
Math 5111 (Algebra 1)

Lecture #2 ∼ September 14, 2020

More Polynomials and Rings:

Factorization over Q
Polynomial Modular Arithmetic

Rings, part 1

This material represents §1.2.4-1.3.4 from the course notes.



Recap

Last time, I reviewed Z and Z/mZ and discussed some basic facts
about the polynomials with coefficients in the field F .

Today we will finish up the remaining material we will need with
polynomials (some results about factorization and irreducibility
over Q, and a discussion of polynomial modular arithmetic) and
then introduce general rings.



Factorization over Q, I

It is more difficult to test whether a polynomial is irreducible in
Q[x ]. A central idea is that we can reduce the problem of factoring
in Q[x ] to one of factoring in Z[x ] by clearing denominators:

Specifically, if p is any polynomial in Q[x ], we may multiply p
by the product of all the denominators of its coefficients (or
their least common multiple) to obtain a polynomial in Z[x ].
Since every nonzero integer is invertible in Q, the factorization
of this new polynomial, with integer coefficients, will be
essentially the same as that of the original polynomial.

As an example, consider the problem of factoring
p(x) = 2x3 + x2 + 2

3x + 1
3 in Q[x ].

Since 3 is an invertible constant in Q[x ], we may equivalently
ask about factoring 3p(x) = 6x3 + 3x2 + 2x + 1 in Z[x ].



Factorization over Q, II

It is not hard to test for rational roots:

Proposition (Rational Root Test)

Suppose p(x) = anxn + an−1xn−1 + · · ·+ a0 is a polynomial in
Z[x ]. Then any root r/s (in lowest terms) must have r |a0 and s|an.

Proof:

If r/s is a root of p(x), then
an(r/s)n + an−1(r/s)n−1 + · · ·+ a0 = 0. Clear denominators:
anrn + an−1rn−1s + · · ·+ a1rsn−1 + a0sn = 0.

Thus, by rearranging, we see that
anrn = s(−an−1rn−1 − · · · − a0sn−1), so s divides anrn. But
since s and r are relatively prime, this means s divides an.

In a similar way, since a0sn = r(−anrn−1 − · · · − a1sn−1), we
see that r divides a0sn hence a0.



Factorization over Q, III

Example: Show that the polynomial p(x) = x3 + ax + 1 is
irreducible in Q[x ] for any integer a 6= 0,−2.

Since this polynomial has degree 3, we need only show that it
has no roots in Q.

By the rational root test, the only possible rational roots are
±1, and since p(1) = 2 + a and p(−1) = a, the conditions on
a imply that p has no rational roots. Thus, p is irreducible.



Factorization over Q, IV

As noted before, the general philosophy is that factorization of
polynomials in Z[x ] and Q[x ] are essentially “the same”, and this
is ultimately true (though not quite so easy to state rigorously):

Theorem (Gauss’s Lemma)

If p(x) ∈ Z[x ] has positive degree and is reducible in Q[x ], then
p(x) = f (x)g(x) for some f (x), g(x) ∈ Z[x ] of positive degree.

In other words, if a polynomial with integer coefficients factors over
the rational numbers, then it actually factors over the integers.

By inverting this, we see that if we want to factor over Q, it is
enough to look for factorizations over Z.



Factorization over Q, V

Proof (outline):

We say a polynomial in Z[x ] is “primitive” if the gcd of its
coefficients is equal to 1. Now observe:

1. Over Q[x ], any nonzero polynomial a(x) is associate to a
primitive polynomial in Z[x ]. (Write it down.)

2. The product of two primitive polynomials is also
primitive. (Induct on coefficients.)

If p(x) = f0(x)g0(x) factors in Q[x ], then let f , g be primitive
associates of f0, g0.

Moving units around gives d · p(x) = e · f (x) · g(x) for some
relatively prime d , e.

Since f (x)g(x) is primitive, the only possibility is d = ±1. So
we get a factorization of p(x) over Z.



Factorization over Q, VI

By reducing factorization over Q to a question over Z, in principle
we only have a computation of finite size to worry about (since
there are only finitely many possible factorizations).

Of course, in practice one does not want to work through all the
details of examining all possible factorizations by hand, since even
for degree 4 this is quite tedious, as you’ll see on the next slide....



Factorization over Q, VII

Example: Show p = x4 + x3 − 2x2 + x + 1 is irreducible in Q[x ].

First, by the rational root test, the only possible roots of this
polynomial are ±1, neither of which is a root.

Thus, if p(x) were reducible, it would factor as a product of
two quadratics. By moving factors of −1 around (as needed)
such a factorization would have the form
p(x) = (x2 + ax + b)(x2 + cx + d).

By expanding and comparing coefficients, we see that
a + c = 1, b + ac + d = −2, ad + bc = 1, and bd = 1.

The last equation gives (b, d) = (1, 1) or (−1,−1).

If b = d = 1 then we obtain the equations a + c = 1 and
ac = −4, which has no integer solutions.

If b = d = −1 then we obtain a + c = 1, ac = 0, and
a + c = −1, which has no solutions at all!

Therefore, p(x) is irreducible, as claimed.



Factorization over Q, VIII

Because we do, in fact, want to be lazy in general whenever
possible, we usually resort to using general irreducibility criteria.
One of the easiest useful ones is as follows:

Theorem (Eisenstein-Schönemann Criterion)

Let q(x) = xn + an−1xn−1 + · · ·+ a1x + a0 be a polynomial in Z[x ].
If each coefficient a0, a1, . . . , an−1 is divisible by a prime p, and a0
is not divisible by p2, then q(x) is irreducible in Z[x ] and Q[x ].

Examples:

By Eisenstein’s criterion with p = 3, the polynomial
x6 − 6x + 3 is irreducible in Z[x ].

By Eisenstein’s criterion with p = 2, the polynomial xn − 2 is
irreducible in Z[x ] for any positive integer n.



Factorization over Q, IX

Proof:

Suppose that q(x) = b(x)c(x) were reducible in Z[x ], with
b(x) = x s + bs−1x s−1 + · · ·+ b0 and
c(x) = x t + ct−1x t−1 + · · ·+ c0.

Since p divides a0 = b0c0, p divides at least one of these
coefficients: without loss of generality, suppose p|b0.

Now let bi be the lowest-degree coefficient of b(x) not
divisible by p (there must be one, since bs = 1 is not divisible
by p): then we have ai = b0ci + b1ci−1 + · · ·+ bi−1c1 + bic0.

Since p divides ai and also divides the terms b0ci , b1ci−1, ... ,
bi−1c1, it must divide bic0. But since p does not divide bi , we
see that p divides c0. But then p divides both b0 and c0,
meaning that p2 divides b0c0 = a0. This is a contradiction, so
there cannot exist any such factorization of q(x).

Thus, q(x) is irreducible in Z[x ] hence Q[x ] by Gauss.



Factorization over Q, X

By being sufficiently clever, one can also apply Eisenstein to
polynomials it does not obviously apply to.

Example: Show that the polynomial q(x) = x4 + x3 − 3x2 + x + 7
is irreducible in Q[x ].

Notice that q(x − 1) = x4 − 3x3 + 6x + 3, and this
polynomial is irreducible by Eisenstein’s criterion with p = 3.

It is then easy to see that any factorization of q(x − 1) would
give a factorization of q(x), and vice versa: therefore, the
original polynomial q(x) must also have been irreducible.



Factorization over Q, XI

We can also use calculations in Fp[x ] to show that a polynomial is
irreducible in Z[x ].

Specifically, if a polynomial factors in Z[x ], then reducing the
factorization modulo p yields a factorization in Fp[x ], as long
as the degrees of the factors do not change.

By taking the contrapositive of the observation above, we see
that if q(x) is irreducible in Fp[x ] and has leading coefficient
not divisible by p, then it must also be irreducible in Z[x ] (and
thus by Gauss’s lemma, also in Q[x ]).

Example: Show q = x3 + 12x2 + 27x + 345 is irreducible in Z[x ].

Notice that q(x) ≡ x3 + x + 1 modulo 2, and so q has no
roots modulo 2. Since q has degree 3, this means q is
irreducible in F2[x ], and hence also in Z[x ].



Polynomial Modular Arithmetic, I

We now discuss polynomial modular arithmetic.

I will note that this is really just a special case of studying quotient
rings (in this case, the quotients are by principal ideals). However,
we will not really use many general facts about quotient rings,
whereas we will frequently need to use polynomial modular
arithmetic.

Thus, the goal here is to work everything out in explicit detail so
that you are able to understand how all the computations work.
(This will pay substantial dividends fairly soon.)



Polynomial Modular Arithmetic, II

We start by defining congruence in the usual way:

Definition

Let F be a field. If a, b, p ∈ F [x ], we say that
a is congruent to b modulo p, written a ≡ b (mod p), if p|(b − a).

Examples:

In R[x ], it is true that x2 ≡ x modulo x − 1, because x − 1
divides x2 − x = x(x − 1).

In F2[x ], it is true that x3 + x ≡ x + 1 modulo x2 + x + 1, as
(x2 + x + 1) divides (x3 + x)− (x + 1) = (x + 1)(x2 + x + 1).



Polynomial Modular Arithmetic, III

The basic properties of modular congruences in Z extend to F [x ]
with little or no change:

Proposition (Modular Congruences)

Let F be a field. If a, b, c , d , p ∈ F [x ] and p 6= 0, then the
following are true:

1. a ≡ a (mod p).

2. a ≡ b (mod p) if and only if b ≡ a (mod p).

3. If a ≡ b (mod p) and b ≡ c (mod p), then a ≡ c (mod p).

4. If a ≡ b (mod p) and c ≡ d (mod p), then a + c ≡ b + d
(mod p).

5. If a ≡ b (mod p) and c ≡ d (mod p), then ac ≡ bd (mod p).

Proof: Each of these is straightforward from the definition.



Polynomial Modular Arithmetic, IV

Next, residue classes:

Definition

If a, r ∈ F [x ], the residue class of a modulo r , denoted a, is the set
S = {a + dr : d ∈ F [x ]} of all elements in F [x ] congruent to a
modulo r .

Examples:

The residue class of 1 modulo x in F2[x ] is
{1, 1 + x , 1 + x2, 1 + x + x2, 1 + x3, . . . }.
The residue class of 0 modulo p in F [x ] is the set of multiples
of p.



Polynomial Modular Arithmetic, IV

Here are a few fundamental properties of residue classes:

Proposition (Properties of Residue Classes)

Let F be a field and suppose p ∈ F [x ] is nonzero. Then

1. If a, b ∈ F [x ], then a ≡ b (mod p) if and only if a = b.

2. Two residue classes modulo p are either disjoint or identical.

3. The residue classes modulo p are precisely those of the form r
where deg(r) < deg(p).

Proofs: These are the same as in Z.

(1) follows from the definition, and (2) follows from (1).

(3) follows from the division algorithm: for any a there exists
a unique r with deg(r) < deg(p) such that a = qm + r with
q ∈ F [x ]. Then a ≡ r (mod p), and (3) follows from (2) and
uniqueness of remainders.



Polynomial Modular Arithmetic, V

If F is an infinite field, then if deg(p) > 0, there will always be
infinitely many residue classes in F [x ] modulo p(x).

However, when F is a finite field of cardinality #F , then the
residue classes are each represented by a unique polynomial in
F [x ] of degree less than deg(p).

Such a polynomial has exactly deg(p) coefficients (for the
terms of degree 0, 1, ... , deg(p)− 1), and each coefficient
has #F possible choices: thus, there are precisely (#F )deg(p)

residue classes modulo p(x).

Example: There are 22 = 4 residue classes in F2[x ] modulo
x2, and they are 0, 1, x , and x + 1.

Example: There are 53 = 125 residue classes in F5[x ] modulo
x3 + 2x + 1, and they are of the form a + bx + cx2 for
a, b, c ∈ F5.



Polynomial Modular Arithmetic, VI

Definition

If F is a field and p ∈ F [x ] is nonzero, the set of residue classes
modulo p is denoted as F [x ]/p (read as “F [x ] modulo p”).

Like in Z/mZ, we have natural addition and multiplication
operations in F [x ]/p:

Definition

The addition operation in Z/mZ is defined as a + b = a + b, and
the multiplication operation is defined as a · b = ab.



Polynomial Modular Arithmetic, VII

Definition

The addition operation in Z/mZ is defined as a + b = a + b, and
the multiplication operation is defined as a · b = ab.

Just as in Z/mZ, we need to verify that these operations are
well-defined; that is, if we choose different elements a′ ∈ ā
and b′ ∈ b̄, the residue class of a′ + b′ is the same as that of
a + b, and similarly for the product.

To see this, if a′ ∈ ā then a′ ≡ a (mod p), and similarly if
b′ ∈ b then b′ ≡ b (mod p).

Then a′ + b′ ≡ a + b (mod p), so a′ + b′ = a + b by the
properties of residue classes.

Likewise, a′b′ ≡ ab (mod p), so a′b′ = ab.

Thus, the operations are well-defined.



Polynomial Modular Arithmetic, VIII

Proposition (Basic Arithmetic in F [x ]/p)

Let F be a field and p ∈ F [x ] be nonzero. Then the following
properties hold for residue classes in F [x ]/p :

1. + is associative: a + (b + c) = (a + b) + c for any a, b, and c.

2. + is commutative: a + b = b + a for any a and b.

3. 0 is an additive identity: a + 0 = a for any a.

4. Every a has an additive inverse −a satisfying a + (−a) = 0.

5. · is associative: a · (b · c) = (a · b) · c for any a, b, and c.

6. · is commutative: a · b = b · a for any a and b.

7. · distributes over +: a · (b + c) = a · b + a · c for any a, b, c.

8. 1 is a multiplicative identity: 1 · a = a for any a.

Proof: All of these follow immediately from the corresponding
properties of arithmetic in F [x ].



Polynomial Modular Arithmetic, IX

Example: Here are tables for F2[x ]/p with p = x2 + x + 1:

+ 0 1 x x + 1

0 0 1 x x + 1

1 1 0 x + 1 x

x x x + 1 0 1

x + 1 x + 1 x 1 0

· 0 1 x x + 1

0 0 0 0 0

1 0 1 x x + 1

x 0 x x + 1 1

x + 1 0 x + 1 1 x

For example, x + (x + 1) = 2x + 1 = 1 since 2 = 0, and also
x · (x + 1) = x2 + x ≡ (x + 1) + x = 1 since x2 ≡ x + 1.



Polynomial Modular Arithmetic, X

Here is the multiplication table for F3[x ]/r with r = x2 + 1:

· 0 1 2 x x + 1 x + 2 2x 2x + 1 2x + 2

0 0 0 0 0 0 0 0 0 0

1 0 1 2 x x + 1 x + 2 2x 2x + 1 2x + 2

2 0 2 1 2x 2x + 2 2x + 1 x x + 2 x + 1

x 0 x 2x 2 x + 2 2x + 2 1 x + 1 2x + 1

x + 1 0 x + 1 2x + 2 x + 2 2x 1 2x + 1 2 x

x + 2 0 x + 2 2x + 1 2x + 2 1 x x + 1 2x 2

2x 0 2x x 1 2x + 1 x + 1 2x + 2 2x + 1 x + 2

2x + 1 0 2x + 1 x + 2 x + 1 2 2x 2x + 2 x 1

2x + 2 0 2x + 2 x + 1 2x + 1 x 2 x + 2 1 2x

Notice that F3[x ]/r is a field, since every nonzero residue class is
invertible. As we will show in a moment, this is because
p(x) = x2 + 1 is irreducible in F3[x ] (it has degree 2 but no roots).



Polynomial Modular Arithmetic, XI

In analogy with the situation in Z/mZ, we can characterize the
invertible elements in F [x ]/p:

Theorem (Invertible Elements in F [x ]/p)

Let F be a field and p ∈ F [x ] be nonzero. Then the residue class r
in F [x ]/p has a multiplicative inverse if and only if r and p are
relatively prime.

Like with integers, we say two polynomials are relatively prime if 1
is a greatest common divisor.



Polynomial Modular Arithmetic, XII

Proof:

First suppose that r and p are relatively prime.

Then by the Euclidean algorithm, we can write 1 = cr r + cpp
for some polynomials cr , cp. Then cr · r = 1, meaning that r is
invertible in F [x ]/p.

Conversely, suppose that r is invertible in F [x ]/p with
multiplicative inverse cr .

Then cr · r = 1 so that cr r ≡ 1 (mod p), meaning that there
exists some polynomial cp with cr r + cpp = 1.

But any common divisor of r and p must then divide
cr r + cpp = 1, and thus we see that r and p are relatively
prime.

We can use the argument here to compute multiplicative inverses
when they exist. (This will be a useful computational tool later!)



Polynomial Modular Arithmetic, XIII

Example: Find the inverse of x2 + 2 in F5[x ] mod x3 + 1.

First we apply the Euclidean algorithm in F5[x ]:

x3 + 1 = x · (x2 + 2) + (3x + 1)

x2 + 2 = (2x + 1) · (3x + 1) + 1

3x + 1 = (3x + 1) · 1

and so the gcd of x2 + 2 and x3 + 1 is 1.

By back-solving, we obtain

3x + 1 = (x3 + 1)− x · (x2 + 2)

1 = (x2 + 2)− (2x + 1)(3x + 1)

= (2x2 + x + 1)(x2 + 2)− (2x + 1)(x3 + 1)

and thus by reducing modulo x3 + 1, we see that the
multiplicative inverse of x2 + 2 is 2x2 + x + 1.



Polynomial Modular Arithmetic, XIV

In analogy with the fact that Z/mZ is a field precisely when m is
prime, we also see that F [x ]/p is a field precisely when p is
irreducible:

Corollary

Let F be a field and p ∈ F [x ] have positive degree. Then F [x ]/p is
a field if and only if p is irreducible.

Proof:

By the previous theorem, we see that if p is irreducible then
every nonzero residue class modulo p is invertible.
Furthermore, if deg(p) > 0, then 1 6= 0, so F [x ]/p is a field.

Inversely, if p is reducible, then (again as above) there are
non-invertible residue classes in F [x ]/p, such as the
irreducible factors of p.



Polynomial Modular Arithmetic, XV

By finding irreducible polynomials in Fp[x ], we can use the
corollary above to construct additional finite fields. (After we
develop more tools, we will be able to say much about finite fields.)

Example: Construct a finite field with 27 elements.

Since 27 = 33, we can construct a finite field with 27 elements
as F3[x ]/p where p is an irreducible polynomial of degree 3.

One possible choice is the polynomial p(x) = x3 + 2x + 1: it
has no roots, since p(0) = p(1) = p(2) = 1, so (since it has
degree 3) it is irreducible.

Therefore, F3[x ]/p is a field with 33 = 27 elements, as
required.



Rings, I

We now broaden our discussion from polynomials to general rings.

Definition

A ring is any set R having two (closed) binary operations + and ·
that satisfy the six axioms [R1]-[R6]:

[R1] + is associative: a + (b + c) = (a + b) + c for all a, b, c in R.

[R2] + is commutative: a + b = b + a for all a, b in R.

[R3] There is an additive identity 0 with a + 0 = a for all a in R.

[R4] Every a ∈ R has an additive inverse −a with a + (−a) = 0.

[R5] · is associative: a · (b · c) = (a · b) · c for all a, b, c in R.

[R6] · distributes over +: a · (b + c) = a · b + a · c and
(a + b) · c = a · c + b · c for all a, b, c in R.



Rings, II

Certain rings will also possess additional nice properties:

Definition

If a ring satisfies axiom [R7], we say it is a commutative ring.

[R7] · is commutative: a · b = b · a for all a, b in R.

Definition

If a ring satisfies axiom [R8], we say it is a ring with identity.

[R8] There is a multiplicative identity 1 6= 0 with 1 · a = a = a · 1
for all a in R.

Definition

If a ring with identity further satisfies the axiom [D], it is called a
division ring. A commutative division ring is called a field.

[D] Every nonzero a in R has a multiplicative inverse a−1

satisfying a · a−1 = 1 = a−1 · a.



Rings, III

If not specified, all operations are the obvious ones.

1. The integers Z are a commutative ring with identity.

2. The even integers are a commutative ring without identity.

The properties [R1]-[R7] all follow from their
counterparts in Z: [R3] follows because 0 is an even
integer, and [R4] follows because n is an even integer if
and only if −n is an even integer.
This ring does not have a multiplicative identity because
there is no solution to 2n = 2 inside the set of even
integers.

3. The set of odd integers is not a ring.

The problem is that, although multiplication of two odd
integers does return an odd integer, the sum of two odd
integers is not odd: thus, the operation + is not defined
on the set of odd integers.



Rings, IV

4. The set Z/mZ of residue classes modulo m form a
commutative ring with identity.

Furthermore, if p is a prime, we know that all of the
nonzero residue classes modulo p are invertible, meaning
that Z/pZ is a field.
Indeed, the only residue classes that are invertible modulo
m are those relatively prime to m, so if m is not prime,
then Z/mZ is not a field.

5. The rational numbers Q, the real numbers R, and the
complex numbers C are all examples of fields.

The elements of C are of the form a + bi , where a and b
are real numbers and i2 = −1, with operations
(a + bi) + (c + di) = (a + c) + (b + d)i and
(a + bi) · (c + di) = (ac − bd) + (ad + bc)i .



Rings, V

6. If F is a field, the set F [x ] of polynomials in x with
coefficients from F forms a commutative ring with identity.

More generally, if R is any ring, we can consider the ring
R[x ] of polynomials with coefficients from R (we have
already implicitly done this when discussing polynomials
with integer coefficients).
Warning: When R is not commutative or has zero
divisors, the polynomial ring R[x ] can have unintuitive
properties.

7. The set of complex numbers of the form a + bi where a, b ∈ Z
are a commutative ring with identity.

This ring is denoted Z[i ] (read as: “Z adjoin i”) and is
also often called the Gaussian integers.
[R1]-[R8] all follow from their counterparts in C.



Rings, VI

8. The set of real numbers of the form a + b
√

2 where a, b ∈ Z
are a commutative ring with identity.

This ring is denoted Z[
√

2]. The addition and
multiplication are defined in a similar way as for the
complex numbers and Gaussian integers:
(a + b

√
2) + (c + d

√
2) = (a + c) + (b + d)

√
2, and

(a + b
√

2) · (c + d
√

2) = ac + ad
√

2 + bc
√

2 + 2bd =
(ac + 2bd) + (ad + bc)

√
2.

9. More generally, the complex numbers of the form a + b
√

D
for an arbitrary D ∈ Z, is a commutative ring with identity.

This ring is denoted Z[
√

D].



Rings, VI

10. If S is any set and A is any ring, the collection R of functions
f : S → A, with operations (f + g)(x) = f (x) + g(x) and
(f · g)(x) = f (x)g(x), forms a ring.

Thus, for example, if A is the set of real numbers, with
f (x) = x2 and g(x) = 3x2, then (f + g)(x) = 4x2 and
(fg)(x) = 3x4.
Ultimately, each of the properties [R1]-[R6] follows from
the corresponding property of A. The additive identity is
the “identically-zero function” 0S that is 0 on each
element of S , and the additive inverse −f of f is defined
as (−f )(x) = −f (x) for each x in S .
If A is commutative, then it is easy to see that R will also
be commutative. Likewise, if A has a 1, then the
“identically-1 function” 1S that is 1 on each element of
S , is a multiplicative identity in R.



Rings, VII

11. If F is a field and n ≥ 2, then the set of n × n matrices
Mn×n(F ) with entries from F , forms a noncommutative ring
with identity.

The operations are the usual addition and multiplication
of matrices. The zero element is the zero matrix while
the multiplicative identity is the identity matrix In.

12. If V is a vector space of dimension larger than 1, the set
L(V ,V ) of linear transformations from V to V is a
noncommutative ring with 1 under the operations of function
addition and function composition: (S + T )(v) = Sv + Tv
and (ST )v = S(Tv).

After choosing a basis, this is really the same example as
above.



Rings, VIII

13. The set H of real quaternions a + bi + cj + dk, for real
numbers a, b, c, d and “imaginary units” i , j , k satisfying the
relations i2 = j2 = k2 = −1, ij = −ji = k , jk = −kj = i , and
ki = −ik = j , form a noncommutative ring with identity.

This ring was first characterized by William Rowan
Hamilton in 1843 (whence H), and is one of the first
examples of a noncommutative ring.
Addition works componentwise, so that
(a + bi + cj + dk) + (a′ + b′i + c ′j + d ′k) =
(a + a′) + (b + b′)i + (c + c ′)j + (d + d ′)k .
Multiplication is defined using the distributive law and
the relations listed above, taking care to keep the terms
in the proper order when multiplying. (The real number
coefficients commute with i , j , and k.)



Rings, IX

13. More about quaternions.

Thus, for example, we have

(1 + i − k) · (2 + 3i + j) = (1 + i − k) · 2 + (1 + i − k) · 3i + (1 + i − k) · j
= (2 + 2i − 2k) + (3i − 3− 3j) + (j + k + i)

= −1 + 6i − 2j − k .

In fact, the real quaternions are a division ring: since
(a + bi + cj + dk)(a− bi − cj − dk) = a2 + b2 + c2 + d2,
the nonzero quaternion a + bi + cj + dk has a

multiplicative inverse
a− bi − cj − dk

a2 + b2 + c2 + d2
.

The quaternions are related to 3-dimensional geometry
(via cross products) and the units {±1,±i ,±j ,±k} also
form the quaternion group Q8.



Rings, X

If we have a set with an addition operation, we can make it into a
ring in a trivial way.

14. If S is Z, Q, or R, with + taken to be normal addition, and ·
defined so that a · b = 0 for every a and b, then S is a
commutative ring.

All of the multiplicative axioms immediately reduce to
the true statement 0 = 0. Of course, this ring has no
multiplicative identity.

15. The set R = {0}, with operations 0 + 0 = 0 and 0 · 0 = 0, is a
commutative ring.

All of the axioms follow trivially. In fact, this ring even
has a multiplicative identity! (But it is not a ring with 1
because we require 1 6= 0.)
This ring is known as the trivial ring, and is the only ring
where 1 = 0.



Basic Ring Properties, I

Here are a few basic properties of ring arithmetic:

As in Z, we define the binary operation of subtraction by
setting a− b = a + (−b). We also often use implicit
multiplication, and drop the · notation.

We can define scaling of a ring element a by a positive integer
as repeated addition: na = a + a + a + · · ·+ a︸ ︷︷ ︸

n terms

. By

associativity of addition, this notation is well-defined. In a
ring with 1, this notation coincides with the product of ring
elements n · a, but (as we would desire) it is true that
n · a = na.

We can also define exponentiation of a ring element a as
ak = a · a · a · · · · · a︸ ︷︷ ︸

k terms

, for any positive integer k. By

associativity of multiplication, this notation is well-defined.



Basic Ring Properties, II

Proposition (Basic Arithmetic)

Let R be any ring. For any a, b, c ∈ R, the following hold:

1. The additive identity 0 is unique, as is the multiplicative
identity 1 (if R has a 1).

2. Addition has a cancellation law: if a + b = a + c then b = c.

3. Additive inverses are unique.

4. 0 · a = 0 = a · 0, −(−a) = a, (−1) · a = −a = a · (−1).

5. −(a + b) = (−a) + (−b).

6. (−a) · b = −(a · b) = a · (−b), and (−a) · (−b) = a · b.

7. For any positive integers m and n and any a ∈ R,
ma + na = (m + n)a, m(na) = (mn)a, am+n = aman, and
amn = (am)n.

Proofs: Straightforward from the ring axioms.



Basic Ring Properties, III

An important property of Z that does not hold in general rings is
the statement that ab = 0 implies a = 0 or b = 0. We already
remarked on this during our discussion of Z/mZ and F [x ]/p.

Definition

In a ring R, we say that an element a is a zero divisor if a 6= 0 and
there exists a nonzero b ∈ R such that ab = 0 or ba = 0. (Note in
particular that 0 is not a zero divisor!)

Examples:

In Z/24Z, we have 3 · 8 = 0 so 3 and 8 are zero divisors.

In F5[x ]/(x2 + x), we have the equality x + 1 · x = x2 + x = 0,
so x + 1 and x are zero divisors in F5[x ]/(x2 + x).

More generally, any polynomial not relatively prime to the
modulus will be a zero divisor in Z/mZ or F [x ]/p.



Basic Ring Properties, IV

In the opposite direction, it is also possible for a general ring to
contain many elements that have multiplicative inverses (unlike in
Z, where the only elements with multiplicative inverses are ±1).

Definition

In a ring R with 1 6= 0, we say that an element a is a unit if there
exists a b ∈ R such that ab = 1 = ba. The set of units in R is
denoted R×.

Example:

In F5[x ]/(x2 + x), we have x + 2 · 2x + 3 = 2x2 + 7x + 6 = 1.
Thus, x + 2 and 2x + 3 are units in F5[x ]/(x2 + x).

More generally, the units in Z/mZ or F [x ]/p are the elements
relatively prime to the modulus.

We remark that the set of units R× is a group under multiplication.



Basic Ring Properties, V

Examples:

1. In Z, there are no zero divisors, and the units are ±1.

2. In Z/mZ, the units are the residue classes relatively prime to
m, while the zero divisors are the nonzero classes having a
nontrivial common divisor with m. In particular, every nonzero
residue is either a unit or a zero divisor.

3. In a field, every nonzero element is a unit. Indeed, a
commutative ring with 1 is a field precisely when every
nonzero element is a unit.

4. In the ring Z[
√

2], the integers 1 and −1 are units, but the
element

√
2 + 1 is also a unit, because

(
√

2 + 1) · (
√

2− 1) = 1. Note that Z[
√

2] is not a field,
however, because

√
2 is not a unit.



Basic Ring Properties, VI

Here are a few basic properties of units and zero divisors:

Proposition (Units and Zero Divisors)

Let R be a ring with 1 6= 0.

1. The multiplicative inverse of a unit is unique.

2. The product of two units is a unit, as is the multiplicative
inverse of a unit.

3. A unit can never be a zero divisor in R.

Proofs:

1. The multiplicative inverse of a unit is unique.

If a is a unit with ab = 1 = ba and also ac = 1 = ca,
then b = b(ac) = (ba)c = c .



Basic Ring Properties, VII

Proofs (continued):

2. The product of two units is a unit, as is the multiplicative
inverse of a unit.

If a is a unit with ab = 1 = ba, then by definition b is
also a unit.
If c is another unit with cd = 1 = dc , then
(ac)(db) = a(cd)b = a1b = ab = 1 and likewise
(db)(ac) = 1 as well, so the inverse of ac is db.

3. A unit can never be a zero divisor in R.

Suppose a is a unit and xa = 0 for some x 6= 0.
Then by assumption, there is a b such that ab = 1, so
then x = x(ab) = (xa)b = 0b = 0, contradicting the
assumption that x 6= 0.
In the same way, if ax = 0 for some x 6= 0, then if ba = 1
then x = (ba)x = b(ax) = b0 = 0, again a contradiction.



Basic Ring Properties, VIII

We give a special name to the class of commutative rings having
no zero divisors, attesting to their similarity to Z:

Definition

A commutative ring with 1 6= 0 having no zero divisors is called an
integral domain (or often, just a “domain”). Equivalently, R is an
integral domain if R is commutative with 1 6= 0, and where ab = 0
implies a = 0 or b = 0.

Examples:

The integers are an integral domain, as is any field.

More generally, any ring that is a subset of a field (such as the
Gaussian integers Z[i ]) is an integral domain.

In fact, the converse is also true: any integral domain R arises
naturally as a subset of its field of fractions F , which is
constructed from R in the same way Q is constructed from Z.



Basic Ring Properties, IX

Integral domains possess various fundamental properties:

Proposition (Cancellation in Domains)

Suppose R is an integral domain. Then multiplication in R has a
cancellation law: if a 6= 0 and ab = ac, b = c.

Proof:

Suppose that ab = ac : then a(b − c) = 0, so since R is a
domain we either have a = 0 or b − c = 0. Thus, if a 6= 0, we
have b − c = 0 so that b = c .



Basic Ring Properties, IX

Corollary

If R is a finite integral domain, then R is a field.

Proof:

Let a be any nonzero element of R, and consider the set
{a, a2, a3, . . . , an, . . . }. Since R is finite, two of the elements
of this set must be equal: say aj = aj+k for some positive
integers j and k .

Then aj = aj+k implies aj(ak − 1) = 0, and then since a 6= 0,
we see aj 6= 0. Thus, ak − 1 = 0, so that a · ak−1 = 1,
meaning that ak−1 is the multiplicative inverse of a.



Subrings, I

Next, subsets of rings that themselves are rings:

Definition

If R is a ring, we say a subset S of R is a subring if it also
possesses the structure of a ring, under the same operations as R.

Most of the ring axioms are inherited from R, and we can
condense the other verifications as follows:

Proposition (Subring Criterion)

A subset S of R is a subring if only if S contains the zero element
of R and, for any a, b ∈ S, the elements a− b and ab are also in S.

Proof: Straightforward from the definition.

Using the subring criterion, we can construct more rings.



Subrings, II

Examples:

1. Z is a subring of Q, which is a subring of R, which is a
subring of C, which is a subring of H.

2. The trivial ring {0} is a subring of any ring.

3. The multiples of n, denoted nZ are a subring of Z. Indeed,
these are all the subrings of Z, as follows by the division
algorithm and well-ordering principle.

4. The set of rational numbers having denominator equal to a
power of 2 (i.e., that are of the form n/2k for an integer n
and nonnegative integer k), forms a subring of Q.

5. The set of upper-triangular n × n matrices is a subring of
Mn×n(F ).

6. The set of differentiable real-valued functions is a subring of
the ring of continuous real-valued functions, which is in turn a
subring of the ring of all real-valued functions.



Cartesian Products

We can also construct new rings using Cartesian products.

Proposition (Cartesian Products of Rings)

If A and B are rings, then the Cartesian product A× B is also a
ring, with operations performed componentwise:
(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) and
(a1, b1) · (a2, b2) = (a1a2, b1b2).

Proof: Straightforward from the definition.

This ring A× B is called the direct product. We can also
generalize this definition to direct products and direct sums
over arbitrary indexing sets.

Note that if A and B are commutative, then so is A× B;
likewise, if A and B have a 1, then (1A, 1B) is the
multiplicative identity in A× B.



Ideals, I

Our next task is to generalize the idea of modular arithmetic into
general rings.

In Z and F [x ], we defined modular congruences using
divisibility, but let us take a broader approach: if I is a subset
of R (whose properties we intend to characterize in a
moment) let us say that two elements a, b ∈ R are “congruent
modulo I ” if a− b ∈ I .

We would like “congruence modulo I ” to be an equivalence
relation: this requires a ≡ a (mod I ), a ≡ b (mod I ) implies
b ≡ a (mod I ), and a ≡ b (mod I ) and b ≡ c (mod I ) implies
a ≡ c (mod I ).

It is easy to see that these three conditions require 0 ∈ I , that
I be closed under additive inverses, and that I be closed under
addition. (Thus, I is in fact closed under subtraction.)



Ideals, II

We also want congruences to respect addition and multiplication.

If a ≡ b (mod I ) and c ≡ d (mod I ), then we want
a + c ≡ b + d (mod I ) and ac ≡ bd (mod I ).

In terms of ring elements, this is equivalent to the following: if
b = a + r and d = c + s for some r , s ∈ I , then we want
(b + d)− (a + c) = r + s to be in I , and we also want
bd − ac = (a + r)(c + s)− ac = as + rc + rs to be in I .

The first condition clearly follows from the requirement that I
is closed under addition. It is a bit less obvious how to handle
the second condition, but one immediate implication follows
by setting a = c = 0: namely, that rs ∈ I .

Thus, I must be closed under ·, so it must be a subring.

But more is needed: since 0 ∈ I , we can set r = 0 to see that
as ∈ I , and we can also set s = 0 to see that rc ∈ I .



Ideals, III

So in fact, I must be closed under (left and right)
multiplication by arbitrary elements of R, in addition to being
a subring. It is then easy to see that this condition is also
sufficient to ensure that a ≡ b (mod I ) and c ≡ d (mod I )
imply a + c ≡ b + d (mod I ) and ac ≡ bd (mod I ).

Our last task is to define residue classes and then the ring
operations: we define the residue class a (modulo I ) to be the
set of ring elements b congruent to a modulo I , which is to
say, a = {a + r : r ∈ I}.
Then we take the operations on residue classes to be
a + b = a + b and a · b = a · b, and by properties of
congruences, these operations will be well-defined and the
collection of residue classes will form a ring.



Ideals, IV

Now we just have to run through the discussion more formally:

Definition

A subset I of a ring R that is closed under arbitrary left and right
multiplication by elements of R is called an ideal of R (or, for
emphasis, a two-sided ideal).

Explicitly, I is an ideal if I contains 0 and for any x , y ∈ I and
any r ∈ R, the elements x − y , rx , and xr are all in I .

There are one-sided notions of ideals as well: a left ideal is
closed under arbitrary left multiplication, while a right ideal is
closed under arbitrary right multiplication.

If R is commutative, then left ideals, right ideals, and
two-sided ideals are the same.



Ideals, V

Examples:

1. The subrings nZ are ideals of Z, since they are clearly closed
under arbitrary multiplication by elements of Z.

2. If R = F [x ] and p is any polynomial, the subring pR of
multiples of p is an ideal of F [x ], since it is closed under
arbitrary multiplication by polynomials in F [x ].

3. The subring Z of Q is not an ideal of Q, since it is not closed
under arbitrary multiplication by elements of Q, since for
example if we take r = 1

3 ∈ Q and x = 4 ∈ Z, the element
rx = 4

3 is not in Z.

4. For any ring R, the subrings {0} and R are ideals of R. We
refer to {0} as the trivial ideal (or the “zero ideal”) and refer
to any ideal I 6= R as a proper ideal (since it is a proper
subset of R).



Ideals, V

Examples:

5. In the ring R = Z[x ], the set S of polynomials with even
constant term is an ideal of R. It is not hard to see that
0 ∈ S , that S is closed under subtraction, and that the
product of any polynomial with an element of S also has even
constant term, so S is closed under arbitrary R-multiplication.

6. The set S = {0, 2, 4, 6} of “even” residue classes is an ideal of
Z/8Z. It is not hard to verify that this set is closed under
subtraction and arbitrary R-multiplication.

7. The set S = {0, 2, 4, 6} is not an ideal of Z/7Z since it is not
closed under addition. (The problem is that 7 is odd.)

8. The set S = {(2a, 3a) : a ∈ Z} is not an ideal of Z× Z:
although it is a subring, it is not closed under arbitrary
R-multiplication since for example (1, 2) · (2, 3) = (2, 6) is not
in S , even though (2, 3) is.



Ideals, VI

Proposition (Principal Ideals)

If R is a commutative ring with 1, the set (a) = {ra : r ∈ R} of all
R-multiples of a forms a (two-sided) ideal of R, known as the
principal ideal generated by a.

Proof:

Since 0a = 0 we see 0 ∈ (a). Furthermore, since
ra− sa = (r − s)a we see that (a) is closed under subtraction.

Furthermore, if t ∈ R then we have t(ra) = (tr)a, so since R
is commutative, (a) is closed under multiplication by arbitrary
elements of R. Thus, (a) is an ideal.

We will remark that in any Euclidean domain (like Z or F [x ]),
every ideal is principal (an element of minimum norm will generate
the ideal).



Summary

We discussed polynomial modular arithmetic.

We discussed rings, examples of rings, basic properties of rings,
subrings, and ideals.

Next lecture: Quotient rings, isomorphisms, homomorphisms, the
isomorphism theorems.


