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Lecture #4 ∼ September 21, 2020

Fields and Vector Spaces

Fields + Basic Examples

Vector Spaces

Subfields and Field Extensions

This material represents §2.1.1-2.2.1 from the course notes.



Overview of §2: Fields and Field Extensions

Now that we have set the table, so to speak, by discussing the
basics of rings and polynomials, we can now start our discussion of
fields.

We start (today) with some additional examples of fields, and
then review vector spaces over an arbitrary field, which
provide important tools for our later study.
Then we discuss subfields and field extensions, and explore the
deep connections between polynomials and fields.
We will give a variety of applications of field theory, such as
the impossibility of certain classical straightedge-and-compass
constructions such as trisecting an arbitrary angle and
doubling the cube.
We will also discuss at length the structure of fields obtained
by “adjoining” roots of polynomials, and in particular the
(historically perilous) topic of establishing that every field has
an algebraic closure.



Fields, I

Recall the definition of a field:

Definition

A field is any set F having two (closed) binary operations + and ·
that satisfy the nine axioms [F1]-[F9]:

[F1] + is associative: a + (b + c) = (a + b) + c for any a, b, c in F .

[F2] + is commutative: a + b = b + a for any a, b in F .

[F3] There is an additive identity 0 with a + 0 = a for all a ∈ F .

[F4] Every a ∈ F has an additive inverse −a with a + (−a) = 0.

[F5] · is associative: a · (b · c) = (a · b) · c for any a, b, c in F .

[F6] · is commutative: a · b = b · a for any a, b in F .

[F7] There is a mult. identity 1 6= 0 with 1 · a = a for all a ∈ F .

[F8] Every nonzero a ∈ F has an inverse a−1 satisfying a · a−1 = 1.

[F9] · distributes over +: a · (b + c)=a · b+a · c for all a, b, c ∈ F .



Fields, II

We have previously mentioned some examples of fields:

1. The rational numbers Q are a field.

2. The real numbers R are a field.

3. The complex numbers C are a field.

4. If p is a prime number, then Fp = Z/pZ is a field.

5. If F is any field and p is any irreducible polynomial in F [x ],
then the ring F [x ]/p of residue classes modulo p is also a field.



Fields, III

Some additional examples of fields:

6. If F is a field, the collection of rational functions in t with
coefficients in F , denoted F (t), forms a field.

We use the letter t to denote the indeterminate rather
than x , since we will later want to discuss polynomials in
the context of this field of rational functions.
Explicitly, the elements of this field are quotients of
polynomials p

q where p, q ∈ F [t] and q 6= 0, and where
p
q = r

s whenever ps = rq.
Addition and multiplication are defined in the same way
as for fractions: p

q + r
s = ps+qr

qs and p
q ·

r
s = pr

qs .
It is tedious (but straightforward) to verify that these
operations are well-defined and satisfy the field axioms.
This field is the fraction field of the polynomial ring F [t].



Fields, III

Some additional examples of fields:

7. The set S = {a + b
√

2 : a, b ∈ Q} forms a field, denoted
Q(
√

2) (typically read as “Q adjoin
√

2”).
The arithmetic in Q(

√
2) is as follows:

(a + b
√

2) + (c + d
√

2) = (a + c) + (b + d)
√

2, and
(a + b

√
2)(c + d

√
2) = (ac + 2bd) + (ad + bc)

√
2.

Since Q(
√

2) is clearly closed under subtraction and
multiplication, and contains 0 = 0 + 0

√
2, it is a subring

of C and hence an integral domain, since it contains 1.
To see that Q(

√
2) is actually a field, we need to show

that every element has a multiplicative inverse: this
follows by “rationalizing the denominator”, since we can

write (a + b
√

2)−1 =
a− b

√
2

a2 − 2b2
, and as long as one of

a, b is nonzero the denominator is also nonzero because√
2 is irrational.



Fields, IV

Some additional examples of fields:

8. The set S = {a + bi : a, b ∈ Q} forms a field, denoted Q(i).
(As usual, i denotes the imaginary unit with i2 = −1.)

The arithmetic in Q(i) is the same as for regular complex
numbers: (a + bi) + (c + di) = (a + c) + (b + d)i , and
(a + bi)(c + di) = (ac − bd) + (ad + bc)i .
Like with Q(

√
2) we can see that every nonzero element

has a multiplicative inverse, since (a + bi)−1 =
a− bi

a2 + b2
,

so Q(i) is a field.



Fields, V

The last two examples are special cases of a more general class:

Definition

Let D be a squarefree integer not equal to 1. The quadratic field
Q(
√

D) is the set of complex numbers of the form a + b
√

D,
where a and b are rational numbers.

Remark: An integer is squarefree if it is not divisible by the square
of any prime. We do not lose any generality by assuming that D is
a squarefree integer (think about why this is).

As in the two special cases D = 2 and D = −1 analyzed on
the last two slides, Q(

√
D) is a field because we can write

(a + b
√

D)−1 =
a− b

√
D

a2 − Db2
, and a2 − Db2 6= 0 provided that a

and b are not both zero because
√

D is irrational (by the
assumption that D is squarefree and not equal to 1).



Fields, VI

Here is an important quantity related to quadratic fields:

Definition

Let D be a squarefree integer not equal to 1. The
quadratic field norm is the function N : Q(

√
D)→ Q defined via

N(a + b
√

D) = a2 − Db2 = (a + b
√

D)(a− b
√

D).

The fundamental property of this field norm is that it is
multiplicative: N(xy) = N(x)N(y) for two elements x and y
in Q(

√
D), as can be verified by writing out both sides

explicitly and comparing the results.

The field norm provides a measure of “size” of an element of
Q(
√

D), in much the same way that the complex absolute
value measures the “size” of a complex number. In fact, if
D < 0, then the field norm of an element a + b

√
D is the

same as the square of its complex absolute value.



Fields, VII

Fields inherit all of the properties of integral domains:

Proposition (Basic Field Arithmetic)

The following properties hold in any field F :

1. 0 and 1 are unique, as are additive and multiplicative inverses.

2. Addition has a cancellation law: a + b = a + c implies b = c.

3. Multiplication has a cancellation law: if a 6= 0 then ab = ac
implies b = c. In particular, ab = 0 implies a = 0 or b = 0.

4. For any a ∈ F , 0 · a = 0 = a · 0 and (−1) · a = −a.

5. For any a, b ∈ F , −(a + b) = (−a) + (−b),
(−a) · b = −(a · b) = a · (−b), and (−a) · (−b) = a · b.

6. For any m, n > 0 and any a ∈ F , ma + na = (m + n)a,
m(na) = (mn)a, am+n = aman, and amn = (am)n.



Fields, VIII

Another fundamental property of a field is its characteristic:

Definition

If F is a field, we say F has characteristic p if p1F = 0, and no
smaller positive integer multiple of 1 is 0. (Recall that
p1F = 1F + 1F + · · ·+ 1F︸ ︷︷ ︸

p times

.)

If n1F 6= 0 for all n > 0, then we say F has characteristic 0.

Example: The fields Q, R, and C have characteristic 0.

Example: For a prime p, the finite field Fp = Z/pZ has
characteristic p.

Any finite field necessarily has positive characteristic, although
infinite fields with positive characteristic also exist, such as
the function field Fp(t).



Fields, IX

The characteristic of a field is either 0 or a prime number:

Proposition (Positive Characteristic)

If the field F has characteristic p > 0, then p is a prime.

Proof:

Suppose F has characteristic m > 0 and m = ab for positive
integers a, b: then 0 = m1F = (a1F ) · (b1F ).

Since F is a field, this implies that one of a1F and b1F must
be zero, but since m is minimal, the only possibility is that
a = m or b = m, meaning that m must be prime.



Vector Spaces, I

Vector spaces are a central ingredient for studying fields.

We will not need very much of linear algebra in this course, so
the goal is just to review some of the basic properties of
vector spaces over an arbitrary field.

However, please note that linear algebra is wonderful and, no
matter how much linear algebra you have learned, you should
learn more of it1.

1Seriously, go learn more linear algebra. But not right now.



Vector Spaces, II

Definition

Let F be a field, and refer to the elements of F as scalars. A
vector space over F is a collection V of vectors, together with two
binary operations, addition of vectors (+) and scalar multiplication
of a vector by a scalar (·), satisfying the following axioms:

[V1] + is commutative: v + w = w + v for any vectors v and w.

[V2] + is associative: (u+v)+w=u+(v+w) for all u, v,w ∈ V .

[V3] There exists a zero vector 0, with v + 0 = v for all v ∈ V .

[V4] Every v ∈ V has an additive inverse −v, with v + (−v) = 0.

[V5] α · (β · v) = (αβ) · v for any α, β ∈ F and v ∈ V .

[V6] (α + β) · v = α · v + β · v for any scalars α, β and vector v.

[V7] α · (v + w) = α · v + α ·w for any α ∈ F and v,w ∈ V .

[V8] 1 acts like the identity: 1 · v = v for any v ∈ V .



Vector Spaces, III

Here are a few standard examples of vector spaces:

1. For any positive integer n, the set of all n-tuples of elements
from F , denoted F n, is an F -vector space under
componentwise addition and scalar multiplication.

Explicitly, the operations in F n are componentwise
addition and scalar multiplication:
〈a1, a2, . . . , an〉+ 〈b1, b2, . . . , bn〉 =
〈a1 + b1, a2 + b2, . . . , an + bn〉 and
α · 〈b1, b2, . . . , bn〉 = 〈αb1, αb2, . . . , αbn〉.
The additive identity is the zero vector 〈0, 0, . . . , 0〉 and
additive inverses are given by negating each component:
−〈b1, b2, . . . bn〉 = 〈−b1,−b2, . . . ,−bn〉.



Vector Spaces, III

Here are a few standard examples of vector spaces:

2. The zero space with a single element 0, with 0 + 0 = 0 and
α · 0 = 0 for every α ∈ F , is an F -vector space.

3. Any field is a vector space over itself (with its own addition
and multiplication operations).

4. The rings F [x ] and F [x ]/p for any polynomial p are F -vector
spaces.

5. Under the normal addition and multiplication, R is a vector
space over Q.

6. Under the normal addition and multiplication, C is a vector
space over Q. C is also a vector space over R.



Vector Spaces, IV

Like with rings and fields, vector spaces have some basic arithmetic
properties that can be derived immediately from the axioms:

Proposition (Basic Arithmetic in Vector Spaces)

In any vector space V , the following are true:

1. The additive identity 0 is unique, as are additive inverses.

2. Addition has a cancellation law: for any a,b, c ∈ V , if
a + b = a + c, then b = c.

3. For any v ∈ V , 0 · v = 0, and for any α ∈ F , α · 0 = 0.

4. For any v ∈ V , (−1) · v = −v, and −(−v) = v.

Proofs: Straightforward from the axioms.



Vector Subspaces

Our interest is in studying the structure of vector spaces and using
them to say things about fields. First, subspaces:

Definition

A subspace W of a vector space V is a subset of the vector space
V which, under the same addition and scalar multiplication
operations as V , is itself a vector space.

Examples:

Any vector space V has two obvious subspaces: the zero
space and V itself.

As a Q-vector space, R is a subspace of C.



Linear Combinations and Span, I

Definition

Given a set v1, v2, . . . , vn of vectors in a vector space V , we say a
vector w in V is a linear combination of v1, v2, . . . , vn if there exist
scalars a1, · · · , an such that w = a1 · v1 + a2 · v2 + · · ·+ an · vn.

In other words, a vector w is a linear combination of other vectors
v1, v2, . . . , vn if we can obtain w from the vi using the basic vector
space operations.



Linear Combinations and Span, II

Examples:

1. In Q4, the vector 〈4, 0, 5, 9〉 is a linear combination of
〈1, 0, 0, 1〉, 〈0, 1, 0, 0〉, and 〈1, 1, 1, 2〉, because
〈4, 0, 5, 9〉 = 1 · 〈1,−1, 2, 3〉 − 2 · 〈0, 1, 0, 0〉+ 3 · 〈1, 1, 1, 2〉.

2. In F2
3, the vector 〈1, 0, 2〉 is a linear combination of 〈1, 1, 1〉

and 〈2, 1, 0〉, because 〈1, 2〉 = 2 · 〈1, 1, 1〉+ 1 · 〈2, 1, 0〉.
3. In R3, the vector 〈0, 0, 1〉 is not a linear combination of
〈1, 1, 0〉 and 〈0, 1, 1〉 because there exist no scalars a1 and a2
for which a1 · 〈1, 1, 0〉+ a2 · 〈0, 1, 1〉 = 〈0, 0, 1〉: this would
require a common solution to the three equations a1 = 0,
a1 + a2 = 0, and a2 = 1, and this system has no solution.

There are straightforward computational methods using
row-reduction of matrices to determine whether a vector in F n is a
linear combination of other given vectors.



Linear Combinations and Span, III

Definition

If V is a vector space and S is a subset, the span of S is defined to
be span(S) = {a1 · v1 + · · ·+ an · vn : ai ∈ F , vi ∈ S}, the set of
all linear combinations of finitely many vectors in S. (Note that
span(∅) = {0}.)

It is not hard to show that span(S) is the smallest subspace
of V containing S .

Another definition of the span is the intersection of all
subspaces of V containing S .

Example: The span of the set {1, x} inside F [x ] is the set of
linear polynomials (i.e., of the form a + bx for a, b ∈ F ).



Linear Combinations and Span, IV

Definition

If span(S) = V , we say that S is a spanning set for V : in other
words, when every vector in V can be written as a linear
combination of the vectors in S.

Examples:

The set {1, i} is a spanning set for C as a vector space over R.

The set {〈1, 0, 0〉 , 〈0, 1, 0〉 , 〈0, 0, 1〉} is a spanning set for F 3.

The set {〈1, 1〉 , 〈2, 1〉 , 〈3, 1〉} is a spanning set for Q2.

For spanning sets, there is no requirement that vectors be uniquely
representable as a linear combination (e.g., in the third example),
only that there is at least one way.



Linear Independence, I

Definition

If V is a vector space, a subset S of V is linearly independent if,
for any distinct vectors vi ∈ S and any scalars ai ∈ F ,
a1 · v1 + · · ·+ an · vn = 0 implies a1 = · · · = an = 0. Otherwise, S
is linearly dependent.

For a finite set S = {v1, . . . , vn}, S is linearly independent
precisely when the only way to form the zero vector as a linear
combination of v1, . . . , vn is when all the scalar coefficients are
zero (the “trivial” linear combination).

An infinite set is linearly independent when all its finite subsets are
linearly independent.

The term “linear dependence” arises from the fact that if a set of
vectors is linearly dependent, one of the vectors is necessarily a
linear combination of the others (i.e., it “depends” on the others).



Linear Independence, II

Examples:

1. The vectors 〈1, 1, 0〉 and 〈0, 2, 1〉 in R3 are linearly
independent, because a · 〈1, 1, 0〉+ b · 〈0, 2, 1〉 = 〈0, 0, 0〉
implies a = 0, a + 2b = 0, and b = 0, so that a = b = 0.

2. The set {1, x , x2, x3, . . . , xn} is linearly independent in F [x ]
because the only solution to a0 · 1 + a1x + · · ·+ anxn = 0 for
scalars ai is a0 = a1 = · · · = an = 0.

3. The complex numbers 3− 5i , 3− 4i , and 1− i are linearly
dependent over Q because 1(3−5i)−2(3−4i) + 3(1− i) = 0.

4. The empty set is always linearly independent, in any vector
space.

5. The set {v} is linearly independent if and only if v 6= 0.

6. The set {v,w} is linearly independent if and only if neither v
nor w is a scalar multiple of the other.



Linear Independence, III

If a set of vectors is linearly independent, every vector in their span
can be uniquely written as a linear combination:

Proposition (Characterization of Linear Independence)

A set S of vectors is linearly independent if and only if every vector
w in span(S) may be uniquely written as a sum
w = a1 · v1 + · · ·+ an · vn for unique scalars a1, a2, . . . , an and
unique vectors v1, v2, . . . , vn in S (where we view sums as
equivalent if additional terms with coefficient 0 are added or
removed).

When S = {v1, . . . , vn} is finite, this means every vector
w ∈ span(S) can be written as a linear combination
w = a1 · v1 + · · ·+ an · vn where a1, . . . , an are now unique.



Linear Independence, IV

Proof:

First suppose the decomposition is always unique.

Then for any v1, v2, . . . , vn in S , a1 · v1 + · · ·+ an · vn = 0
implies a1 = · · · = an = 0, because 0 · v1 + · · ·+ 0 · vn = 0 is
by assumption the only decomposition of 0.

Now suppose that
w = a1 · v1 + · · ·+ an · vn = b1 · v1 + · · ·+ bn · vn has two
decompositions.

Subtracting yields
(a1 − b1) · v1 + · · ·+ (an − bn) · vn = w −w = 0, and since
v1, . . . , vn are linearly independent, a1 − b1, · · · , an − bn are
all zero.



Bases and Dimension, I

Now we can get to the good part.

Definition

A linearly independent set of vectors that spans V is called a basis
for V . (The plural of “basis” is “bases”.)

From our characterization of linear independence above, we can
see that S is a basis for V if and only if every vector in V can be
written uniquely as a linear combination of vectors in S .



Bases and Dimension, II

Example:

1. The “standard basis” for F n consists of the unit coordinate
vectors 〈1, 0, . . . , 0, 0〉, 〈0, 1, . . . , 0, 0〉, ... , 〈0, 0, . . . , 0, 1〉.

2. The set {1, i} is a basis for C over R, as is the set
{1 + i , 2− 3i}.

3. If p has degree n, then the set {1, x , x2, . . . , xn−1} is a basis
for F [x ]/p.

4. The vectors 〈1, 1, 0〉 and 〈1, 1, 1〉 are not a basis for Q3 since
they do not span Q3.

5. The vectors 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 1〉 are not a basis
for Q3 since they are not linearly independent.



Bases and Dimension, III

Theorem (Spanning Sets)

Any spanning set for a vector space V contains a basis of V .

If the spanning set is finite, then the idea is to throw away
linearly dependent vectors one at a time until the resulting set
is linearly independent. The collection of elements which we
have not thrown away will always be a spanning set (since
removing a dependent element will not change the span).

By an easy induction argument, this process will eventually
terminate, and the end result will be a linearly independent
spanning set.

In the event that the spanning set is infinite, the argument
relies on Zorn’s lemma.



Interlude: Zorn’s Lemma, I

Zorn’s lemma is a useful tool for proving the existence of
something when it seems like an inductive construction should
work, but the underlying sets are too large. It is a general
statement about partially-ordered sets. To review the ingredients:

Definition

A relation ≤ on a set S is a partial ordering if it is reflexive,
antisymmetric, and transitive: that is, when a ≤ a, when a ≤ b
and b ≤ a imply a = b, and when a ≤ b and b ≤ c imply a ≤ c.

Definition

If S is a partially ordered set, a chain is a totally-ordered subset: in
other words, a subset in which any two elements are comparable,
so that either a ≤ b or b ≤ a holds.



Interlude: Zorn’s Lemma, II

Definition

If S is a partially ordered set, an upper bound for a subset X is an
element y ∈ S such that x ≤ y for all x ∈ X .

Definition

If S is a partially ordered set, a maximal element is an element
y ∈ S such that x ≤ y for all x ∈ S.

Example: Take the usual ordering ≤ on R.

Both 1 and 2 are upper bounds for the closed interval [0, 1]
and the open interval (0, 1).

The element 1 is a maximal element inside [0, 1], while (0, 1)
has no maximal element.

The set R has neither an upper bound nor a maximal element.



Interlude: Zorn’s Lemma, III

Zorn’s lemma provides a condition for the existence of a maximal
element in a partially-ordered set:

Statement (Zorn’s Lemma)

Suppose S is a nonempty partially-ordered set such that every
chain has an upper bound in S. Then S contains a maximal
element.

We will not prove Zorn’s lemma. There is a good reason for this: it
is actually equivalent to the axiom of choice. (If you are interested
in such things, you can ponder how to show the equivalence.)

The purpose of Zorn’s lemma, just as with the axiom of choice, is
that it allows us to posit the existence of something in situations
where there is no obstruction to the existence of the object, but it
is not possible give an explicit recipe for a construction because the
underlying sets are too large or too numerous.



Bases and Dimension, IV

Theorem (Spanning Sets)

Any spanning set for a vector space V contains a basis of V .

Proof:

We use Zorn’s lemma. Let F be the collection of all
linearly-independent subsets of V , partially ordered by
inclusion, and note that F 6= ∅ since ∅ ∈ F .
If C is any chain in F , then the union of all the elements of C
is an upper bound for C and is linearly independent.
Specifically, any linear dependence in the union would imply a
linear dependence in one of the elements in the chain: linear
dependences involve only finitely many vectors, so we may
take the maximum of the subsets in which all vectors appear.
Thus, by Zorn’s lemma, F contains a maximal element.
Finally, a maximal linearly-independent subset is a basis:
otherwise, we could adjoin an element not in the span.



Bases and Dimension, V

We can also construct a basis from the other direction by building
up from a linearly independent set:

Theorem (Building-Up Theorem)

Given any linearly independent set of vectors in a vector space V ,
there exists a basis of V containing those vectors. In short, any
linearly independent set of vectors can be extended to a basis.

Proof:

The idea (roughly speaking) is to start with the given linearly
independent set, and then append linearly independent vectors
to S one at a time until a basis for V is obtained.

If V is finite-dimensional (i.e., has a finite spanning set), this
procedure will always terminate in a finite number of steps.

In the case where V is infinite-dimensional, the argument
again relies on Zorn’s lemma.



Bases and Dimension, VI

Using either approach, we see that every vector space has a basis:

Theorem (Bases of Vector Spaces)

Every vector space has a basis, and any two bases have the same
number of elements.

The existence of bases follows from either of the theorems
given above.

As another fun note, it has been proven that the statement
“every vector space has a basis” is actually equivalent to the
axiom of choice (under the Zermelo-Frankel axioms of set
theory), so in fact appealing to the axiom of choice, or
equivalently Zorn’s lemma, is necessary to establish this
theorem.



Bases and Dimension, VII

To show that any two bases have the same number of elements is
more difficult, and can be done by first proving the following
“replacement theorem”:

Theorem (Replacement Theorem)

Suppose that S = {v1, v2, . . . , vn} is a basis for V and
{w1,w2, . . . ,wm} is a linearly independent subset of V . Then
there is a reordering of the basis S, say {a1, a2, . . . , an} such that
for each 1 ≤ k ≤ m, the set {w1,w2, . . . ,wk , ak+1, ak+2, . . . , an}
is a basis for V . Equivalently, the elements {w1,w2, . . . ,wm} can
be used to successively replace the elements of the basis, with each
replacement remaining a basis of V .

This is just an explicit calculation (it really is just an application of
row-reducing an appropriate matrix).



Bases and Dimension, VIII

An easy corollary of the replacement theorem:

Corollary

Suppose V has a basis with n elements. If m > n, then any set of
m vectors of V is linearly dependent. In particular, any two bases
must have the same number of elements.

Definition

If V is an F -vector space, the number of elements in any basis of
V is called the dimension of V and is denoted dimF (V ). If
dimF (V ) is finite, V is finite-dimensional; otherwise, V is
infinite-dimensional.

We will not concern ourselves with the cardinality of the basis for
an infinite-dimensional vector space, and merely refer to all of
these infinite cardinalities as ∞. (But if you care, the cardinalities
of any two bases are necessarily the same.)



Bases and Dimension, IX

Examples:

1. dimF (F n) = n, since the standard unit vectors form a basis.

2. dimF (F [x ]) =∞ since the set {1, x , x2, . . . } is a basis.

3. dimF (F [x ]/p) = deg(p) since the set {1, x , x2, . . . , xdeg(p)−1}
is a basis.

4. The dimension of the zero space is 0, because the empty set
(containing 0 elements) is a basis.

5. dimR(C) = 2 since the set {1, i} is a basis.

6. dimC(C) = 2 since the set {1} is a basis.



Bases and Dimension, IX

Examples:

5. dimR(C) = 2 since the set {1, i} is a basis.

6. dimC(C) = 2 since the set {1} is a basis.

7. dimQ(C) =∞ since any finite-dimensional vector space over
Q necessarily has only countably many elements, and C is
uncountable. Alternatively, C contains a transcendental
number π, so the set {1, π, π2, π3, . . . } is Q-linearly
independent since otherwise π would be a root of a
polynomial with rational coefficients.

As these examples show, the dimension of a vector space depends
intrinsically on its associated field of scalars.



Linear Transformations, I

We can also study the structure-preserving maps on vector spaces,
which are the vector-space equivalent of homomorphisms:

Definition

If V and W are vector spaces having the same scalar field F , we
say a function T : V →W is a linear transformation if it respects
addition of vectors and scalar multiplication: in other words, if
T (v1 + v2) = T (v1) + T (v2) and T (αv) = αT (v) for any vectors
v, v1, v2 ∈ V and any scalar α ∈ F .

We also have vector space isomorphisms:

Definition

If T is a linear transformation that is also a bijection, then T is a
(vector space) isomorphism.



Linear Transformations, II

Examples:

1. If A is any m× n matrix, then the map T : Fm → F n given by
T (v) = Av is a linear transformation.

2. If V is the vector space of differentiable functions and W is
the vector space of real-valued functions, the derivative map
D sending a function to its derivative is a linear
transformation from V to W .

3. If V is the vector space of all continuous functions on [a, b],

then the integral map I (f ) =
∫ b
a f (x) dx is a linear

transformation from V to R.

4. The transpose map is a linear transformation from Mm×n(F )
to Mn×m(F ) for any field F and any positive integers m, n: in
fact, it is an isomorphism.



Linear Transformations, III

Examples:

5. For any a ∈ F , the evaluation at a map on F [x ], defined by
T (p) = p(a), is a linear transformation from F [x ] to F .

6. If V and W are any vector spaces, the zero map sending all
elements of V to the zero vector in W is a linear
transformation from V to W .

7. If V is any vector space, the identity map sending all elements
of V to themselves is a linear transformation from V to V .
The identity map is an isomorphism of V with itself.



Linear Transformations, III

We have the natural notion of kernel and image for linear
transformations:

Definition

If T : V →W is a linear transformation, then the kernel of T ,
denoted ker(T ), is the set of elements v ∈ V with T (v) = 0, and
the image of T , denoted im(T ), is the set of elements w ∈W
such that there exists v ∈ V with T (v) = w.

It is easy to verify from the definitions that the kernel and
image are subspaces of V and W , respectively.

Like with ring homomorphisms, it is also true that
ker(T ) = {0} if and only if T is one-to-one.

Thus, T is an isomorphism if and only if ker(T ) = {0} and
im(T ) = W .



Linear Transformations, IV

Proposition (Properties of Linear Transformations)

If T : V →W is linear, then the following hold:
1. T (0V ) = 0W and for any v1, . . . , vn ∈ V and a1, . . . , an ∈ F ,

T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn).
2. T : V →W is linear if and only if for any v1 and v2 in V and

any scalar α, T (v1 + αv2) = T (v1) + αT (v2).
3. T is characterized by its values on a basis of V : for any basis

B = {vi} of V and any {wi} ∈W , there exists a unique
linear T : V →W such that T (vi ) = wi for each i .

4. If T is an isomorphism, then T preserves linear independence
and span (i.e., if S is a linearly independent set then so is
T (S), and likewise for a spanning set).

5. Two vector spaces V and W are isomorphic if and only if they
have the same dimension. In particular, any finite-dimensional
vector space V with scalar field F is isomorphic to F dimF V .



Linear Transformations, V

Proofs:

1. T (0V ) = 0W and for any v1, . . . , vn ∈ V and a1, . . . , an ∈ F ,
T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn).

2. T : V →W is linear if and only if for any v1 and v2 in V and
any scalar α, T (v1 + αv2) = T (v1) + αT (v2).

(1) and (2) are straightforward from the definition.

3. For any basis B = {vi} of V and any {wi} ∈W , there exists
a unique linear T : V →W such that T (vi ) = wi for each i .

The values of T are determined by its values on the basis
by (1) above, since any any vector v in V can be written
as v = a1v1 + a2v2 + · · ·+ anvn for (unique) vectors
v1, . . . , vn in B and scalars a1, . . . , an.
Conversely, if we are given the values T (vi ) = wi for each
vi ∈ B, then the map T : V →W defined by setting
T (a1vi1 + a2vi2 + · · ·+ anvin) = a1wi1 + · · ·+ anwin is a
well-defined linear transformation from V to W .



Linear Transformations, VI

Proofs:

4. If T is an isomorphism, then T preserves linear independence
and span (i.e., if S is a linearly independent set then so is
T (S), and likewise for a spanning set).

For independence, note a1T (v1) + · · ·+ anT (vn) = 0
implies T (a1v1 + · · ·+ anvn) = 0 implies
a1v1 + · · ·+ anvn = 0. So if the vi are independent, so
are their images.
For span, if w ∈W then w ∈ im(T ) so w = T (v). Since
v is in the span of a spanning set, T (v) is in the span of
its image.



Linear Transformations, VII

Proofs:

5. Two vector spaces V and W are isomorphic if and only if they
have the same dimension. In particular, any finite-dimensional
vector space V with scalar field F is isomorphic to F n, where
n = dimF V .

By (4), isomorphisms preserve linear independence, so
two vector spaces can only be isomorphic if they have the
same dimension.
For the other direction, choose a basis {vi}i∈I for V and
a basis {wi}i∈I for W . Then by (3), there exists a unique
linear transformation T : V →W with T (vi ) = wi for
each i ∈ I . It is then a straightforward check that T is an
isomorphism.



Linear Transformations, VIII

There is a well-defined notion of a quotient vector space, but we
will not bother to develop this notion since it is rarely very useful
by itself.

However, we can still give the analogue of the first isomorphism
theorem, which is extremely important:

Theorem (Nullity-Rank)

For any linear transformation T : V →W ,
dim(ker(T )) + dim(im(T )) = dim(V ).

The dimension of the kernel is called the nullity, while the
dimension of the image is called the rank (whence the name
“nullity-rank theorem”).



Linear Transformations, IX

Proof:

Let β = {wi}i∈I be a basis for im(T ) in W .

By definition, there exist {vi}i∈I in V such that T (vi ) = wi

for each i ∈ I .

Also, let α = {aj}j∈J be a basis for ker(T ).

We claim that the set of vectors S = {vi}i∈I ∪ {aj}j∈J is a
basis for V .



Linear Transformations, X

Proof (continued):

To see that S spans V , let v be an element of V .

Since T (v) ∈ im(T ), there exist scalars b1, . . . , bk and
v1, . . . , vk such that T (v) =

∑k
j=1 bjwj .

Then T
[
v −

∑k
j=1 bjvj

]
= T (v)−

∑k
j=1 bjT (vj) =∑k

j=1 bjwj −
∑k

j=1 bjwj = 0.

This means v−
∑k

j=1 bjvj is in ker(T ), so it can be written as

a sum
∑l

i=1 ciai for some scalars ci and some a1, . . . , al ∈ α.

Then v =
∑k

j=1 bjvj +
∑l

i=1 ciai ∈ span(S), so S spans V .



Linear Transformations, XI

Proof (continued more):

To see that S is linearly independent, suppose we had a

dependence 0 =
k∑

j=1

bjvj +
l∑

i=1

ciai .

Applying T to both sides yields

0 = T (0) =
k∑

j=1

bjT (vj) +
l∑

i=1

ciT (ai ) =
k∑

j=1

bjwj .

Since the wj are linearly independent, all the coefficients bj

must be zero.

Then 0 =
l∑

i=1

ciai , but now since the ai are linearly

independent, all the coefficients ci must also be zero.



Summary

We discussed fields and gave a number of basic examples.

We discussed vector spaces, span, independence, bases, and
dimension.

We discussed linear transformations.

Next lecture: Subfields and field extensions, properties of subfields,
simple extensions.


