
E. Dummit's Math 5111 ∼ Algebra 1, Fall 2020 ∼ Homework 12, due Fri Dec 11th.

Justify all responses with proof and in complete sentences unless otherwise stated. Write up your solutions cleanly
and neatly, and clearly identify all problem numbers. You may use results from earlier parts of problems in later
parts, even if you were unable to solve the earlier parts.

1. For each polynomial, determine its Galois group over Q. (You may assume each polynomial is irreducible.)

(a) f(y) = y3 − 4y − 2.

(b) f(y) = y3 + y2 − 4y + 1.

(c) f(y) = y4 + 5y − 5.

(d) f(y) = y4 − 5y2 + 3.

(e) f(y) = y4 + 4y + 6.

(f) f(y) = y4 + 36y + 63.

(g) f(y) = y4 − 13y2 − 2y + 19.

(h) f(y) = y4 − 4y2 + 2.

(i) f(y) = y5 − 3y4 + 6. [Hint: Count real roots.]

(j) f(y) = y5 + 3y4 + 15. [Hint: Factor it modulo 2.]

2. For each irreducible polynomial, determine its most probable Galois group over Q based on its discriminant
and its factorization structure modulo p for the 100 smallest primes not dividing its discriminant:

(a) f(t) = t5−5t3 +5t−20, with ∆ = 24 ·34 ·55 ·112.

Factorization Type 1 2,2 4 5

# Appearances 3 26 52 19

(b) f(t) = t7−14t5+56t3−56t−22, with ∆ = 26 ·710.
Factorization Type 1 3,3 7

# Appearances 2 68 30

(c) f(t) = t6 + t4 + 23, with ∆ = −26 · 233.

Factorization Type 1 2,2 2,2,2 3,3 4

# Appearances 3 9 27 36 24

(d) f(t) = t6−6t3−6t2−6t−2, with ∆ = 26 ·36 ·132.

Factorization Type 2,2 2,4 3 3,3 5

# Appearances 8 24 13 14 41

(e) Assuming your predictions are correct, which of the polynomials f(t) from (a)-(d) are solvable in radicals?

3. The goal of this problem is to give a method for computing the discriminant of a polynomial in terms of values
of its derivative. So suppose f(x) = (x− r1)(x− r2) · · · (x− rn) is a monic polynomial.

(a) Show that f ′(r) =
∏

ri 6=r(r − ri) for any root r of f .

(b) Show that ∆(x1, x2, . . . , xn) = (−1)n(n−1)/2
n∏

i=1

n∏
j=1, j 6=i

(xi − xj).

(c) Show that ∆(f) = (−1)n(n−1)/2
∏n

i=1 f
′(ri).

4. The Kronecker-Weber theorem says that every abelian extension of Q is contained in a cyclotomic extension.
The goal of this problem is to prove this fact for quadratic extensions. Let p be an odd prime.

(a) Show that the discriminant of the polynomial q(x) = xp − 1 is (−1)(p−1)/2pp. [Hint: Use problem 3(c).]

(b) Show that Q(ζp) contains
√

(−1)(p−1)/2p, and in fact that Q(
√

(−1)(p−1)/2p) is the unique quadratic
sub�eld of Q(ζp).

(c) Show that every quadratic extension of Q is contained in a cyclotomic extension. (Don't forget about√
2 and

√
−1!)

• Remark: If we write p∗ = (−1)(p−1)/2p, this problem shows that
√
p∗ is an element of Q(ζp). It is natural

to seek a simple formula for
√
p∗ in terms of ζp; with a fair bit of additional work, one can show that√

p∗ is given by the classical Gauss sum
∑p−1

i=0 ζ
i2

p .

5. Suppose that q(x) ∈ Z[x] is an irreducible polynomial of degree n.

(a) Suppose that the Galois group over Q, considered as a subgroup of Sn, contains no n-cycles. Prove that
q(x) is reducible modulo p for every prime p. [Hint: If p divides the discriminant, q(x) has a repeated
factor. Otherwise, use the Dedekind-Frobenius theorem.]
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(b) Show that the polynomial x4 + 1 is reducible modulo p for every prime p, but is irreducible over Q.
(Compare problem 1e of homework 1.)

(c) Suppose that n is even and the discriminant of q(x) is a perfect square. Prove that q is reducible modulo
p for every prime p.

6. The goal of this problem is to discuss Berlekamp's factorization algorithm in Fp[x]. So suppose that f(x) ∈
Fp[x] has irreducible factorization f(x) = q1(x)a1q2(x)a2 · · · qn(x)an where the qi are distinct, monic, and
irreducible, and f has degree D.

(a) Suppose that deg(g) < deg(f) and suppose that the remainder upon dividing g(xp) by f(x) in Fp[x] is
g(x). Prove that for each 1 ≤ i ≤ n, there exists an ri ∈ Fp such that qi(x)ai divides g(x) − ri. [Hint:
Use the factorization of xp − x over Fp to factor g(xp)− g(x) = g(x)p − g(x) as a product of p relatively
prime terms.]

(b) Suppose that deg(g) < deg(f) and that for each 1 ≤ i ≤ n, there exists an ri ∈ Fp such that qi(x)ai

divides g(x)− ri. Prove that the remainder upon dividing g(xp) by f(x) in Fp[x] is g(x).

(c) Let V be the vector space of polynomials g such thatdeg(g) < deg(f) and the remainder upon dividing
g(xp) by f(x) in Fp[x] is g(x). Show that the map ϕ : V → Fn

p given by (g mod qa1
1 , g mod qa2

2 , . . . , g mod qan
n )

is a well-de�ned vector space isomorphism. [Hint: Part (a) shows this map is well-de�ned. Use the Chi-
nese remainder theorem and part (b) to show it is surjective.]

(d) Deduce that if q1(x)a1 and q2(x)a2are two factors of f , then there is some g(x) such that g(xp) ≡ g(x)
mod f(x) and some r ∈ Fp such that q1(x)a1 divides g(x) − r but q2(x)a2 does not. [Hint: Some
polynomial has ϕ(g) = (1, 0, 0, . . . , 0) in part (c).]

(e) Suppose that the remainder upon dividing xpj by f(x) is a0,j +a1,jx+· · ·+aD−1,jxD−1 for 0 ≤ j ≤ D−1.
If g(x) = b0 + b1x+ · · ·+ bD−1x

D−1, show that the remainder upon dividing g(xp) by f(x) equals g(x)

if and only if


a0,0 a0,1 · · · a0,D−1
a1,0 a1,1 · · · a1,D−1
...

...
. . .

...
aD−1,0 aD−1,1 · · · aD−1,D−1

 ·


b0
b1
...

bD−1

 =


b0
b1
...

bD−1

. [Hint: If A is the matrix

and B is the column vector, AB computes the coe�cients after dividing g(xp) by f(x).]

(f) If A is the matrix described in part (e), show that the dimension of the kernel of A− I is n. [Hint: This
is a rephrasing of part (c).]

(g) Prove that the following procedure, Berlekamp's factorization algorithm, calculates the full irreducible
factorization q1(x)a1 , . . . , qn(x)an of f . [Hint: Use part (d) to justify why there are always n terms at
the end of step (iii) by showing that any two factors qai

i and q
aj

j will be split into separate terms, and
also justify (iv).]

i. Calculate the matrix A described in part (e) by �nding the remainders of xpj upon dividing by f(x).

ii. Compute a basis for the kernel of A− I via row-reduction. If the kernel is n-dimensional, then take
g1 = 1, g2, ... , gn to be a basis for the corresponding space of polynomials g of degree less than D
such that g(xp) ≡ g(x) mod f(x), obtained by reading coe�cients from the vectors in ker(A− I).

iii. Start with the list {f(x)}. Then for each i = 2, 3, . . . , n and each r ∈ Fp, compute the gcd of each
term currently on the list with gi(x) − r. For any nontrivial factorization obtained (i.e., where a
gcd is a nontrivial proper divisor of a term on the list), replace the given term with its two factors.
Continue until n factors are obtained.

iv. The n factors on the list will be the terms q1(x)a1 , . . . , qn(x)an . For each factor Q = qi(x)ai , compute
Q′. If Q′ = 0 then Q is a pth power; take its pth root and return to the beginning of this step.
Otherwise, compute gcd(Q,Q′): if this is 1 then Q is irreducible, and otherwise Q/ gcd(Q,Q′) will
be the polynomial qi(x). Calculate all of the appropriate exponents to obtain the full factorization
f(x) = q1(x)a1q2(x)a2 · · · qn(x)an of f .

(h) Use Berlekamp's algorithm to �nd the irreducible factorization of f(x) = x5 + x3 + 1 over F5.

(i) Use Berlekamp's algorithm to show x6 + x4 + 1 is irreducible over F7. [Hint: Compute the matrix rank.]

(j) Use Berlekamp's algorithm to factor x7 + x4 + x2 + x+ 1 over F2.
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