
Math 5111 (Algebra 1)

Lecture #5 ∼ September 24, 2020

Properties of Subfields and Simple Extensions

Properties of Subfields

Simple Extensions

This material represents §2.2.2-2.2.3 from the course notes.



Subfields and Field Extensions, I

As with other algebraic structures like vector spaces and rings, a
natural first step in studying the structure of fields is to study
subfields.

Definition

If F is a field, we say a subset S of F is a subfield if S is itself a
field under the same operations as F . If F is a subfield of the field
K , we say that K is an extension field of F .

Notation: We often write K/F (“K over F ”) to symbolize that K
is an extension field of F . (It is not the quotient of K by F ! That
does not make sense in the land of rings, since F is not an ideal of
K .)



Subfields and Field Extensions, II

Examples:

1. Q is a subfield of R, which is a subfield of C.

2. For any squarefree integer D 6= 1, Q(
√

D) is a subfield of C.

3. For any squarefree integer D 6= 1, Q(
√

D) is an extension field
of Q.

4. F2 is a subfield of F2[x ]/(x2 + x + 1), where we think of F2 as
the constant polynomials. (Note F2[x ]/(x2 + x + 1) is a field
because x2 + x + 1 is irreducible.)

5. If p is an irreducible polynomial, F [x ]/p is an extension field
of F . (This one is extremely important: in fact, it’s the entire
reason we discussed polynomials!)



Subfields and Field Extensions, III

We can also exploit the structure of vector spaces to study the
structure of fields. A fundamental observation is that if K is an
extension field of F , then K is an F -vector space (under the
addition and multiplication of K ).

Definition

If K is an extension field of F , the degree [K : F ] (also called the
relative degree or very occasionally the “index”) is the dimension
dimF (K ) of K as an F -vector space. The extension K/F is finite if
it has finite degree; otherwise, the extension is infinite.

In fact, defining the degree of a field extension was the entire
reason we discussed vector spaces today.



Subfields and Field Extensions, IV

Examples:

1. We have [C : R] = 2 since C/R has a basis {1, i}.
2. We have [Q(

√
D) : Q] = 2, since Q(

√
D)/Q has a basis of 2

elements.

3. We have [R : Q] =∞, since dimQ(R) =∞.

The first two are finite extensions, while the third is infinite.

We will compute very many more extension degrees later.



Subfields and Field Extensions, V

Like with subrings, it is not necessary to verify most of the field
axioms to show that a subset is actually a subfield:

Proposition (Subfield Criterion)

A subset S of a field F is a subfield if and only if S contains 0 and
1, and is closed under subtraction and division. In other words, for
any a, b, c ∈ S with c 6= 0, we have a− b ∈ S and a · c−1 ∈ S.

Equivalently, S is a subfield if and only if it is a subring that
contains 1 and is closed under multiplicative inverses.

The proof (in the notes, if you want to read the details) is just
bookkeeping to verify that all of the field axioms hold.



Subfields and Field Extensions, VI

Examples:

1. The set S = {a + b 3
√

2 : a, b ∈ Q} is not a subfield of R,
where 3

√
2 denotes the real cube root of 2.

This set is not closed under multiplication (so it is not even a
subring): the element 3

√
2 · 3
√

2 = 3
√

4 is not in the set, because
we cannot write 3

√
4 = a + b 3

√
2 for any rational numbers a

and b. This fact may seem obvious, but it is not so easy to
prove directly!

Here is one argument: if 3
√

4 = a + b 3
√

2 then multiplying by
3
√

2 yields 2 = a 3
√

2 + b 3
√

4 and plugging in for 3
√

4 then yields
2 = a 3

√
2 + b(a + b 3

√
2) = ab + (a + b2) 3

√
2. Since 3

√
2 is

irrational and a, b are rational, the coefficient of 3
√

2 must be
0 so that a = −b2. But this does not work since it yields
−a3 = 2, which is impossible if a is rational.



Subfields and Field Extensions, VII

Examples:

2. The set S = {a + b 3
√

2 + c 3
√

4 : a, b, c ∈ Q} is a subfield of
R, denoted Q[ 3

√
2].

We use square brackets, like with the polynomial ring F [x ],
because Q[ 3

√
2] is the collection of polynomials in 3

√
2.

It is a straightforward calculation to see that S is closed under
addition, additive inverses, and multiplication (so it is a
subring). It is less clear why every nonzero element in S
possesses a multiplicative inverse.

In fact, one may verify that
1

a + b 3
√

2 + c 3
√

4
=

(a2 − 2bc) + (2c2 − ab) 3
√

2 + (b2 − ac) 3
√

4

a3 + 2b3 + 4c3 − 6abc
, and that the

denominator is never zero for a, b, c ∈ Q except when
a = b = c = 0.



Subfields and Field Extensions, VIII

Examples:

2. The set S = {a + b 3
√

2 + c 3
√

4 : a, b, c ∈ Q} is a subfield of
R, denoted Q[ 3

√
2].

Explicitly: since every term in the denominator
a3 + 2b3 + 4c3 − 6abc has degree 3, by multiplying through
by a common denominator we may assume that a, b, c are
relatively prime integers. Then a must be even since the other
terms all have even coefficients; cancelling the common factor
of 2 then shows b must be even, and then cancelling again
shows c must be even: contradiction.

Using a similar calculation, we can show that the set
{1, 3
√

2, 3
√

4} is Q-linearly independent and is therefore a basis
for Q[ 3

√
2]. Thus, we see that [Q[ 3

√
2] : Q] = 3.



Subfields and Field Extensions, IX

Examples:

3. The set S = {a + b
√

2 + c
√

3 : a, b, c ∈ Q} is not a field.

This set is not closed under multiplication, since√
6 =
√

2 ·
√

3 is not in S . Like in the other examples, this is
not so easy to prove directly.

Here is one argument: if
√

6 = a + b
√

2 + c
√

3 then
rearranging yields

√
6− c

√
3 = a + b

√
2. Squaring both sides

yields (6 + 3c2)− 6c
√

2 = (a2 + 2b2) + 2ab
√

2. Since
√

2 is
irrational this requires 2ab = −6c and 6 + 3c2 = a2 + 2b2.
Solving the first equation for c yields c = −ab/3, and then
plugging into the second equation yields
18 + a2b2 = 3a2 + 6b2. But this can be rearranged and
factored as (a2 − 6)(b2 − 3) = 0, which has no rational
solutions for a, b.



Subfields and Field Extensions, X

Examples:

3. The set S = {a + b
√

2 + c
√

3 + d
√

6 : a, b, c , d ∈ Q} forms
a field, denoted Q[

√
2,
√

3].

As with Q[ 3
√

2], it is easy to see that S is a subring: the hard
part is the existence of multiplicative inverses.

One can “rationalize denominators” repeatedly to compute
multiplicative inverses in S : explicitly, the multiplicative
inverse of a + b

√
2 + c

√
3 + d

√
6 can be computed to be

(a3−2ab2−3ac2+12bcd−6ad2)+(−2a2b+2b3−3bc2+6acd−6bd2)
√
2+(−a2c−2b2c+3c3+4abd−6cd2)

√
3+(2abc−a2d+2b2d−3c2d+6d3)

√
6

a4−4a2b2−6a2c2−12a2d2+48abcd+4b4−12b2c2−24b2d2+9c4−36c2d2+36d4

and one can similarly show that the denominator is never zero
unless a = b = c = d = 0.

Using a similar calculation, we can show that the set
{1,
√

2,
√

3,
√

6} is Q-linearly independent and is therefore a
basis for Q[

√
2,
√

3]. Thus, we see that [Q[
√

2,
√

3] : Q] = 4.



Subfields and Field Extensions, XI

Okay, so.... those last few examples really were awful.

Even though it may seem fairly obvious that those sets really
ought to be fields once we closed them under multiplication,
actually establishing the existence of multiplicative inverses
was deliriously unpleasant.

It also seems very unlikely that we would be able to extend
these computations to examples that are even a little bit more
complicated than those ones.

What we will do now is develop other (“better”) techniques
for studying subfields and field extensions that are less reliant
on explicit calculations.



Properties of Subfields, I

As an immediate corollary of the subfield criterion, we see that the
intersection of subfields is also a subfield:

Proposition (Intersection of Subfields)

If F is a field, then the intersection of any nonempty collection of
subfields of F is also a subfield of F .

Proof:

Let S =
⋂

i∈I Fi where the Fi are subfields of F . Then by the
subfield criterion, 0, 1 ∈ Fi for all i ∈ I , so S contains 0 and 1.

Furthermore, for any a, b, c ∈ S with c 6= 0, we have
a, b, c ∈ Fi for all i . Thus, a− b ∈ Fi and a · c−1 ∈ Fi for all i
by the subfield criterion, and therefore a− b ∈ S and
a · c−1 ∈ S , so S is a subfield.



Properties of Subfields, II

Like with vector spaces and span, if we have a subset S of a field,
we would like to understand the structure of the subfield of F
“generated by” the elements of S .

If F is a field and S is a subset of F , a natural choice is to
define “the subfield generated by S” to be the smallest
subfield of F containing S .

A priori, it is not obvious that there is such a smallest
subfield. However, since the intersection of any nonempty
collection of subfields is also a subfield, per the above
proposition, and since S is always contained in at least one
subfield (namely F itself), we can equivalently define the
subfield E ⊆ F generated by S to be the intersection of all
subfields containing S .



Properties of Subfields, III

Definition

If F is a field and S is a subset of F , we define the
subfield of F generated by S to be the intersection of all subfields
of F containing S.

Although this definition is clearly well-posed, we have not
really described what the elements in this subfield E actually
are.

If x1, x2, . . . , xn ∈ S , then since E is closed under addition and
multiplication and contains 1, we see that any polynomial
with integer coefficients in x1, x2, . . . , xn must be in S as well.
And since E is closed under division, it must in fact contain
any “rational function” (i.e., quotient of one polynomial by
another) of x1, x2, . . . , xn.



Properties of Subfields, IV

Definition

If F is a field and S is a subset of F , we define the
subfield of F generated by S to be the intersection of all subfields
of F containing S.

On the other hand, one can verify that the collection of all
rational functions in elements of S with coefficients from F
actually is a field.

This follows by the simple observation that the sum, product,
additive inverse, and multiplicative inverse of nonzero rational
functions are also rational functions.

Therefore, this collection of rational functions is the desired
field.



Properties of Subfields, V

We will frequently be interested in extensions of subfields.

Definition

If F is a field, S is a subset of F , and E is a subfield of F , we
define E (S), the extension of E by the set S, to be the smallest
subfield containing E and S.

Example:

The field Q(
√

2), inside C, is the smallest subfield of C
containing Q and

√
2.

This field must necessarily contain all elements of the form
a + b

√
2 for a, b ∈ Q. But as we saw last class, the set

{a + b
√

2 : a, b ∈ Q} is itself a field, so it is exactly Q(
√

2).



Properties of Subfields, VI

Another useful case is the subfield generated by 1:

Definition

If F is a field, the prime subfield of F is the subfield generated by
1. (It is sometimes written F ′.)

Any subfield of F contains 1, so the subfield generated by 1
will be the “smallest” subfield of F , and will be contained in
every other subfield of F .

The structure of the prime subfield will depend on the
characteristic of F :

Proposition (Prime Subfield)

If F has characteristic p > 0, then the prime subfield of F is
(isomorphic to) Fp = Z/pZ, and if F has characteristic 0, then the
prime subfield of F is (isomorphic to) Q.



Properties of Subfields, VII

Proof:

Let E be the prime subfield of F .

If F has characteristic p > 0, consider the map ϕ : Z→ E
defined by ϕ(a) = a1F .

It is easy to see that ϕ(a + b) = ϕ(a) + ϕ(b) and
ϕ(ab) = ϕ(a)ϕ(b) and that ϕ is surjective.

Furthermore, by the assumption on the characteristic (since
p1F = 0 in a field of characteristic p), we see that
ker(ϕ) = pZ.

Therefore, by the first isomorphism theorem, we obtain an
isomorphism of Z/ ker(ϕ) with im(ϕ) = E .

Thus, E is isomorphic to Z/pZ, as claimed.



Properties of Subfields, VIII

Proof (continued):

If F has characteristic 0, then instead consider the map
ϕ : Q→ E defined by ϕ(a/b) = (a1F ) · (b1F )−1.

This map is well-defined by the assumption that b1F 6= 0F
whenever b 6= 0.

As before, it is straightforward to see that
ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b).

Likewise, ϕ has an inverse map defined by
ϕ−1[(a1F ) · (b1F )−1] = a/b.

Thus, ϕ is a ring isomorphism and so E is isomorphic to Q,
again as claimed.



Properties of Subfields, IX

As we noted above, every subfield of F contains the prime subfield
of F , which is to say, every subfield of F is an extension field of the
prime subfield.

We can therefore always denote the subfield of F generated by
S as E (S), where E is the prime subfield of F .

The round parentheses are intended to indicate that we are
closing under field operations, in contrast to square brackets
where we only close under ring operations.



Properties of Subfields, X

For example, compare the following two things:

1. The set of rational functions in 3
√

2 with rational coefficients is
denoted Q( 3

√
2). This is the subfield of R generated by 3

√
2.

2. The set of polynomials in 3
√

2 with rational coefficients is
denoted Q[ 3

√
2].

As it happens, these two sets turn out to be the same, because
Q[ 3
√

2] is actually a field, but as we discussed, this is not a
trivial statement to establish (at least, not the way we did it!).

Furthermore, as we will see, there exist real numbers α with
the property that Q(α) 6= Q[α]: for example, this situation
arises when α is the transcendental number π.



Simple Extensions, I

In fact, let’s revisit the example of the field
F = Q[ 3

√
2] = {a + b 3

√
2 + c 3

√
4 : a, b, c ∈ Q} to examine the

structure a bit more closely:

For shorthand, write x = 3
√

2: then every element of F has the
form a + bx + cx2.

Addition is performed in the obvious way:
(a+bx +cx2)+(d +ex +f x2) = (a+d)+(b+e)x +(c +f )x2.

For multiplication, we can use the distributive law to compute
(a + bx + cx2) · (d + ex + f x2) =
ad + (ae + bd)x + (af + be + cd)x2 + (bf + ce)x3 + cf x4.

Since x3 = ( 3
√

2)3 = 2, we see
(a + bx + cx2) · (d + ex + f x2) =
(ad + 2bf + 2ce) + (ae + bd + 2cf )x + (af + be + cd)x2.

So now here’s the question: does this look at all familiar?



Simple Extensions, II

In fact (with the sort-of-cheating replacement of 3
√

2 by x), we can
see that the arithmetic has exactly the same description as the
arithmetic in the polynomial quotient ring Q[x ]/(x3 − 2).

This situation of “these rings look exactly the same” is merely
reflecting the fact that the map ϕ : Q[x ]/(x3 − 2)→ Q[ 3

√
2]

sending x 7→ 3
√

2 is a ring homomorphism.

You can ponder how to use the first isomorphism theorem to
construct this map ϕ, rather than having to do it directly.

Furthermore, since ϕ is clearly a bijection, the rings Q[ 3
√

2]
and Q[x ]/(x3 − 2) are isomorphic.

Finally, because the polynomial x3 − 2 is irreducible in Q[x ]
(either because it has degree 3 and no rational roots, or by
Eisenstein with p = 2), we know that Q[x ]/(x3 − 2) is a field.

Therefore, Q[ 3
√

2] is a field as well, since it is ring-isomorphic
to a field.



Simple Extensions, III

We can generalize the analysis in the example to the class of field
extensions generated by a single element:

Definition

If K/F is a field extension, we say that K is a simple extension if
K = F (α) for some α ∈ K : in other words, if K is generated over
F by the single element α.

Examples:

C is a simple extension of R, generated by the element i . (In
fact, C is generated over R by any non-real complex number.)

Q(
√

2) is a simple extension of Q, generated by
√

2.

The rational function field F (x) is a simple extension of F ,
generated by the element x .



Simple Extensions, IV

It is not always obvious whether a given extension has a single
generator.

Even if we construct the extension using several different
generators, it is possible that some combination of them
might generate the extension by itself.

Later, we will be able to characterize simple extensions, and it
turns out that many (perhaps “most”) extensions are simple.



Simple Extensions, V

Example: Show that the field Q[
√

2,
√

3] is a simple extension of Q
generated by the element α =

√
2 +
√

3.

We can see that α2 = 5 + 2
√

6 and α3 = 11
√

2 + 9
√

3.

It is then easy to see that we can write
√

6 =
1

2
(α2 − 5),

√
2 =

1

2
(α3 − 9α), and

√
3 =

1

2
(11α− α3).

This means every element in the field is a rational function (in
fact, a polynomial) with rational coefficients in α, meaning
that α is a generator for the field.



Simple Extensions, V

Example: Show that the field Q[
√

2,
√

3] is a simple extension of Q
generated by the element α =

√
2 +
√

3.

We can see that α2 = 5 + 2
√

6 and α3 = 11
√

2 + 9
√

3.

It is then easy to see that we can write
√

6 =
1

2
(α2 − 5),

√
2 =

1

2
(α3 − 9α), and

√
3 =

1

2
(11α− α3).

This means every element in the field is a rational function (in
fact, a polynomial) with rational coefficients in α, meaning
that α is a generator for the field.



Simple Extensions, VI

The structure of the simple extension K = F (α) will depend on
the nature of the element α: specifically, on whether α is the root
of some polynomial with coefficients in F .

Definition

If K/F is a field extension, we say that the element α ∈ K is
algebraic over F if α is the root of some nonzero polynomial
p ∈ F [x ]. Otherwise, if α is not a root of any nonzero polynomial
in F [x ], we say α is transcendental over F .



Simple Extensions, VII

Examples:

1. The elements
√

2, 3
√

2, i , and 2− 3i of C are algebraic over
Q, since they are roots of the polynomials x2 − 2, x6 − 4,
x4 − 1, and (x − 2)2 + 9 respectively.

2. The elements e and π of R are transcendental over Q (neither
of these facts is easy to prove, and we will not prove them!).

3. The element t in the field of rational functions F (t) is
transcendental over F , since it does not satisfy any
polynomial with coefficients in F . (This fact is implicit in the
definition of the polynomial ring F [t].)

4. If p is any irreducible polynomial over F , then the element x
in the polynomial quotient ring K = F [x ]/p is algebraic over
F , because p(x) = 0 in K .



Minimal Polynomials, I

By definition, an algebraic element over F is by definition a root of
some nonzero polynomial in F [x ].

Indeed, it may be a root of many different polynomials: for
example,

√
2 is a root of x2− 2, x3 + x2− 2x − 2, and x4− 4.

However, all of these polynomials are multiples of an essentially
unique monic polynomial:

Proposition (Minimal Polynomials)

If K/F is a field extension and α ∈ K is algebraic over F and
nonzero, then there exists a unique monic irreducible polynomial
m ∈ F [x ] such that m(α) = 0. This polynomial is called the
minimal polynomial of α over F , and is the monic polynomial of
smallest positive degree having α as a root; furthermore, any other
polynomial having α as a root is divisible by m.



Minimal Polynomials, II

Proof:

If α is algebraic, consider the set of all nonzero polynomials in
F [x ] having α as a root.

By hypothesis, S is nonempty, so by the well-ordering axiom,
S contains a polynomial of minimal positive degree.

It is easy to see that if m(α) = 0, then any F -multiple of m
also has α as a root, so we may divide m by its leading
coefficient to make m monic.

We claim that m is irreducible: if m had a factorization
m = pq with 0 < deg p, deg q < deg m, then by evaluating
both sides at α we would see 0 = m(α) = p(α)q(α).

Since K is a field, this implies p(α) = 0 or q(α) = 0 so that
one of p, q has α as a root and is therefore in S .

But this is a contradiction, since m was assumed to be an
element of minimal degree in S : thus, m is irreducible.



Minimal Polynomials, III

Proof (continued):

For the divisibility property, suppose that b is a polynomial
with α as a root.

Then applying the division algorithm to b and m shows that
b = qm + r for some q, r with deg r < deg m.

Evaluating both sides at α and rearranging then yields
r(α) = b(α)− q(α)m(α) = 0, so since deg r < deg m we must
have r = 0 by the minimality of m. Thus, m|b as claimed.

For the uniqueness of m, if there were another such
polynomial m′, then by the above we would have m′|m and
m|m′ so that m and m′ are associates. But since both m and
m′ are monic, they are equal.



Minimal Polynomials, IV

Examples:

1. The minimal polynomial of
√

2 over Q is x2 − 2: it has
√

2 as
a root and is irreducible.

2. The minimal polynomial of 3
√

2 over Q is x3 − 2: it has 3
√

2 as
a root and is irreducible.

3. The minimal polynomial of 2 + i over R is (x − 2)2 + 1: it has
2 + i as a root and is irreducible.

We will compute many more examples as we continue with our
discussion.



Simple Extensions, VIII

The nature of the simple extension F (α) will depend on whether α
is algebraic or transcendental over F :

Theorem (Simple Extensions)

Suppose K/F is a simple extension with K = F (α). If α is
algebraic over F with minimal polynomial m(x) then K is
isomorphic to the field F [x ]/m(x), while if α is transcendental over
F then K is isomorphic to the field F (t) of rational functions in t.

The idea of the proof is simply to show that the map associating x
(or t, as appropriate) with α is a well-defined ring isomorphism.



Simple Extensions, IX

Proof:

First suppose α is algebraic over F with minimal polynomial
m(x). Consider the map ψ : F [x ]→ K mapping p(x) to p(α).

Then ψ(p + q) = (p + q)(α) = p(α) + q(α) = ψ(p) + ψ(q);
similarly ψ(pq) = ψ(p)ψ(q), so ψ is a ring homomorphism.

Furthermore, ker(ψ) is the set of polynomials having α as a
root, which is simply the ideal (m) of multiples of m, by our
discussion of the minimal polynomial.

Therefore, by the first isomorphism theorem, we obtain an
isomorphism ϕ : F [x ]/ ker(ψ) ∼= im(ψ).

But F [x ]/m(x) is a field since m is irreducible, so the image
of ϕ is a subfield of K containing α and F .

Therefore, by definition of F (α), this means it must actually
be F (α) = K , and thus K = F (α) is isomorphic to
F [x ]/(m(x)) as claimed.



Simple Extensions, X

Proof (continued):

If α is transcendental over F , the argument is similar, except

we instead use the map ϕ : F (t)→ K sending
p(t)

q(t)
to

p(α)

q(α)
.

This map is well defined because q(α) 6= 0 whenever q is not
the zero polynomial by the assumption that α is
transcendental.

It is easy to see that ϕ respects addition and multiplication,
and is injective (the latter because α is transcendental).

Surjectivity follows by a similar argument as before: F (t) is
isomorphic as a ring to the image of ϕ, and since F (t) is a
field, we conclude that the image of ϕ is a subfield of K
containing α and F , hence is equal to K = F (α).



Simple Extensions, XI

Using the description of simple extensions we can easily compute
the extension degree, and characterize when F (α) = F [α]:

Corollary (Simple Extension Degrees)

Suppose K/F is a simple extension with K = F (α). If α is
algebraic over F with minimal polynomial m(x) then
[F (α) : F ] = deg m, and F (α) is spanned (as an F -vector space)
by {1, α, α2, . . . , αdegm−1}, while if α is transcendental over F
then [F (α) : F ] =∞. Furthermore, F (α) = F [α] if and only if α is
algebraic over F .



Simple Extensions, XII

Proof:

First suppose α is algebraic over F with minimal polynomial
m(x), where deg m = n.

As we just showed, K is isomorphic to F [x ]/m(x).

From our discussion of residue classes in F [x ]/m(x), we know
(via an application of the division algorithm) that every
residue class can be written uniquely in the form
b0 + b1x + · · ·+ bn−1xn−1 for unique elements bi ∈ F .

Equivalently, this says that the set {1, x , x2, . . . , xn−1} is an
F -basis for F [x ]/m(x).

Applying the isomorphism between K and F [x ]/m(x) shows
that the set {1, α, α2, . . . , αn−1} is an F -basis for F (α).

Therefore, we have [F (α) : F ] = n.

Furthermore, we see immediately that F (α) = F [α] here.



Simple Extensions, XIII

Proof (continued):

Now suppose α is transcendental over F .

Then the set {1, α, α2, . . . } is linearly independent over F , as
any nontrivial linear dependence c0 + c1α + · · ·+ cnα

n = 0
would imply that α is the root of some nonzero polynomial in
F [x ], but this cannot occur because α is transcendental.

Since K contains an infinite F -linearly independent set we see
[K : F ] =∞.

Furthermore, F (α) contains elements that are not polynomials
in α (namely, any rational function that is not a polynomial).

For a specific example, we cannot have α−1 = p(α) since this
would imply 1− αp(α) = 0 so that α would be a root of a
nonzero polynomial, impossible.

Therefore, α−1 ∈ F (α) is not in F [α], so F (α) 6= F [α] here.



Simple Extensions, IX

These results allow us to do calculations in simple extensions very
pleasantly: all we need to do is find the minimal polynomial of the
generator.

Example: Show that the field Q( 8
√

2) has degree 8 over Q and find
a basis.

Observe that 8
√

2 is a root of the polynomial x8 − 2 over Q,
and this polynomial is irreducible by Eisenstein’s criterion with
p = 2.

Therefore, x8 − 2 is the minimal polynomial of 8
√

2.

Thus, by our results on simple extensions we see that
[Q( 8
√

2) : Q] = 8 and that the set {1, 21/8, 22/8, . . . , 27/8} is a
basis.
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Simple Extensions, X

Example: Show that the field Q(
√

3 +
√

21) has degree 4 over Q
and find a basis.

If we let α =
√

3 +
√

21, then α2 = 3 +
√

21.

Squaring gives (α2 − 3)2 = 21, so that α4 − 6α2 − 12 = 0.

However, the polynomial q(x) = x4 − 6x2 − 12 is irreducible
over Q by Eisenstein’s criterion with p = 3.

Therefore, q must be the minimal polynomial of α.

Thus, by our results, we see that [Q(α) : Q] = 4 and that the
set {1, α, α2, α3} is a basis.
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Simple Extensions, XI

We can also see that if α and β have the same minimal polynomial
over F , then the extension fields F (α) and F (β) are isomorphic:

Corollary (Algebraic Equivalence)

If α and β are two elements in K/F with equal minimal
polynomials, then the fields F (α) and F (β) are isomorphic as
fields. Explicitly, there is an isomorphism ϕ : F (α)→ F (β) that
fixes F (i.e., sends every element in F to itself) and sends α to β.

Proof:

Both fields are isomorphic to F [x ]/m(x) where m is the
common minimal polynomial.

Thus F (α) is isomorphic to F (β) since the composition of
isomorphisms is an isomorphism. This composition sends α to
β and fixes every element of F , also as claimed.



Simple Extensions, XII

Example: If α =
√

2 and β = −
√

2, then α and β both have the
minimal polynomial x2 − 2 over Q, so F (α) is isomorphic to F (β).

Explicitly, the isomorphism maps a + b
√

2 ∈ Q(
√

2) to the
element a + b(−

√
2) ∈ Q(−

√
2).

In fact, these fields are equal (as subfields of R or of C)
because

√
2 ∈ Q(−

√
2) and −

√
2 ∈ Q(

√
2).

Thus, we may alternatively view this isomorphism as a map
from Q(

√
2) to itself, acting via σ(a + b

√
2) = a− b

√
2.

In this example, F (α) is actually equal to F (β) as a set. This is
not necessarily the case in general, as the next example will show.



Simple Extensions, XIII

Example: If α = 3
√

2 is the real cube root of 2, and β = e2πi/3 3
√

2
is a nonreal cube root of 2, then α and β both have the minimal
polynomial x3 − 2 over Q, and so F (α) is isomorphic to F (β).

As an explicit complex number, notice that
e2πi/3 = (−1 + i

√
3)/2 , and the cube of this number is

indeed 1 (one may either note that e2πi = 1, or simply cube it
explicitly). Thus, β3 = 2 as claimed.

However, as subfields of C, F (α) is not equal to F (β),
because F (α) is a subfield of R while F (β) is not.

Nonetheless, these two fields have precisely the same algebraic
structure, which is the same as the structure of the field
Q[x ]/(x3 − 2).



Simple Extensions, XIV

In particular, you should take a moment to re-evaluate what
exactly you think “the cube root of 2” actually is.

One perspective (the analytic one) is that it is the unique real
number 3

√
2 ≈ 1.25992 whose cube is equal to 2: such a

number certainly exists by the intermediate value theorem,
and is unique by the mean value theorem.

The other perspective (the algebraic one) is that “a cube root
of 2” is merely “a number whose cube equals 2”. There is no
uniquely special cube root of 2, and (depending on what field
you are in) there may be 3 such numbers, 1 such number, or
none at all.

Specifically, in F5, there is one cube root of 2 (namely, 3),
whereas in F7 the number 2 has no cube root at all, and in
F31 there are three cube roots of 2 (namely, 4, 7, and 20).
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Simple Extensions, XV

The observation in this last example may seem minor, but it is
actually very important.

We will often encounter situations where fields are isomorphic but
not equal, and this question of whether two fields are merely
isomorphic or actually equal is connected to a number of subtle
issues, which we will of course deliberate upon very carefully!



Simple Extensions, XVI

Another way to interpret all of this is to view the different roots of
the minimal polynomial as being “algebraically indistinguishable”,
in the sense that the resulting extension fields have the same
algebraic structure.

This does not mean that the fields are the same, since we may
sometimes be able to distinguish these fields in some other
(“non-algebraic”) way.

In the example with Q( 3
√

2) and Q(e2πi/3 3
√

2), we used
information about the field R (which involves using additional
analytic/topological operations (i.e., the use of limits and
continuity), rather than intrinsic algebraic properties of the
field Q) to distinguish these two fields.



Summary

We discussed some useful properties of subfields and field
extensions.

We discussed simple extensions and their relationship to
polynomial quotient rings.

Next lecture: Algebraic extensions.


