Justify all responses with proof and in complete sentences unless otherwise stated. Write up your solutions cleanly and neatly, and clearly identify all problem numbers.

1. For each polynomial $p(x) \in F[x]$, either find a nontrivial factorization or prove it is irreducible:

(a) p(x) = x³ + x² + 1 in F₃[x], F₅[x], and Q[x].
(b) p(x) = x⁵ - 3x³ + 15x² - 21x + 102 in Q[x].
(c) p(x) = x³ - 16x + 18 in Q[x].
(d) p(x) = x⁴ + 4x³ + 6x² + 6x + 1 in Q[x]. [Hint: consider p(x - 1).]
(e) p(x) = x⁴ + 1 in F₂[x], F₃[x], F₅[x], F₇[x], Q[x], and ℝ[x].

- 2. Show that the given element u is invertible in F[x]/p, and find its multiplicative inverse in F[x]/p:
 - (a) $F = \mathbb{Q}, p(x) = x^2 + 1, u = x + 3.$ (b) $F = \mathbb{F}_2, p(x) = x^5 + x^2 + 1, u = x^3.$ (c) $F = \mathbb{F}_3, p(x) = x^4 + 2x + 1, u = x^2 + 1.$
- 3. We have discussed a few general strategies for proving irreducibility in $\mathbb{Q}[x]$, such as Eisenstein's criterion and examining factorizations mod p. In other situations, substantially more cleverness can be required. The goal of this problem is to illustrate some trickier approaches.
 - (a) Let r_1, r_2, \ldots, r_n be distinct integers and let $p(x) = (x r_1)(x r_2) \cdots (x r_n) 1$. Prove that p(x) is irreducible in $\mathbb{Q}[x]$. [Hint: Suppose p(x) = f(x)g(x) for $f, g \in \mathbb{Z}[x]$. Show that $f(r_i) = -g(r_i)$ for each $1 \le i \le n$, deduce that f + g must be zero, and derive a contradiction.]
 - (b) Let p > 2 be a prime. Prove that the polynomial $q(x) = x^{2020} + x + p$ is irreducible in $\mathbb{Q}[x]$. [Hint: First show that if $z \in \mathbb{C}$ has q(z) = 0, then |z| > 1. Then consider constant terms in a possible factorization.]
- 4. Let R be a commutative ring and define the binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ for integers $0 \le k \le n$. Prove the binomial theorem in R: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$ for any $x, y \in R$ and any n > 0.
- 5. Let R be a ring.
 - (a) Show that the intersection of an arbitrary collection of subrings of R is a subring of R.
 - (b) Show that the union of a collection of subrings of R is not necessarily a subring of R.
 - (c) If $S_1 \subseteq S_2 \subseteq \cdots$ is an ascending chain of subrings of R, show that the union $\bigcup_i S_i$ is a subring of R.
 - Remark: The same results hold with "ideal" in place of "subring" everywhere.

- 6. Suppose R is a ring with 1 and let I be an ideal of R.
 - (a) Prove that the following are equivalent:
 - i. I is a proper ideal of R (i.e., $I \neq R$).
 - ii. I contains no units.
 - iii. I does not contain 1.
 - (b) Now suppose R is also commutative. Show that the set of all nonunits of R forms an ideal M if and only if there exists a proper ideal M of R that contains every other proper ideal of R.
- 7. Let F be a field and define $R = F[\epsilon]/(\epsilon^2)$, a ring known as ring of dual numbers over F. Intuitively, one can think of the element $\epsilon \in R$ as being like an "infinitesimal": a number so small that its square is zero.
 - (a) Show that the zero divisors in R are the elements of the form $b\epsilon$ with $b \neq 0$, and the units in R are the elements of the form $a + b\epsilon$ with $a \neq 0$.
 - (b) Find all the ideals of R. (There are three.)
 - (c) Let $p(x) \in F[x]$. Show that $p(x + \epsilon) = p(x) + \epsilon p'(x)$ in R[x], where p'(x) denotes the derivative of p(x).
 - <u>Remark</u>: Part (c) shows how to use dual numbers to give a purely algebraic way to compute the derivative of a polynomial (some computer systems actually do differentiation this way). In fact, the dual numbers are essentially the same object used in the construction of cotangent spaces in differential geometry.