n) the element n

√
2 is contained in Q, hence the entire

field Q( n
√

2) is a subfield of Q.

Because n
√

2 has minimal polynomial xn − 2 (irreducible by
Eisenstein), we see that [Q( n

√
2) : Q] = n.

Therefore, [Q : Q] ≥ [Q( n
√

2) : Q] = n for every positive
integer n, so we must have [Q : Q] =∞.



Algebraic Elements, IV

Example: Consider the collection Q of all elements of C that are
algebraic over Q.

We will also remark that although Q is much larger than Q, it
still only has a countably infinite number of elements: every
element of Q is a root of a monic polynomial with rational
coefficients, and there are only countably infinitely many such
polynomials (and each one has a finite number of roots).

In particular, because R and C are both uncountable, there
exist (very many!) transcendental real and complex numbers.

Nonetheless, it is typically quite difficult to prove that any
particular transcendental number (like e or π) is actually
transcendental.



Liouville Numbers, I

Speaking of proving transcendentality, I thought you might like to
see how some of these transcendentality proofs tend to go.

I was going to make this a homework problem, but it has slightly
more analysis than I want to bother you with, so I’m doing it in
class instead. (You’re welcome.)



Liouville Numbers, II

If you are familiar with some elementary number theory, you may
know the following result:

Theorem (Approximation By Rationals)

If α is any real number and n is a positive integer, there exists a

rational number p/q such that q ≤ n and

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(n + 1)
.

There are various proofs. One method is simply to write down all
of the rationals with denominator at most n (the Farey sequence of
level n) and bound the greatest distance between any consecutive
pair. Another is to use continued fraction expansions.

Now consider what happens if you apply this theorem to an
increasing sequence of values of n.



Liouville Numbers, II

Corollary (Irrational Approximation By Rationals)

If α is a irrational real number and n is a positive integer, there

exist infinitely many rational numbers
p

q
with

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

The point is that this corollary’s condition is false if α is rational:

Specifically, if α =
a

b
, then

∣∣∣∣α− p

q

∣∣∣∣ =
|aq − bp|

bq
.

Then, since the numerator is an integer, if q is large enough

the only way to have
|aq − bp|

bq
<

1

q2
is to have aq − bp = 0.

But this would mean a/b = p/q, which doesn’t work.

This observation gives us an explicit way to identify irrational
numbers: α is irrational if and only if we can find infinitely many
p/q such that |α− p/q| < 1/q2.



Liouville Numbers, III

The clever idea of Liouville is that one can extend this criterion to
exclude algebraic numbers of degree n by increasing the exponent
of q on the right-hand side of the inequality. It is easier to show
the contrapositive assertion:

Lemma (Liouville)

Suppose α is algebraic of degree n > 1 over Q, and suppose its
minimal polynomial m(x) ∈ Z[x ]. Then there exists a positive real

number A such that

∣∣∣∣α− p

q

∣∣∣∣ ≥ A

qn
for any rational number p/q.

The idea of the proof is to use the mean value theorem to bound
the difference between m(α) and m(p/q) and the fact that we can
express m(p/q) as 1/qn times an integer.



Liouville Numbers, IV

Proof:

Let M be the maximum value of |m′(x)| on [α− 1, α + 1].
Suppose m(x) = (x − α)(x − β1) · · · (x − βn−1) over C.
Set A = min(1, 1/M, |α− βi |). We claim this value works.
So suppose that |α− p/q| < A/qn.
Then since A ≤ 1, p/q lies in [α− 1, α + 1].
Also since A ≤ |α− βi |, we see p/q 6= βi and there is no root
of m between α and p/q.
If m(x) =

∑
cix

i then |m(p/q)| = 1
qn |
∑

cip
iqn−i | ≥ 1

qn since∑
cip

iqn−i ∈ Z and the sum is not zero as m(p/q) 6= 0.
Also, by hypothesis, A ≤ 1/M, so |1/m′(x0)| ≥ A.
Then, by the mean value theorem, there exists x0 ∈ (p/q, α)
such that m(α)−m(p/q) = (α− p/q) ·m′(x0).
Taking absolute values and rearranging gives∣∣∣∣α− p

q

∣∣∣∣ =

∣∣∣∣m(α)−m(
p

q
)

∣∣∣∣ · 1

|m′(x0)|
≥ 1

qn
· A, contradiction.
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We can reformulate the lemma to get a recipe for transcendental
numbers:

Corollary (Liouville)

Suppose α is a real irrational number and that there exists a
constant c > 0 and a sequence of rational numbers pn/qn such

that

∣∣∣∣α− pn

qn

∣∣∣∣ < c

qn
n

. Then α is transcendental.

The point is that this sequence of rational numbers pn/qn

contradicts the assertion that α is algebraic of degree n for every
n, by the previous lemma, so α must be transcendental.
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Corollary (Liouville)

Suppose α is a real irrational number and that there exists a
constant c > 0 and a sequence of rational numbers pn/qn such

that

∣∣∣∣α− pn

qn

∣∣∣∣ < c

qn
n

. Then α is transcendental.

It only remains to give some examples of such α.

We want to arrange matters so that each successive rational
approximation is substantially better than the previous.

We can do this by taking α to be a sum of rational numbers
whose sizes drop very fast, where pn/qn is the nth partial sum
of the series.

Then we need only ensure that the tail α− pn/qn of the series
is on the order of qn

n .
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Liouville’s example was the number α =
∞∑
k=0

1

10k!
.

If pn/qn is the nth partial sum, then qn = 10n! and so

|α− pn/qn| =
∑∞

k=n+1

1

10k!
< 2/10(n+1)! < 2/(qn)n.

Thus, α satisfies the requested bound, and so it is
transcendental.

More generally, in place of the 1 in the numerators, one may
put any base-10 digit dn, and the result still holds (simply
change the 2 in the inequality to a 20).

It is not hard to see that this general class of examples yields
uncountably many transcendental real numbers.



Summary

We discussed algebraic extensions and various properties of
extension degrees.

We discussed a number of examples of low-degree field extensions.

We discussed some miscellaneous things about algebraic and
transcendental numbers.

Next lecture: Classical geometric constructions, splitting fields.


