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4 Vector Calculus

Our motivating problem for multivariable integration was to generalize the idea of integration to more complicated
regions in space, or (more succinctly) to integrate a function over a region. We might also ask whether there is a
simple way to integrate a function over an arbitrary curve in the plane or in space, and whether there is a way to
integrate a function over an arbitrary surface in space. The answer (as it always has been to this point) is yes: the
generalization of single-variable integration to arbitrary curves is called a line integral, and the generalization of
double integration to arbitrary surfaces is called a surface integral.

After introducing line and surface integrals, we will then discuss vector �elds (which are vector-valued functions in
2-space and 3-space) which provide a useful model for the �ow of a �uid through space. The principal applications
of line and surface integrals are to the calculation of the work done by a vector �eld on a particle traveling through
space, the �ux of a vector �eld across a curve or through a surface, and the circulation of a vector �eld along a
curve.

Finally, we discuss several generalizations of the Fundamental Theorem of Calculus: the Fundamental Theorem
of Calculus for line integrals, Green's Theorem, Gauss's Divergence Theorem, and Stokes's Theorem. Collectively,
these theorems unify all of the di�erent notions of integration, as they each relate the integral of a function on a
region to the integral of an antiderivative of the function on the region's boundary.

4.1 Line Integrals

• The motivating problem for our discussion of line integrals is: given a parametric curve r(t) = 〈x(t), y(t)〉
and a function f(x, y), if we �build a surface� along the curve with height given by the function z = f(x, y),
how can we calculate the area of this surface? (This is a natural generalization of our typical single-variable
integration problem, in which we build the �surface� inside a plane, thus making it the area under a curve.)
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◦ Here is an example (for visualization), with r(t) =
〈
t2, t cos(2πt)

〉
, f(x, y) = t2 + 1, for 0 ≤ t ≤ 3

2
:

◦ Another closely related question is: given a parametric curve r(t) = 〈x(t), y(t), z(t)〉 and a function
f(x, y, z), how can we calculate the average value of f(x, y, z) on the curve?

◦ A third question: given a thin wire shaped along some curve r(t) = 〈x(t), y(t)〉 with variable density
δ(x, y), what is the wire's mass, and what are its moments about the coordinate axes?

• As with all other types of integrals we have examined so far, we use Riemann sums to give the formal de�nition
of the line integral of a function f(x, y) on a plane curve C. (Also as before, we will use the formal de�nition
as infrequently as possible!)

◦ The idea is to approximate the curve with straight line segments, sum (over all the segments) the function
value times the length of the segment, and then take the limit as the segment lengths approach zero.

◦ De�nition: For a curve C, a partition of C into n pieces is a list of points (x0, y0), ... , (xn, yn) on C,
with the nth segment having length ∆si =

√
(∆xi)2 + (∆yi)2. The norm of the partition P is the largest

number among all of the segment lengths in P .

◦ De�nition: For f(x, y) a continuous function and P a partition of the curve C, we de�ne the Riemann sum

of f(x, y) on D corresponding to P to be RSP (f) =

n∑
k=1

f(xk, yk) ∆sk.

◦ De�nition: For a function f(x, y), we de�ne the line integral of f on the curve C, denoted

ˆ
C

f(x, y) ds,

to be the value of L such that, for every ε > 0, there exists a δ > 0 (depending on ε) such that for every
partition P with norm(P ) < δ, we have |RSP (f)− L| < ε.

◦ Remark: It can be proven (with signi�cant e�ort) that, if f(x, y) is continuous and the curve C is smooth,
then a value of L satisfying the hypotheses actually does exist.

◦ Remark: The di�erential ds in the de�nition of the line integral is the �di�erential of arclength�, which
we discussed earlier in our study of vector-valued functions.

• In exactly the same way, we can use Riemann sums to give a formal de�nition of the line integral along a
curve C in 3-space. (We simply add the appropriate z-terms to all the de�nitions.)

• Like with the other types of integrals, line integrals have a number of formal properties which can be deduced
from the Riemann sum de�nition. Speci�cally, for D an arbitrary constant and f(x, y) and g(x, y) continuous
functions, the following properties hold:

◦ Integral of constant:
´
C
Dds = D ·Arclength(C).

◦ Constant multiple of a function:
´
C
Df(x, y) ds = D ·

´
C
f(x, y) ds.

◦ Addition of functions:
´
C
f(x, y) ds+

´
C
g(x, y) ds =

´
C

[f(x, y) + g(x, y)] ds.

◦ Subtraction of functions:
´
C
f(x, y) ds−

´
C
g(x, y) ds =

´
C

[f(x, y)− g(x, y)] ds.

◦ Nonnegativity: if f(x, y) ≥ 0, then
´
C
f(x, y) ds ≥ 0.

◦ Union: If C1 and C2 are curves such that C2 starts where C1 ends, and C is the curve obtained by gluing
the curves end-to-end, then

´
C1
f(x, y) ds+

´
C2
f(x, y) ds =

´
C
f(x, y) ds.

◦ Remark: These same properties also all hold for line integrals of a function f(x, y, z) in 3-space.
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• The key observation is that we can reduce calculations of line integrals to �traditional� single integrals:

• Proposition (Line Integrals in the Plane): If the curve C can be parametrized as x = x(t), y = y(t) for

a ≤ t ≤ b, then

ˆ
C

f(x, y) ds =

ˆ b

a

f(x(t), y(t))
ds

dt
dt, where

ds

dt
=
√
x′(t)2 + y′(t)2 is the derivative of

arclength.

• Proposition (Line Integrals in 3-Space): If the curve C can be parametrized as x = x(t), y = y(t), z = z(t)

for a ≤ t ≤ b, then

ˆ
C

f(x, y, z) ds =

ˆ b

a

f(x(t), y(t), z(t))
ds

dt
dt, where

ds

dt
=
√
x′(t)2 + y′(t)2 + z′(t)2 is the

derivative of arclength.

◦ The proof of both of these results is simply to observe that the Riemann sum

n∑
k=1

f(xk, yk) ∆sk for the line

integral
´
C
f(x, y) ds is also a Riemann sum

n∑
k=1

f(xk, yk)
∆sk
∆tk

∆tk for the integral
´ b
a
f(x(t), y(t))

ds

dt
dt.

◦ Equivalently: we have made a substitution in the integral by changing from s-coordinates to t-coordinates,

where the di�erential changes using the rule ds =
ds

dt
dt.

• Thus, to evaluate the line integral of f on the curve C (i.e., the line integral
´
C
f(x, y, z) ds), follow these steps:

1. Parametrize the curve C as a function of t, as r(t) = 〈x(t), y(t), z(t)〉 for a ≤ t ≤ b.
2. Write the function f in terms of t: f(x, y, z) = f(x(t), y(t), z(t)).

3. Write the di�erential ds =
ds

dt
dt = ||v(t)|| dt =

√
x′(t)2 + y′(t)2 + z′(t)2 dt in terms of t.

4. Evaluate the resulting single-variable integral
´ b
a
f(x(t), y(t), z(t))

√
x′(t)2 + y′(t)2 + z′(t)2dt.

• Example: Integrate the function f(x, y, z) = yz − 6x along the curve r(t) =
〈
t3, 6t, 3t2

〉
from t = 0 to t = 1.

◦ We have f(x, y, z) = yz − 6x = (6t)(3t2) − 6t3 = 12t3, and we also have ds =
√

(3t2)2 + (6)2 + (6t)2 =√
9t4 + 36t2 + 36 = 3t2 + 6.

◦ The integral is therefore
´ 1
0

(12t3)(3t2 + 6)dt =
´ 1
0

(36t5 + 72t3) dt = 24 .

• Example: Integrate the function f(x, y) = x2 + y along the top half of the unit circle x2 + y2 = 1, starting at
(1, 0) and ending at (−1, 0).

◦ The unit circle is parametrized by r(t) = 〈cos t, sin t〉: the range we want is 0 ≤ t ≤ π.
◦ We have f(x, y) = x2 + y = cos2 t+ sin t, and we also have ds =

√
(− sin t)2 + (cos t)2 = 1.

◦ The integral is therefore
´ π
0

[
cos2 t+ sin t

]
dt =

´ π
0

[
1 + cos 2t

2
+ sin t

]
dt =

π

2
+ 2 .

• To �nd the average value of a function on a curve, we simply integrate the function over the curve, and then
divide by the curve's arclength.

• Example: Find the average value of the function f(x, y, z) = x2+y2+z2 along the line segment from (1,−1, 0)
to (2, 2, 1).

◦ The direction vector for the line is v = 〈2, 2, 1〉− 〈1,−1, 0〉 = 〈1, 3, 1〉. Thus, we can parametrize the line
segment as 〈x, y, z〉 = 〈1,−1, 0〉+ t 〈1, 3, 1〉 for 0 ≤ t ≤ 1.

◦ So the line segment is parametrized explicitly by x = 1 + t, y = −1 + 3t, z = t for 0 ≤ t ≤ 1.

◦ Now we set up the integral: the function is f(x, y, z) = x2 + y2 + z2 = (1 + t)2 + (−1 + 3t)2 + (t)2 =
11t2 − 4t+ 2.

◦ Since x′(t) = 1, y′(t) = 3, and z′(t) = 1, we also have
ds

dt
=
√

12 + 32 + 12 =
√

11.
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◦ The integral of f is therefore
´ 1
0

[
11t2 − 4t+ 2

]√
11dt =

√
11

[
11

3
t3 − 2t2 + 2t

]∣∣∣∣1
t=0

=
11
√

11

3
.

◦ To compute the average value, we divide by the arclength, which is
´ 1
0

1 ds =
´ 1
0

√
11dt =

√
11.

◦ Thus, the average value is
11

3
.

• We also have formulas for the mass and moments of a wire of variable density:

• Center of Mass and Moment Formulas (Thin Wire): Given a 1-dimensional wire of variable density δ(x, y, z)
along a parametric curve C in 3-space:

◦ The total mass M is given by M =
´
C
δ(x, y, z) ds.

◦ The x-moment Myz is given by Myz =
´
C
x δ(x, y, z) ds.

◦ The y-moment Mxz is given by Mxz =
´
C
y δ(x, y, z) ds.

◦ The z-moment Mxy is given by Mxy =
´
C
z δ(x, y, z) ds.

◦ The center of mass (x̄, ȳ, z̄) has coordinates

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

◦ Note: For a wire in 2-space, the formulas are essentially the same (except without the z-coordinate),
though the x-moment is denoted My and the y-moment is denoted Mx.

• Example: Find the total mass, and the center of mass, of a thin wire in the xy-plane having the shape of the
unit circle with variable density δ(x, y) = 2 + x.

◦ We can parametrize the unit circle with x = cos t, y = sin t, so
ds

dt
=
√

(− sin t)2 + (cos t)2 = 1.

◦ The total mass M is M =
´
C
δ(x, y) ds =

´ 2π
0

(2 + cos t) dt = 2π .

◦ The x-moment My is My =
´
C
x δ(x, y) ds =

´ 2π
0

cos t(2 + cos t) dt =

[
2 sin t+

1

2
t+

1

4
sin(2t)

]∣∣∣∣2π
t=0

= π.

◦ The y-moment Mx is Mx =
´
C
y δ(x, y) ds =

´ 2π
0

sin t(2 + cos t) dt =

[
−2 cos t− 1

4
cos(2t)

]∣∣∣∣2π
t=0

= 0.

◦ Therefore, the center of mass is

(
My

M
,
Mx

M

)
=

(
1

2
, 0

)
.

• We will also be interested in computing line integrals involving the di�erentials dx, dy, and dz rather than

ds: namely, expressions of the form

ˆ
C

f dx+ g dy + h dz.

• We evaluate such line integrals by making the appropriate substitutions: if C is parametrized by x = x(t),

y = y(t), z = z(t) for a ≤ t ≤ b, then the line integral

ˆ
C

f dx+ g dy + h dz is given by the single-variable

integral

ˆ b

a

[
f
dx

dt
+ g

dy

dt
+ h

dz

dt

]
dt.

• Example: Find
´
C
y dx+ z dy + x2 dz, where C is the curve (x, y, z) = (t, t2, t3) ranging from t = 0 to t = 1.

◦ We have x = t, y = t2, and z = t3, so that dx = dt, dy = 2t dt, and dz = 3t2 dt.

◦ The integral is
´ 1
0

[
t2 · dt+ 3t2 · 2t dt+ t2 · 3t2 dt

]
=
´ 1
0

[
t2 + 6t3 + 3t4

]
dt =

73

30
.

• Example: Find
´
C
x dy− y dx, where C is the upper half of the ellipse x2/9 + y2/16 = 1, starting at (3, 0) and

ending at (−3, 0).

◦ This ellipse is parametrized by r(t) = 〈3 cos t, 4 sin t〉: the range we want is 0 ≤ t ≤ π.
◦ We have x = 3 cos t and y = 4 sin t, so that dx = −3 sin t dt and dy = 4 cos t dt.

◦ The desired integral is
´ π
0

[3 cos t · (4 cos t dt)− 4 sin t · (−3 sin t dt)] =
´ π
0

[
12 cos2 t+ 12 sin2 t

]
dt = 12π .
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4.2 Surfaces and Surface Integrals

• We would now like to consider the problem of computing the integral of a function on a surface in 3-dimensional
space. In a similar way to how we computed line integrals using (single) integrals, we will be able to compute
surface integrals as double integrals.

• There are essentially two ways to describe a surface in 3-space: either as an implicit surface of the form
f(x, y, z) = c, or as a parametric surface r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉 for two parameters s and t.

◦ Note that the �explicit surface� z = g(x, y) is simply a special case of the general implicit surface, since
g(x, y)− z = 0 has the form f(x, y, z) = c with f(x, y, z) = g(x, y)− z and c = 0.

◦ In cases where the functions x, y, and z are su�ciently simple or nice, it can be possible to eliminate
the variables s and t from the system x = x(s, t), y = y(s, t), z = z(s, t), and obtain an equation for the
surface as an implicit surface f(x, y, z) = c.

◦ We will also remark that parametric descriptions of surfaces are often easier to work with than implicit
descriptions. For example, graphing a parametric surface requires only plugging in values for (s, t) and
plotting the resulting points (x, y, z), whereas graphing an implicit surface requires �nding solutions to
the implicit equation, which is typically much harder.

• We will describe how to �nd parametrizations of some common surfaces, give the de�nition of a surface
integral, and then show how to compute surface integrals on both parametric and implicit surfaces.

4.2.1 Parametric Surfaces

• If we graph a vector-valued function of two variables r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉 as s and t vary, we will
obtain a surface in space (barring something strange happening).

• Example: The surface r(s, t) = 〈x0, y0, z0〉+t 〈v1, v2, v3〉+s 〈w1, w2, w3〉 is the plane passing through the point
(x0, y0, z0) that contains the two vectors v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉, provided that v and w are not
parallel.

◦ We could also describe the plane as an implicit surface of the form ax+by+cz = d, where 〈a, b, c〉 = v×w
is the normal vector to the plane and d = ax0 + by0 + cz0.

◦ There are many ways to describe a given plane as a parametric surface. For example, both of the
parametrizations r(s, t) = 〈s, t, 1− s− t〉 and r(s, t) = 〈−3 + s− 2t, 2 + t+ 2s, 2 + t− 3s〉 describe the
same plane x+ y + z = 1.

• Example: For two positive �radius parameters� r and R with r < R, the surface de�ned parametrically by
r(s, t) = 〈cos(t) · [R+ r sin(s)], sin(t) · [R+ r cos(s)], r sin(s)〉, for 0 ≤ t ≤ 2π and 0 ≤ s ≤ 2π is a donut-
shaped surface called a torus.

◦ It is the surface obtained by taking a vertical circle of radius r and moving its center along the circle
x2 + y2 = R2 in the xy-plane.

◦ Four tori, with respective parameters (r,R) equal to (1, 5), (2, 5), (3, 5), and (4, 5), are plotted below:
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• Example: The surface de�ned parametrically by r(s, t) = 〈cos(s) + cos(t), s+ t, sin(s) + sin(t)〉, for 0 ≤ t ≤
4π and 0 ≤ s ≤ 4π is a helical ribbon:

• In general, it can be a somewhat involved problem to convert a geometric or verbal description of a surface
into a parametrization: it is really more of an art form than a general procedure.

◦ To parametrize parts of cylinders, cones, and spheres, it is almost always a very good idea to consider
whether cylindrical or spherical coordinates can be of assistance.

◦ Using translations and rescalings, we can also parametrize surfaces like ellipsoids.

• There are many di�erent ways to parametrize the same surface, and which description is best will depend on
what the parametrization will be used for.

◦ For example, x = s, y = t, z =
√
s2 + t2 parametrizes the cone z =

√
x2 + y2, but so does the

parametrization x = s cos t, y = s sin t, z = s.

◦ If we want to describe the points lying over a rectangular region in the xy-plane, the �rst parametrization
is more useful, but if we want to describe the points on the cone up to a speci�c height in the z-direction,
the second parametrization is more useful.

• Example: Parametrize the portion of the cylinder x2 + y2 = 4 lying between the planes z = −2 and z = 2.

◦ In cylindrical coordinates, we know that x = r cos θ, y = r sin θ, and z = z.

◦ Since the given cylinder has equation r = 2 in cylindrical coordinates, we see that a parametrization of
the full cylinder is x = 2 cos t, y = 2 sin t, z = s, where 0 ≤ t ≤ 2π but with no restrictions on s. (Here
we think of t as θ and s as z.)

◦ To obtain just the portion with −2 ≤ z ≤ 2 we just restrict the range for s.

◦ Thus the parametrization of the desired portion of the cylinder is x = 2 cos t, y = 2 sin t, z = s, where
0 ≤ t ≤ 2π and −2 ≤ s ≤ 2.

• Example: Parametrize the portion of the cylinder x2+y2 = 4 lying between the planes z = y−2 and z = x+4.

◦ Like in the previous example, we take the parametrization of the full cylinder as x = 2 cos t, y = 2 sin t,
z = s, and then restrict the ranges for s and t appropriately. In this case, we want the portion of the
surface where y − 2 ≤ z ≤ x+ 4.

◦ It is straightforward to check that the two planes do not intersect inside the cylinder (since y − 2 ≤ 0
inside the cylinder, while x+ 4 ≥ 2).

◦ So in this case, we take 0 ≤ t ≤ 2π and 2 sin t ≤ s ≤ 2 cos t+ 4.

• Example: Parametrize the sphere x2 + y2 + z2 = 9.

◦ In spherical coordinates, we know that x = ρ cos(θ) sin(ϕ), y = ρ sin(θ) sin(ϕ), z = ρ cos(ϕ).
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◦ The sphere has equation ρ = 3, so we can immediately see that x = 3 cos(t) sin(s), y = 3 sin(t) sin(s),
z = 3 cos(s), with 0 ≤ t ≤ 2π and 0 ≤ s ≤ π, will parametrize the sphere. (Here, we are thinking of t as
θ and s as ϕ.)

• Example: Parametrize the sphere (x− 2)2 + (y + 1)2 + (z − 6)2 = 4.

◦ It is not so easy to describe this sphere using spherical coordinates directly. However, if we shift the
coordinates to center the sphere at the origin, we can easily write down the parametrization.

◦ By translating back, we can see that x = 2 + 2 cos(t) sin(s), y = −1 + 2 sin(t) sin(s), z = 6 + 2 cos(s),
with 0 ≤ t ≤ 2π and 0 ≤ s ≤ π, will parametrize the sphere.

• Example: Parametrize the ellipsoid
x2

4
+
y2

9
+
z2

16
= 1.

◦ It is again not so easy to write down the parametrization using any of our coordinate systems directly.
However, if we rescale the coordinates by setting x′ = x/2, y′ = y/3, and z′ = z/4, then we see
(x′)2 + (y′)2 + (z′)2 = 1, and we can use spherical coordinates to parametrize the coordinates x′, y′, z′.

◦ By rescaling back, we can see that x = 2 cos(t) sin(s), y = 3 sin(t) sin(s), z = 4 cos(s), with 0 ≤ t ≤ 2π
and 0 ≤ s ≤ π, will parametrize this ellipsoid.

• Example: Parametrize the portion of the cone z = 3
√
x2 + y2 that lies below the plane z = 1 + x+ y.

◦ In cylindrical, the equations are z = 3r and z = 2 + r cos θ + r sin θ. They are equal when 3r =

2 + r cos θ + r sin θ, or r =
2

3− cos θ − sin θ
. (Note that sin θ + cos θ ≤

√
2, so the denominator is never

zero.)

◦ The full surface is parametrized by x = s cos(t), y = s sin(t), z = 3s.

◦ The portion under the plane corresponds to 0 ≤ s ≤ 2

3− cos t− sin t
, with 0 ≤ t ≤ 2π.

• If we have a parametrization of a surface, we can use the parametrization to �nd the tangent plane to the
surface at a given point.

◦ The key observation is that if the surface S is parametrized by the vector-valued function r(s, t) =

〈x(s, t), y(s, t), z(s, t)〉, then the two partial derivatives rs =
∂r

∂s
and rt =

∂r

∂t
are both tangent to the

surface.

◦ Therefore, the cross product
∂r

∂s
× ∂r

∂t
will be perpendicular to the tangent plane, and is thus a normal

vector for the tangent plane.

• Example: Find an equation for the tangent plane to the surface r(s, t) =
〈
s cos(t), s sin(t), s2

〉
when s = 1

and t = π/2.

◦ We compute rs(s, t) = 〈cos t, sin t, 2s〉 and rt(s, t) = 〈−s sin t, s cos t, 0〉.
◦ Thus, we see rs(1, π/2) = 〈0, 1, 2〉, and rt(1, π/2) = 〈−1, 0, 0〉, and so the normal vector to the tangent
plane is n = 〈0, 1, 2〉 × 〈−1, 0, 0〉 = 〈0,−2, 1〉.
◦ The tangent plane passes through the point on the surface where s = 1 and t = π/2, which is r(1, π/2) =
〈0, 1, 1〉.

◦ Thus, an equation for the tangent plane is given by 0(x− 0)− 2(y − 1) + 1(z − 1) = 0 or equivalently

−2y + z = −1 .

• Example: Find an equation for the plane tangent to the surface r(s, t) =
〈
s2, 2st, t3

〉
at the point (4, 4,−1).

◦ First, we need to �nd the values of s and t at the point (4, 4,−1). If 〈4, 4,−1〉 =
〈
s2, 2st, t3

〉
then we see

t3 = −1 so t = −1, and then 2st = 4 gives s = −2.
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◦ Now, we have rs(s, t) = 〈2s, 2t, 0〉 and rt(s, t) =
〈
0, 2s, 3t2

〉
, so rs(−2,−1) = 〈−4,−2, 0〉 and rt(−2,−1) =

〈0,−4, 3〉.
◦ Thus, the normal vector to the tangent plane is n = 〈−4,−2, 0〉 × 〈0,−4, 3〉 = 〈−6, 12, 16〉.

◦ Thus, an equation for the tangent plane is given by −6(x− 4) + 12(y − 4) + 16(z + 1) = 0 or equiva-

lently −6x+ 12y + 16z = 8 .

4.2.2 Surface Integrals

• The motivating problem for our discussion of surface integrals is as follows: given a parametric surface
r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉 and a function f(x, y, z), we would like to integrate the function on that
surface. Like with line integrals, we have two natural applications: computing the average value of a function
on the surface, and analyzing the physical properties of a thin surface with variable density.

◦ As with all the other types of integrals, the idea is to approximate the surface with small �patches�, sum
(over all the patches) the function value times the area of the patch, and then take the limit as the patch
sizes approach zero.

◦ De�nition: For a parametric surface S, a partition of S into n pieces is a list of disjoint subregions inside
S, where the kth subregion corresponds to sk ≤ s ≤ s′k, tk ≤ t ≤ t′k, and has area ∆σk. The norm of the
partition P is the largest number among the areas of the rectangles in P .

◦ De�nition: For f(x, y, z) a continuous function and P a partition of the surface S, we de�ne the

Riemann sum of f(x, y, z) on R corresponding to P to be RSP (f) =

n∑
k=1

f(r(sk, tk)) ∆σk.

◦ De�nition: For a function f(x, y, z), we de�ne the surface integral of f on S, denoted

¨

S

f(x, y, z) dσ, to

be the value of L such that, for every ε > 0, there exists a δ > 0 (depending on ε) such that for every
partition P with norm(P ) < δ, we have |RSP (f)− L| < ε.

◦ Remark: It can be proven (with signi�cant e�ort) that, if f(x, y, z) is continuous, then a value of L
satisfying the hypotheses actually does exist.

• As with all of the other types of integrals, surface integrals possess some formal properties:

◦ Integral of constant:
˜
S
C dσ = C ·Area(S).

◦ Constant multiple of a function:
˜
S
C f(x, y) dσ = C ·

˜
S
f(x, y) dσ.

◦ Addition of functions:
˜
S
f(x, y) dσ +

˜
S
g(x, y) dσ =

˜
S

[f(x, y) + g(x, y)] dσ.

◦ Subtraction of functions:
˜
S
f(x, y) dσ −

˜
S
g(x, y) dσ =

˜
S

[f(x, y)− g(x, y)] dσ.

◦ Nonnegativity: if f(x, y) ≥ 0, then
˜
S
f(x, y) dσ ≥ 0.

◦ Union: If S1 and S2 don't overlap and have union S, then
˜
S1
f(x, y) dσ+

˜
S2
f(x, y) dσ =

˜
S
f(x, y) dσ.

• We were able to reduce line integral calculations to standard one-variable integrals. We can similarly reduce
calculations of surface integrals to double integrals:

• Proposition (Parametric Surface Integrals): If f(x, y, z) is continuous on the surface S which is parametrized
as r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉, where S is described by a region R in st-coordinates, then the surface
integral of f on S is

¨
S

f(x, y, z) dσ =

¨
R

f(x(s, t), y(s, t), z(s, t))

∣∣∣∣∣∣∣∣∂r∂s × ∂r

∂t

∣∣∣∣∣∣∣∣ dt ds.
◦ The key step is to recognize the Riemann sum for the surface integral as the Riemann sum for a particular
double integral.

8



◦ Ultimately, the di�erential of surface area dσ =

∣∣∣∣∣∣∣∣∂r∂s × ∂r

∂t

∣∣∣∣∣∣∣∣ dt ds arises from computing the area of

a small patch in st-coordinates: when s changes slightly, the change in r is given by
∂r

∂s
, and when t

changes slightly, the change in r is given by
∂r

∂t
.

◦ These two vectors form a small parallelogram that closely approximates the surface S, so the di�erential

of surface area dσ is roughly equal to the area of this parallelogram, which is

∣∣∣∣∣∣∣∣∂r∂s × ∂r

∂t

∣∣∣∣∣∣∣∣, times the

di�erential dt ds.

• We can also calculate surface integrals over implicit surfaces of the form g(x, y, z) = c:

• Proposition (Implicit Surface Integrals): If f(x, y, z) is continuous on the implicit surface S de�ned by
g(x, y, z) = c, R is the projection of S into the xy-plane, and ∂g/∂z 6= 0 on R, then the surface integral
of f on S is

¨
S

f(x, y, z) dσ =

¨
R

f(x, y, z)
||∇g||
|∇g · k|

dy dx

where ∇g is the gradient of g and k = 〈0, 0, 1〉. (Thus, ∇g · k = ∂g/∂z.)

◦ The statement that ∂g/∂z 6= 0 on R is equivalent to saying that the tangent plane to g(x, y, z) = c is
never vertical above R. In particular this implies that the surface never �doubles back� on itself over the
region R.

◦ Thus for example, we could not use the method directly to compute a surface integral on the entire unit
sphere, because it has a vertical tangent plane above its projection x2 + y2 ≤ 1 in the xy-plane.

◦ This formula can be derived from the parametric surface integral formula: after some simpli�cation, it
is what one obtains by using the parametrization r(s, t) = 〈s, t, z(s, t)〉, where z(s, t) is de�ned implicitly
via the relation f(s, t, z(s, t)) = c.

• Using these two results, we can reduce calculations of surface integrals to �traditional� double integrals: given
a description of the surface S, we can convert it to a double integral using one of two methods:

◦ For a parametric surface given in the form r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉:
∗ Step 1: Find the bounds on s and t that parametrize the desired portion of the surface.

∗ Step 2: Express the function f(x, y, z) to be integrated in terms of (s, t).

∗ Step 3: Find the di�erential of surface area dσ =

∣∣∣∣∣∣∣∣∂r∂s × ∂r

∂t

∣∣∣∣∣∣∣∣ ds dt.
∗ Step 4: Write down the integral

¨
S

f(x(s, t), y(s, t), z(s, t))

∣∣∣∣∣∣∣∣∂r∂s × ∂r

∂t

∣∣∣∣∣∣∣∣ ds dt and evaluate.

◦ For an implicit surface given in the form g(x, y, z) = c:

∗ Step 1: Sketch the surface, determine the shape of its projection R into the xy-plane, and make sure
that the surface does not cover any part of the projection more than once.

∗ Step 2: Evaluate the integral

¨
R

f(x, y, z)
||∇g||
|∇g · k|

dy dx , where ∇g is the gradient of g and k =

〈0, 0, 1〉.
∗ Note that the only variables allowed in the integral are x and y, so if the integrand has any z terms
we must use the implicit equation g(x, y, z) = c to get rid of them.

◦ Note that, by swapping z with x or with y, the implicit surface procedure can also be used with a
projection into the xz-plane or the yz-plane.

◦ Also note that for a surface of the form z = f(x, y), we could use either method.

• Example: Integrate the function g(x, y, z) = z over the surface with parametrization r(s, t) = 〈sin(t), cos(t), s+ t〉
for 0 ≤ t ≤ 2π and 0 ≤ s ≤ π.

9



◦ We have an explicit parametrization of the surface, so we use the parametric formula.

◦ On the surface, we have z = s+ t so g(x, y, z) = z = s+ t.

◦ We have
∂r

∂s
= 〈0, 0, 1〉 and ∂r

∂t
= 〈cos(t), − sin(t), 1〉, so ∂r

∂s
×∂r
∂t

=

∣∣∣∣∣∣
i j k
0 0 1

cos(t) − sin(t) 1

∣∣∣∣∣∣ = 〈sin(t), cos(t), 0〉.

Then

∣∣∣∣∣∣∣∣∂r∂s × ∂r

∂t

∣∣∣∣∣∣∣∣ = 1.

◦ The integral is therefore given by

ˆ 2π

0

ˆ π

0

(s+ t) ds dt =

ˆ 2π

0

[
s2

2
+ st

] ∣∣∣π
s=0

= dt

ˆ 2π

0

[
π2

2
+ πt

]
dt =

[
π2

2
t+

π

2
t2
] ∣∣∣2π
t=0

= 3π3 .

• Example: Integrate the function f(x, y, z) = 8xy over the portion of the plane 2x+y+2z = 1 with 0 ≤ x ≤ 1,
0 ≤ y ≤ 1.

◦ We use the implicit surface formula, with g(x, y, z) = 2x+ y + 2z − 1.

◦ We have ∇g = 〈2, 1, 2〉 so ||∇g|| =
√

22 + 12 + 22 = 3 and |∇g · k| = 2.

◦ The desired integral is therefore
´ 1
0

´ 1
0

8xy · (3/2) dy dx =
´ 1
0

6x dx = 3 .

• Example: Integrate the function f(x, y, z) = xz over the portion of the plane 4x+ 2y+ z = 1 with 0 ≤ x ≤ 1,
0 ≤ y ≤ 1.

◦ We use the implicit surface formula, with g(x, y, z) = 4x+ 2y + z − 1.

◦ We have ∇g = 〈4, 2, 1〉 so ||∇g|| =
√

42 + 22 + 12 =
√

21 and |∇g · k| = 1.

◦ Since the function involves z, we must use the implicit relation to eliminate it. In this case, z = 1−4x−2y,
so f(x, y, z) = xz = x− 4x2 − 2xy.

◦ The desired integral is therefore
´ 1
0

´ 1
0

(x− 4x2 − 2xy) ·
√

21 dy dx =
´ 1
0

(−4x2)
√

21 dx = −4

3

√
21 .

• To compute surface area, we can simply integrate the function 1 on the surface, in exactly the same way that
integrating 1 on a plane region gives its area or integrating 1 on a solid region gives its volume.

• Example: Find the area of the portion of the surface z = 2− x2 − y2 that lies above the xy-plane.

◦ We can rewrite the equation of the surface �implicitly� as x2 + y2 + z − 2 = 0, so we use the implicit
surface formula.

◦ The projection of the surface into the xy-plane is the region R on which 2 − x2 − y2 ≥ 0, which is the
same as x2 + y2 ≤ 2, and this describes the disc of radius

√
2 centered at the origin. Since this surface

is explicit we do not need to worry about having a vertical tangent plane.

◦ We have ∇g = 〈2x, 2y, 1〉 so ||∇g|| =
√

4x2 + 4y2 + 1 and |∇g · k| = 1. The desired integral is therefore˜
R

√
4x2 + 4y2 + 1 dy dx, since to calculate surface area we simply integrate the function 1.

◦ To evaluate this integral, we change to polar coordinates, since both the region and the function to be
integrated will become simpler: the region is 0 ≤ r ≤

√
2, 0 ≤ θ ≤ 2π, and the function is

√
4r2 + 1.

◦ Since the area di�erential in polar is r dr dθ, we obtain the polar integral
´ 2π
0

´√2

0

√
4r2 + 1 r dr dθ.

◦ To evaluate this new integral, we make (another) substitution u = 4r2 + 1, with du = 8r dr:

ˆ 2π

0

ˆ √2

0

√
4r2 + 1 r dr dθ =

ˆ 2π

0

ˆ 9

1

1

8

√
u du dθ =

ˆ 2π

0

1

8

(
2

3
u3/2

) ∣∣∣9
u=1

dθ =

ˆ 2π

0

26

12
dθ =

13π

3
.

◦ Remark: Alternatively, we could have parametrized this surface using cylindrical coordinates, as x =
s cos(t), y = s sin(t), z = 2 − s2 for 0 ≤ s ≤

√
2, 0 ≤ t ≤ 2π. This would have led us directly to the

integral that showed up at the end (with s and t in place of r and θ).
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• To �nd the average value of a function on a surface, we integrate the function on the surface and then divide
by the surface area.

• Example: Find the average value of f(x, y, z) = z on the surface S given by the portion of the cone z =√
x2 + y2 that lies inside the cylinder x2 + y2 = 4.

◦ By using cylindrical coordinates we see that we can parametrize this portion of the cone as x = s cos(t),
y = s sin(t), z = s, for 0 ≤ s ≤ 2 and 0 ≤ t ≤ 2π.

◦ We then have r(s, t) = 〈s cos(t), s sin(t), s〉, so dr

ds
= 〈cos(t), sin(t), 1〉 and dr

dt
= 〈−s sin(t), s cos(t), 0〉.

◦ Then
∂r

∂s
× ∂r

∂t
=

∣∣∣∣∣∣
i j k

cos(t) sin(t) 1
−s sin(t) s cos(t) 0

∣∣∣∣∣∣ = 〈−s cos(t), s sin(t), s〉, so the magnitude is given by∣∣∣∣∣∣∣∣∂r∂s × ∂r

∂t

∣∣∣∣∣∣∣∣ =
√
s2 cos2(t) + s2 sin2(t) + s2 = s

√
2.

◦ We also have f(x, y, z) = z = s. So
˜
S
z dσ =

´ 2π
0

´ 2
0
s · s
√

2 ds dt =
´ 2π
0

8

3

√
2 dt =

16π
√

2

3
.

◦ Also, the surface area is
˜
S

1 dσ =
´ 2π
0

´ 2
0
s
√

2 ds dt =
´ 2π
0

2
√

2 dt = 4π
√

2.

◦ Thus, the average value is
1

Area

˜
S
z dσ =

16π
√

2/3

4π
√

2
=

4

3
.

• Like with double, triple, and line integrals, we have mass and moment formulas for surface integrals:

• Center of Mass and Moment Formulas (Thin Surface): Given a surface S of variable density δ(x, y, z) in 3-
space:

◦ The total mass M is given by M =
˜
S
δ(x, y, z) dσ.

◦ The x-moment Myz is given by Myz =
˜
S
x δ(x, y, z) dσ.

◦ The y-moment Mxz is given by Mxz =
˜
S
y δ(x, y, z) dσ.

◦ The z-moment Mxy is given by Mxy =
˜
S
z δ(x, y, z) dσ.

◦ The center of mass (x̄, ȳ, z̄) has coordinates

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

• Example: A hill is shaped like the portion of the paraboloid z = 4− x2 − y2 with z ≥ 0, with all coordinates
measured in meters. Snow accumulates on the hill such that the density is

√
17− 4z grams per square meter

at height z. Find the total amount of snow on the hill.

◦ We are given the density of snow and want to compute the total mass, which (per the above) is given by
the integral

˜
S

√
17− 4z dσ where S is the surface representing the hill.

◦ By using cylindrical coordinates, we can parametrize the hill as r(r, θ) =
〈
r cos(θ), r sin(θ), 4− r2

〉
, so

∂r

∂r
= 〈cos(θ), sin(θ), −2r〉 and ∂r

∂θ
= 〈−r sin(θ), r cos(θ), 0〉.

◦ Then
∂r

∂r
×∂r
∂θ

=

∣∣∣∣∣∣
i j k

cos(θ) sin(θ) −2r
−r sin(θ) r cos(θ) 0

∣∣∣∣∣∣ =
〈
2r2 cos(θ), 2r2 sin(θ), r

〉
, so

∣∣∣∣∣∣∣∣∂r∂r × ∂r

∂θ

∣∣∣∣∣∣∣∣ =
√

4r4 + r2 =

r
√

4r2 + 1.

◦ We also have f(x, y, z) =
√

17− 4(4− r2) =
√

4r2 + 1.

◦ Hence the integral becomes
´ 2π
0

´ 2
0

√
4r2 + 1 ·r

√
4r2 + 1 dr dθ =

´ 2π
0

´ 2
0

(r+4r3) dr dθ =
´ 2π
0

18 dθ = 36π.

◦ Thus, there are 36π g of snow on the hill.
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4.3 Vector Fields, Work, Circulation, Flux

• De�nition: A vector �eld in the plane is a function F(x, y) = 〈P (x, y), Q(x, y)〉 that associates a vector to
each point in the plane. A vector �eld in 3-space is a function F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉
that associates a vector to each point in 3-space.

◦ One vector �eld we have already encountered is the vector �eld associated to the gradient of a function
f(x, y) or f(x, y, z): for example, if f(x, y) = x2 + xy, then ∇f(x, y) = 〈2x+ y, x〉.

• To represent a vector �eld visually, we choose some (nice) collection of points (generally in a grid) and draw the
vectors corresponding to those points as arrows pointing in the appropriate direction and with the appropriate
length.

◦ Example: The three vector �elds F(x, y) = 〈x, y〉, G(x, y) = 〈−y, x〉, and H(x, y) =
〈
x+ y2, 2− 2xy

〉
are plotted below on the region with −2 ≤ x ≤ 2, −2 ≤ y ≤ 2:

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

◦ We can also produce these plots for 3-dimensional vector �elds, but the diagrams tend to be quite
cluttered; here is such a diagram for F(x, y, z) = 〈x, z − y, x+ y〉:

• We can think of a vector �eld as describing the �ow of an incompressible �uid through space: the vector
F(x, y) at any point (x, y) gives the direction and velocity of the �uid's �ow there.

• In this context, if we have a particle that travels along some given path r(t) through the �uid, we might like
to know how much work the �uid does on the particle, or (essentially equivalently) how much the �uid is
pushing the particle along its path. This is the central idea behind work integrals and circulation integrals.

◦ Intuitively, we see that the more the vector �eld F aligns with the tangent vector T to the particle's
path, the more work it does.

◦ In the picture, a particle moving counterclockwise around the circle will be pushed along its path by the
vector �eld:

-2 -1 0 1 2

-2

-1

0

1

2
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• Alternatively, if we have a particle traveling along a path, we could also ask: how much is the �uid pushing
the particle o� of the path? This is the central idea behind a �ux integral.

◦ Another way of thinking about this is to imagine the path as being a thin membrane, and asking how
much �uid is passing across the membrane.

◦ Here, we see that more �uid is �owing across the membrane if the vector �eld F aligns with the normal
vector N to the particle's path:

-2 -1 0 1 2

-2

-1

0

1

2

• We can also formulate these ideas in 3-dimensional space: the ideas of circulation and work remain the same,
but the notion of �ux requires a surface for the �uid to �ow across.

4.3.1 Circulation and Work Integrals

• To compute the circulation of a vector �eld along a curve, we want to integrate the quantity measuring how
much the vector �eld is aligning with the path of motion along the curve.

• De�nition: The (counterclockwise) circulation (or �ow) of the vector �eld F along the curve C is de�ned to
be
´
C
F ·T ds, where T is the unit tangent to the curve.

◦ What this says is: the circulation is given by integrating the dot product function f(t) = F(x(t), y(t)) ·
T(t) along the curve C. In order to evaluate the integral as written, we would need to parametrize C,
�nd the unit tangent vector T(t) to the curve, and then integrate the dot product F(x(t), y(t)) · T(t)
along the curve.

◦ We would like to see if there is a simpler way, so let us suppose that F(x, y) = 〈P,Q〉, where P and Q
are functions of x and y, and say C is parametrized by r(t) = 〈x(t), y(t)〉 from t = a to t = b.

◦ Then T(t) =
v(t)

||v(t)||
=

〈
dx

dt
,
dy

dt

〉
||v(t)||

, so F ·T =

〈P, Q〉 ·
〈
dx

dt
,
dy

dt

〉
||v(t)||

=
P
dx

dt
+Q

dy

dt
||v(t)||

.

◦ We can then write
´
C
F ·T ds =

´ b
a

P
dx

dt
+Q

dy

dt
||v(t)||

· ||v(t)|| dt =
´ b
a

[
P
dx

dt
+Q

dy

dt

]
dt.

◦ Thus, the circulation integral can be written more explicitly as
´ b
a

[
P
dx

dt
+Q

dy

dt

]
dt, where P,Q have

been rewritten as functions of t. Note that this expression is also equal to
´
C
P dx+Qdy.

◦ We can also pose essentially the same de�nition for a curve in 3-space, and we obtain an analogous

formula: if F = 〈P,Q,R〉, then the circulation can be computed as
´ b
a

[
P
dx

dt
+Q

dy

dt
+R

dz

dt

]
dt.

◦ Terminology Note: Some authors reserve the term �circulation� for closed curves, and use ��ow� to refer
to the general case. This terminology can be somewhat confusing given that there is also a ��ux� integral,
and the words ��ux� and ��ow� (in non-technical settings) are synonyms.

• Example: Find the circulation of the vector �eld G(x, y) = 〈−y, x〉 around a path that winds once counter-
clockwise around the unit circle.

◦ We can parametrize the path as x = cos t, y = sin t for 0 ≤ t ≤ 2π.

◦ Thus, P = −y = − sin t and Q = x = cos t, and also
dx

dt
= − sin t and

dy

dt
= cos t.
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◦ So, the circulation is
´ b
a

(
P
dx

dt
+Q

dy

dt

)
dt =

´ 2π
0

((− sin t)(− sin t) + (cos t)(cos t)) dt =
´ 2π
0

1 dt = 2π .

• Example: Find the circulation of the vector �eld F(x, y, z) = 〈2xy, xz, y〉 along the line segment from (0, 1, 0)
to (2, 2, 2).

◦ We can parametrize the path as x = 2t, y = 1 + t, z = 2t for 0 ≤ t ≤ 1.

◦ Thus, P = 2xy = 4t+ 4t2, Q = xy = 4t2, and R = 1 + t.

◦ So, the circulation is
´ b
a

(
P
dx

dt
+Q

dy

dt
+R

dz

dt

)
dt =

´ 1
0

[(4t+ 4t2) · 2 + 4t2 · 1 + (1 + t) · 2] dt =
´ 1
0

(2 +

10t+ 12t2) dt = 11 .

• We can also pose a similar de�nition for the work done by a vector �eld on a particle:

• De�nition: The work performed on a particle by a vector �eld F as the particle travels along a curve C is´
C
F · dr =

´
C
F ·T ds.

◦ Note that the work integral has the same form as the circulation integral.

◦ Notation: The �vector di�erential� dr is de�ned as dr = 〈dx, dy〉 in the plane and as dr = 〈dx, dy, dz〉
in 3-space.

◦ Then F · dr = P dx+Qdy, so the work integral is
´
C
F · dr =

´
C
P dx+Qdy =

´ b
a

[
P
dx

dt
+Q

dy

dt

]
dt in

the plane, or as
´
C
F · dr =

´
C
P dx+Qdy +Rdz =

´ b
a

[
P
dx

dt
+Q

dy

dt
+R

dz

dt

]
dt in 3-space.

• Example: Find the work done by the vector �eld F(x, y, z) = 〈2x+ z, yz, xy〉 on a particle traveling along
the path r(t) =

〈
t, t2, 2t

〉
from t = 0 to t = 1.

◦ We have P = 2x+ z = 3t, Q = yz = 2t3, and R = xy = t3. Also,
dx

dt
= 1,

dy

dt
= 2t, and

dz

dt
= 2.

◦ Therefore, the work is
´ b
a

(
P
dx

dt
+Q

dy

dt
+R

dz

dt

)
dt =

´ 1
0

[
(3t)(1) + (2t3)(2t) + (t3)(2)

]
dt =

´ 1
0

(3t +

4t4 + 2t3) =
14

5
.

4.3.2 Flux Across a Curve

• To compute the �ux of a vector �eld across a curve, we want to integrate the quantity measuring how much
the vector �eld is moving in the direction perpendicular to the curve.

• De�nition: The �ux of the vector �eld F across the curve C is
´
C
F ·N ds, where N is the unit normal to the

curve.

◦ As with the circulation integral, we would like an easier way to evaluate the �ux integral.

◦ If F(x, y) = 〈P,Q〉 and C is parametrized by r(t) = 〈x(t), y(t)〉 from t = a to t = b, after some algebra

we can calculate that N(t) =
1

||v(t)||

〈
dy

dt
, −dx

dt

〉
. (At the very least, it is easy to observe that this is a

unit vector that is orthogonal to T.)

◦ Then F ·N =

〈P, Q〉 ·
〈
dy

dt
, −dx

dt

〉
||v(t)||

=
P
dy

dt
−Q dx

dt
||v(t)||

.

◦ Plugging this in gives
´
C
F ·N ds =

´ b
a

P
dy

dt
−Q dx

dt
||v(t)||

· ||v(t)|| dt =
´ b
a

[
P
dy

dt
−Q dx

dt

]
dt.

◦ Thus, the �ux integral can be written more explicitly as
´
C
P dy −Qdx =

´ b
a

[
P
dy

dt
−Q dx

dt

]
dt.

14



◦ Note: The �ux integral as de�ned here only makes sense for curves in the plane. In 3-dimensional space,
the corresponding notion requires a surface integral, since a �membrane� will be a surface, rather than a
curve.

• Example: Find the �ux of the vector �eld G(x, y) = 〈x, y〉 across a path that winds once counterclockwise
around the unit circle.

◦ We can parametrize the path as x = cos t, y = sin t for 0 ≤ t ≤ 2π.

◦ Thus, P = x = cos t and Q = y = sin t, and also
dx

dt
= − sin t and

dy

dt
= cos t.

◦ So Flux =
´ b
a

(
P
dy

dt
−Q dx

dt

)
dt =

´ 2π
0

((cos t)(cos t)− (sin t)(− sin t)) dt =
´ 2π
0

1 dt = 2π .

• Example: For the vector �eld F(x, y) = 〈2x+ y, 2y − x〉, �nd the �ux across, and circulation along, the
portion of the curve r(t) =

〈
t, t2

〉
between (0, 0) and (2, 4).

◦ Here is a plot of the vector �eld, along with the curve:

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

◦ From the picture, we would expect the circulation and �ux to be roughly equal, since the vector �eld
makes roughly a 45-degree angle with the path near the end.

◦ The parametrization given says x = t and y = t2, so that P = 2x+ y = 2t+ t2 and Q = 2y−x = 2t2− t.
Also, the start is t = 0 and the end is t = 2.

◦ Then the circulation is
´
C
F · T ds =

´ b
a

(
P
dx

dt
+Q

dy

dt

)
dt =

´ 2
0

(
(2t+ t2) · 1 + (2t2 − t) · 2t

)
dt =

´ 2
0

(
4t3 − t2 + 2t

)
dt = (t4 − 1

3
t3 + t2)

∣∣∣2
t=0

=
52

3
.

◦ The �ux is
´
C
F·N ds =

´ b
a

(
P
dy

dt
−Q dx

dt

)
dt =

ˆ 2

0

(
(2t+ t2) · 2t− (2t2 − t) · 1

)
dt =

ˆ 2

0

(
2t3 + 2t2 + 2t

)
dt =

(
1

2
t4 +

2

3
t3 + t2)

∣∣∣2
t=0

=
52

3
.

◦ Indeed, we see that the �ux and circulation are roughly (and exactly) equal.

4.3.3 Flux Across a Surface

• In 3-space, the notion of circulation along a curve remains essentially the same as in the plane. However, in
order to make sense of �ux in 3-space, we must instead talk about �ux through a surface rather than through
a curve. This requires us to use a surface integral to measure how much the vector �eld is �owing across the
surface:

• De�nition: The (normal) �ux of the vector �eld F across the surface S is
˜
S
F ·n dσ, where n is the outward

unit normal to the surface.

◦ Remark: The integral
˜
S
F ·n dσ computes the �ux through the surface in the direction of the �outward

normal�. It is also possible to ask about �ux in the direction of a particular unit vector u; the integral in
that case is

˜
S
F · u dσ, instead. In general, when it is not speci�ed what type of �ux integral is meant,

the ��ux in the direction of the outward normal� is intended.
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◦ Recall that the normal vector to a surface is orthogonal to the tangent plane (it is in fact the normal
vector to the tangent plane as we de�ned it earlier). When speaking of a unit normal to a surface we
will use a lowercase n, to keep the notation di�erent from the unit normal N to a curve (which is an
uppercase N).

◦ If S is an implicit surface g(x, y, z) = c, then a normal vector is given by the gradient ∇g, so we get a
unit normal vector n = ∇g/ ||∇g||.
◦ If S is parametrized by r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉, then a normal vector is given by the cross

product
∂r

∂s
× ∂r

∂t
, so we get a unit normal vector n =

(
∂r

∂s
× ∂r

∂t

)/∣∣∣∣∣∣∣∣∂r∂s × ∂r

∂t

∣∣∣∣∣∣∣∣ .
◦ Important Warning: If we scale the implicit equation by −1, or write the factors of the cross product
in the opposite order, the resulting normal vector n is multiplied by −1. To remedy this ambiguity, we
must always specify which of these two possible orientations of the normal vector we intend. You should
always check to ensure that the normal vector is pointing in the correct direction: typical conventions
are for it to be pointing �outward� or �upward�.

• By plugging these expressions into the surface integral formula, we obtain explicit formulas for the outward
normal �ux across a surface S:

◦ If S is parametrized by r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉, then the outward normal �ux across S is equal

to
˜
S
F ·
(
∂r

∂s
× ∂r

∂t

)
ds dt, provided that

∂r

∂s
× ∂r
∂t

is the outward-pointing normal vector to the surface.

(Conveniently, the unpleasant part of the surface-area di�erential cancels out the normalization in the
unit normal vector.)

◦ If S is de�ned implicitly by f(x, y, z) = c and R is the projection of S in the xy-plane, then the outward

normal �ux across S is equal to
˜
R

F · ∇g
|∇g · k|

dy dx. Note here that the denominator term ∇g ·k is simply

the partial derivative gz.

◦ Depending on the description of the surface, either of these particular approaches (via a parametrization
or as an implicit surface) may be more convenient for computing a �ux integral.

• Example: Find the outward �ux of the vector �eld F =
〈
xz2, yz2, x3ey

〉
through the portion of the cylinder

x2 + y2 = 4 that lies between the planes z = −1 and z = 1.

◦ From cylindrical coordinates, we can parametrize the cylinder as r(s, t) = 〈2 cos t, 2 sin t, s〉, where the
desired portion corresponds to −1 ≤ s ≤ 1 and 0 ≤ t ≤ 2π.

◦ Then
∂r

∂t
= 〈−2 sin t, 2 cos t, 0〉 and ∂r

∂s
= 〈0, 0, 1〉, so ∂r

∂t
×∂r
∂s

=

∣∣∣∣∣∣
i j k

−2 sin t 2 cos t 0
0 0 1

∣∣∣∣∣∣ = 〈2 cos t, 2 sin t, 0〉.

◦ This is indeed an outward-pointing normal vector since it is the vector pointing from (0, 0, s) to the point
r(s, t) = (2 cos t, 2 sin t, s) on the surface.

◦ Then F ·
(
∂r

∂t
× ∂r

∂s

)
=
〈
2s2 cos t, 2s2 sin t, (2 cos t)3e2 sin t

〉
· 〈2 cos t, 2 sin t, 0〉 = 4s2 cos2 t + 4s2 sin2 t =

4s2.

◦ The �ux integral is thus
´ 2π
0

´ 1
−1 4s2 ds dt =

´ 2π
0

8

3
dt =

16π

3
.

• Example: Find the outward �ux of the vector �eld F = 〈x− z, y, x+ z〉 through the portion of the sphere
x2 + y2 + z2 = 4 that lies above the plane z = 1.

◦ We use the formula for �ux across an implicit surface.

◦ On the sphere, z = 1 corresponds to x2 + y2 = 3, and as z increases to 2, the value of x2 + y2 decreases
to 0. Thus the projection of the surface into the xy-plane is the region R : x2 + y2 ≤ 3.

◦ We have ∇g = 〈2x, 2y, 2z〉, so F · ∇g
|∇g · k|

=
2x2 − 2xz + 2y2 + 2xz + 2z2

2z
=

4√
4− x2 − y2

.
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◦ The �ux integral is therefore given by
˜
R

4√
4− x2 − y2

dy dx. We will evaluate this integral using polar

coordinates.

◦ In polar coordinates, the region is 0 ≤ r ≤
√

3 and 0 ≤ θ ≤ 2π, so the integral is
´ 2π
0

´√3

0

4√
4− r2

r dr dθ.

◦ Substituting u = 4 − r2 in the inner integral gives
´ 2π
0

´√3

0

4√
4− r2

r dr dθ =
´ 2π
0

´ 0
1
− 2√

u
du dθ =

´ 2π
0

4 dθ = 8π .

◦ Alternatively, we could have observed that for a sphere of radius ρ centered at the origin, the outward

unit normal vector is n =
1

ρ
〈x, y, z〉.

◦ The desired integral is therefore
˜
S

1

2
〈x, y, z〉 · 〈x− z, y, x+ z〉 dσ =

˜
S

1

2
(x2 + y2 + z2) dσ =

˜
S

2 dσ.

◦ This is twice the surface area of S, which we could compute (using a simpler surface integral) to be 4π,

meaning that the desired �ux is again 8π .

• Example: Find the outward �ux of the vector �eld F = 〈x, y, z〉 through the sphere x2 + y2 + z2 = 9.

◦ Using spherical coordinates, we can parametrize the sphere as r(s, t) = 〈3 sin s cos t, 3 sin s sin t, 3 cos s〉
for 0 ≤ s ≤ π and 0 ≤ t ≤ 2π.

◦ Then
∂r

∂t
= 〈−3 sin s sin t, 3 sin s cos t, 0〉 and ∂r

∂s
= 〈3 cos s cos t, 3 cos s sin t,−3 sin s〉, so ∂r

∂t
× ∂r

∂s
=∣∣∣∣∣∣

i j k
−3 sin s sin t 3 sin s cos t 0
3 cos s cos t 3 cos s sin t −3 sin s

∣∣∣∣∣∣ =
〈
−9 sin2 s cos t,−9 sin2 s sin t,−9 sin s cos s

〉
.

◦ This is not an outward-pointing normal vector, since it is −3 sin s times the position vector r(s, t), so we
must scale it by −1.

◦ Then F·−
(
∂r

∂t
× ∂r

∂s

)
= 〈3 sin s cos t, 3 sin s sin t, 3 cos s〉·

〈
9 sin2 s cos t, 9 sin2 s sin t, 9 sin s cos s

〉
= 27 sin3 s cos2 t+

27 sin3 s sin2 t+ 27 sin s cos2 s = 27 sin s.

◦ The �ux integral is thus
´ 2π
0

´ π
0

27 sin s ds dt =
´ 2π
0

54 dt = 108π .

4.4 Conservative Vector Fields, Path-Independence, and Potential Functions

• If we have a vector �eld F(x, y) and two di�erent paths C1 and C2 between the same two points, we might
wonder if there is any relation between the work integrals

´
C1

F · dr and
´
C2

F · dr.

• Example: For the �elds F(x, y) = 〈y, x〉 and G(x, y) =
〈
y2, x

〉
evaluate the work integrals from (0, 0) to (1, 1)

along the the three di�erent paths C1 : (x, y) = (t, t), C2 : (x, y) = (t3, t2), and C3 : (x, y) = (t7, t10), for
0 ≤ t ≤ 1.

◦ Along C1 we have F = 〈t, t〉, G =
〈
t2, t

〉
,
dx

dt
= 1, and

dy

dt
= 1.

◦ Then
´
C1

F · dr =
´ 1
0

[t · 1 + t · 1] dt = 1 , and
´
C1

G · dr =
´ 1
0

[
t2 · 1 + t · 1

]
dt =

5

6
.

◦ Along C2 we have F =
〈
t2, t3

〉
, G =

〈
t4, t3

〉
,
dx

dt
= 3t2, and

dy

dt
= 2t.

◦ Then
´
C2

F · dr =
´ 1
0

[
t2 · 3t2 + t3 · 2t

]
dt = 1 , and

´
C2

G · dr =
´ 1
0

[
t4 · 3t2 + t3 · 2t

]
dt =

29

35
.

◦ Along C3 we have F =
〈
t10, t7

〉
, G =

〈
t20, t7

〉
,
dx

dt
= 7t6, and

dy

dt
= 10t9.

◦ Then
´
C3

F · dr =
´ 1
0

[
t10 · 7t6 + t7 · 10t9

]
dt = 1 , and

´
C3

G · dr =
´ 1
0

[
t30 · 7t6 + t7 · 10t9

]
dt =

389

459
.
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◦ Observe that for F, all three paths give the same value, while for G, each path gives a di�erent value.

• We would like to understand what about F in the example above seems to cause it to do the same amount of
work regardless of the path we chose.

• De�nition: A vector �eld F is conservative on a region R if, for any two paths C1 and C2 (inside R) from P1

to P2, it is true that
´
C1

F · dr =
´
C2

F · dr. In other words, F is conservative if any two paths yield the same
work integral.

◦ Equivalent to the above de�nition is the following: F is conservative on a region R if, for any closed
curve C in R,

¸
C
F · dr = 0. (A closed curve is one whose start and end points are the same.)

◦ Notation: For a line integral around a closed curve, we often use the notation
¸
C
, the circle being a

suggestive example of a closed curve.

◦ These two statements are equivalent because, if C1 and C2 are two paths from P1 to P2, then we can
construct a closed path C by following C1 from P1 to P2 and then following C2 from P2 back to P1.
Then

´
C
F · dr =

´
C1

F · dr−
´
C2

F · dr, and so the left-hand side is zero if and only if the right-hand side
is zero.

• It turns out that we can give a simple but very useful criterion for when a vector �eld is conservative:

• Theorem (Fundamental Theorem of Calculus for Line Integrals): The vector �eld F is conservative on a
simply-connected region R if and only if there exists a function U , called a potential function for F, such that

F = ∇U . If such a function U exists, then
´ b
a
F · dr = U(b)− U(a) along any path from a to b.

◦ Notice the similarity of the statement
´ b
a
F · dr = U(b)−U(a) to the Fundamental Theorem of Calculus,

which relates the integral of a derivative of a function to its values at the endpoints of a path.

◦ Technical Note: The term �simply-connected� is a technical requirement needed for the proof of the
theorem: intuitively, a simply-connected region consists of a single piece that does not have any �holes�
in it. More rigorously, it means that the region is connected (contains only one �piece�) and that if we
take any closed loop in the region, we can shrink it to a point without leaving the region. The disc
x2 + y2 ≤ 4 is simply-connected, whereas the annulus 1 ≤ x2 + y2 ≤ 4 is not.

◦ The full proof is not especially enlightening. We will instead show one direction of the proof.

◦ Proof (Reverse Direction in 3-Space): Suppose that F = ∇U =

〈
∂U

∂x
,
∂U

∂y
,
∂U

∂z

〉
.

◦ By the (multivariable) Chain Rule, if C is the path with x = x(t), y = y(t), and z = z(t) for a ≤ t ≤ b,

then
dU

dt
=
∂U

∂x
· dx
dt

+
∂U

∂y
· dy
dt

+
∂U

∂z
· dz
dt
.

◦ Now we can write

ˆ
C

F · dr =

ˆ b

a

〈
∂U

∂x
,
∂U

∂y
,
∂U

∂z

〉
·
〈
dx

dt
,
dy

dt
,
dz

dt

〉
dt

=

ˆ b

a

[
∂U

∂x
· dx
dt

+
∂U

∂y
· dy
dt

+
∂U

∂z
· dz
dt

]
dt

=

ˆ b

a

[
dU

dt

]
dt = U(r(b))− U(r(a))

where we used the Fundamental Theorem of Calculus for the last step.

◦ Notice that this expression does not depend on C: it only involves the potential function U and the two
endpoints r(b) and r(a). Hence we see that the integral is independent of the path, so F is conservative.

• If we can see that a vector �eld is conservative, then it is very easy to compute work integrals: we just need
to �nd a potential function for the vector �eld.

• Example: Find the work done by the vector �eld F(x, y) = 〈2x+ y, x〉 on a particle traveling along the path
r(t) =

〈
−2 cos(πet), tan−1(t)

〉
from t = 0 to t = 1.
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◦ If we try to set up the integral directly using the parametrization, it will be rather unpleasant.

◦ However, this vector �eld is conservative: it is not hard to see that for U(x, y) = x2 + xy, we have
∇U = 〈2x+ y, x〉 = F.

◦ By the Fundamental Theorem of Calculus for line integrals, the work done by the vector �eld is then
simply the value of U(r(1))− U(r(0)).

◦ Since r(1) = 〈2, π/4〉 and r(0) = 〈−2, 0〉, the work is U(2, π/4)− U(−2, 0) =
π

2
.

• We would like to be able to determine easily whether a given vector �eld is conservative. To do this, we
require a preliminary de�nition:

• De�nition: If F = 〈P,Q,R〉 then the curl of F is de�ned to be the vector �eld curl F = ∇ × F =∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
P Q R

∣∣∣∣∣∣ =

〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉
= 〈Ry −Qz, Pz −Rx, Qx − Py〉.

◦ Example: If F =
〈
3x2y, xyz, exy

〉
then curl F = ∇× F =

〈
xexy − xy, −yexy, yz − 3x2

〉
.

◦ If F = 〈P,Q〉 is a vector �eld in the plane then we de�ne the curl of F to be the curl of the vector �eld

〈P,Q, 0〉: namely,

〈
0, 0,

∂Q

∂x
− ∂P

∂y

〉
.

◦ Since this vector only has one nonzero component, some authors de�ne the curl of a vector �eld in the

plane to be the scalar quantity
∂Q

∂x
− ∂P

∂y
. We will not do this: for us, the curl of a vector �eld will

always be a new vector �eld.

• The curl of a vector �eld determines whether or not it is conservative:

• Theorem (Zero Curl Implies Conservative): A vector �eld on a simply-connected region in the plane or in
3-space is conservative if and only if its curl is zero. More explicitly, the vector �eld F = 〈P,Q〉 is conservative
on a simply-connected region R in the plane if and only if Py = Qx, and the vector �eld F = 〈P,Q,R〉 is
conservative on a simply-connected region D in 3-space if and only if Py = Qx, Pz = Rx, and Qz = Ry.

◦ It is fairly easy to see why we need the equality of the derivatives of the components: if F = 〈P,Q〉 = ∇U
then P = Ux and Q = Uy, so by the equality of mixed partial derivatives, we see that Py = Uxy = Uyx =
Qx.

◦ The three necessary equalities when F = 〈P,Q,R〉 follow in the same way: if F = ∇U then P = Ux,
Q = Uy, and R = Uz, so Py = Uxy = Uyx = Qx, Pz = Uxz = Uzx = Rx, and Qz = Uyz = Uzy = Ry.

◦ The converse statement (that zero curl implies the �eld is conservative) is more di�cult, and we omit
the veri�cation.

• The two theorems give us an e�ective procedure for determining whether a �eld is conservative: we �rst check
whether its curl is zero, and then (if it is) we can try to �nd a potential function by computing antiderivatives.

• Example: Determine whether F(x, y) =
〈
x2 + y, x+ y2

〉
is conservative, and if so, �nd a potential function.

◦ For F, we see
∂

∂y

[
x2 + y

]
= 1 =

∂

∂x

[
x+ y2

]
, so the �eld is conservative .

◦ To �nd a potential function U with ∇U = F, we need to �nd U such that Ux = x2 + y and Uy = x+ y2.

◦ Taking the antiderivative of Ux = x2 +y with respect to x yields U =
1

3
x3 +xy+f(y), for some function

f(y).

◦ To �nd f(y) we di�erentiate: Uy = x + f ′(y), so we get f ′(y) = y2 so f(y) =
1

3
y3. (Plus an arbitrary

constant, but we can ignore it.)

◦ Thus we see that a potential function for F is U(x, y) =
1

3
x3 + xy +

1

3
y3 .
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• Example: Determine whether G(x, y) =
〈
x+ y2, x2 + y

〉
is conservative, and if so, �nd a potential function.

◦ For G, we see
∂

∂y

[
x+ y2

]
= 2y 6= 2x =

∂

∂x

[
x2 + y

]
, so the �eld is not conservative .

• Example: Determine whether H(x, y, z) = 〈y + 2z, x+ 3z, 2x+ 3y〉 is conservative, and if so, �nd a potential
function.

◦ For H, we have
∂

∂y
[y + 2z] = 1 =

∂

∂x
[x+ 3z],

∂

∂z
[y + 2z] = 2 =

∂

∂x
[2x+ 3y], and

∂

∂z
[x+ 3z] = 3 =

∂

∂y
[2x+ 3y], so the �eld is conservative .

◦ To �nd a potential function U with ∇U = H, we need to �nd U such that Ux = y + 2z, Uy = x + 3z,
and Uz = 2x+ 3y.

◦ Taking the antiderivative of Ux = y + 2z with respect to x yields U = xy + 2xz + f(y, z), for some
function f(y, z).

◦ To �nd f(y, z) we di�erentiate: x+fy = x+3z and 2x+fz = 2x+3y, so fy = 3z and fz = 3y. Repeating
the process yields f = 3yz + g(z), where g′(z) = 0.

◦ Thus we see that a potential function for H is U(x, y, z) = xy + 2xz + 3yz .

• If we can �nd a potential function for a conservative vector �eld, then (as we saw above) we can use it to
compute work integrals.

• Example: If F =
〈
x3 + 4x3 sin y sin z + y2z, 2xyz + y + x4 cos y sin z, z3 + x4 sin y cos z + xy2

〉
, �nd the work

done by F on a particle that travels along the curve C : r(t) =
〈
sin(πt), t

√
t+ 3, 2t3 + 2

〉
for 0 ≤ t ≤ 1.

◦ In theory we could compute the work integral using the parametrization of the path, but this seems quite
unpleasant. Instead, we will check whether this vector �eld is conservative: then determining the answer
only requires us to �nd the potential function of the �eld.

◦ We have Py = 4x3 cos y sin z + 2yz and Qx = 2yz + 4x3 cos y sin z so they are equal.

◦ We have Pz = 4x3 sin y cos z + y2 and Rx = 4x3 sin y cos z + y2 so they are also equal.

◦ Finally we have Qz = 2xy+x4 cos y cos z and Ry = 4x3 cos y cos z+2xy, and these are also equal. Thus,
the �eld is conservative.

◦ To �nd a potential function U with F = ∇U = 〈Ux, Uy, Uz〉:
∗ We know Ux = x3 + 4x3 sin y sin z + y2z so taking the antiderivative with respect to x yields U =

1

4
x4 + x4 sin y sin z + xy2z + C(y, z).

∗ We then see Uy = x4 cos y sin z + 2xyz + Cy(y, z) must equal 2xyz + y + x4 cos y sin z so we see

Cy = y. Then taking the antiderivative with respect to y yields C(y, z) =
1

2
y2 +D(z).

∗ We now have U =
1

4
x4 + x4 sin y sin z + xy2z +

1

2
y2 +D(z). Then Uz = x4 sin y cos z + xy2 +D′(z)

must equal z3 + x4 sin y cos z + xy2 so we see D′(z) = z3 so we can take D(z) =
1

4
z4.

◦ We conclude that a potential function for F is U(x, y, z) =
1

4
x4 + x4 sin y sin z + xy2z +

1

2
y2 +

1

4
z4.

◦ Then the desired work integral is equal to U(0, 2, 4)− U(0, 0, 2) = 62 .

4.5 Green's Theorem

• Green's Theorem is a 2-dimensional version of the Fundamental Theorem of Calculus that relates a line
integral of a function around a closed curve C to the double integral of a related function over the region R
that is enclosed by the curve C.
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• Theorem (Green's Theorem): If C is a simple closed recti�able curve oriented counterclockwise, andR is the re-

gion it encloses, then for any di�erentiable functions P (x, y) andQ(x, y),

ˆ
C

P dx+Qdy =

¨
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx.

◦ Here is an example of a curve C and its corresponding region R:

C

◦ Green's Theorem, as noted above, is a generalization of the Fundamental Theorem of Calculus: both
theorems show that the integral of the derivative of a function (in an appropriate sense) on a region can
be computed using only the values of the function on the boundary of the region.

◦ Remark: The hypotheses about the curve (�simple closed recti�able, oriented counterclockwise�) are to
ensure the curve is nice enough for the theorem to hold. �Simple� means that the curve does not cross
itself, �closed� means that its starting point is the same as its ending point (e.g., a circle), �recti�able�
means �piecewise-di�erentiable� (i.e., di�erentiable except at a �nite number of points), and �oriented
counterclockwise� means that C runs around the boundary of R in the counterclockwise direction.

◦ It essentially su�ces to prove Green's Theorem for rectangular regions, as more complicated regions
can be built by �gluing together� simpler ones (in much the manner of a Riemann sum); overlapping
boundary pieces on two rectangles sharing a side will have opposite orientations and will therefore cancel
out.

◦ Proof (rectangular regions): for a rectangular region a ≤ x ≤ b, c ≤ y ≤ d, we have
´
C

=
´
C1

+
´
C2

+
´
C3

+
´
C4
,

where C1, C2, C3, and C4 are the four sides of the rectangle (with the proper orientation), and the func-
tion to be integrated on each curve is P dx+Qdy.

◦ Setting up parametrizations shows
´
C1

[P dx+Qdy] +
´
C3

[P dx+Qdy] =
´ b
a

[P (x, c)− P (x, d)] dx, and´
C2

[P dx+Qdy] +
´
C4

[P dx+Qdy] =
´ d
c

[Q(b, y)−Q(a, y)] dy.

◦ For the double integral we have
˜
R
−∂P
∂y

dy dx =
´ b
a

´ d
c
−∂P
∂y

dy dx =
´ b
a

[P (x, c)− P (x, d)] dx, and

˜
R

∂Q

∂x
dx dy =

´ c
d

´ b
a

∂Q

∂x
dx dy =

´ d
c

[Q(b, y)−Q(a, y)] dy.

◦ By comparing the expressions, we see that
´
C

[P dx+Qdy] =
˜
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx, as desired.

• Green's Theorem can be used to convert line integrals into double integrals, which can often be easier to
evaluate if the curve is complicated but the region it encloses is simpler to describe.

• Example: Evaluate the integral
¸
C

3x2 dx+ 2xy dy, where C is the counterclockwise boundary of the triangle
having vertices (0, 0), (1, 0), and (1, 2).

◦ We will evaluate the integral both as a line integral and using Green's Theorem.

◦ Green's Theorem says that
´
C
P dx + Qdy =

˜
R

(Qx − Py) dy dx, so setting P = 3x2 and Q = 2xy
produces

¸
C

3x2 dx+ 2xy dy =
˜
R

2y dy dx, where R is the interior of the triangle.

◦ To compute the double integral, we need to describe the region R. A quick sketch shows that R is de�ned
by the inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2− 2x.

◦ Thus, the double integral is
´ 1
0

´ 2−2x
0

2y dy dx =
´ 1
0

(y2)
∣∣2−2x
y=0

dx =
´ 1
0

(2− 2x)2 dx =
4

3
.

◦ To compute the line integral, we need to parametrize each piece of the boundary. There are three pieces.

1. The segment from (0, 0) to (1, 0), parametrized by x = t, y = 0 for 0 ≤ t ≤ 1. Then dx = dt and

dy = 0, so the integral here is
´ 1
0

3t2 dt = 1.
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2. The segment from (1, 0) to (1, 2), parametrized by x = 1, y = t for 0 ≤ t ≤ 2. Then dx = 0 and

dy = dt, so the integral here is
´ 2
0

2t dt = 4.

3. The segment from (1, 2) to (0, 0), parametrized by x = 1 − t, y = 2 − 2t for 0 ≤ t ≤ 1. Then

dx = −dt and dy = −2dt, so the integral here is
´ 1
0

[
3(1− t)2 · (−dt) + 2(1− t)(2− 2t) · (−2dt)

]
=´ 1

0
[−11t+ 22t− 11t2] dt = −11

3
.

◦ Thus, the value of the line integral over the entire boundary is the sum of these three, namely 1+4− 11

3
=

4

3
.

◦ As dictated by Green's theorem, we get the same result either way. However, the double integral was
quite a bit less work!

• We can use Green's Theorem to simplify the calculation of circulation and �ux integrals on closed curves.

◦ Speci�cally, we can use the theorem to give expressions for circulation and �ux either as line integrals or
as double integrals over a region.

◦ Depending on the shape of the region and its boundary, and the nature of the �eld F, either the line
integral or the double integral can be easier.

• Theorem (Green's Theorem, Tangential Form): If C is a simple closed recti�able curve oriented counterclock-

wise, and R is the region it encloses, then the circulation around C is equal to

˛
C

F ·T ds =

¨
R

(curlF) · k dA.

◦ Recall that if F = 〈P,Q〉, then curl F = ∇× F =

〈
0, 0,

∂Q

∂x
− ∂P

∂y

〉
and (curl F) · k =

∂Q

∂x
− ∂P

∂y
. The

curl measures how much the vector �eld is rotating around a given point.

◦ Thus, if we write everything out in terms of vector �eld components, the tangential form of Green's

Theorem reads
¸
C
P dx+Qdy =

˜
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx, which is just the statement we gave above.

• Theorem (Green's Theorem, Normal Form): If C is a simple closed recti�able curve oriented counterclockwise,

and R is the region it encloses, then the �ux across C is equal to

˛
C

F ·N ds =

¨
R

(divF) dA.

◦ Here, if F = 〈P,Q〉 then div F = ∇ · F =
∂P

∂x
+
∂Q

∂y
. This is called the divergence of F and measures

how much the vector �eld is pushing inward or outward at the given point.

◦ Explicitly, the normal form of Green's Theorem reads
¸
C
P dy −Qdx =

˜
R

(
∂P

∂x
+
∂Q

∂y

)
dy dx, which

we can recognize as the original statement of Green's Theorem except with −Q in place of P and P in
place of Q.

◦ There is a nice interpretation of the normal form of Green's Theorem: imagine that F is modeling
population movement, and that C is the border of a country taking up the region R. At a city along the
border C, the value F ·N measures the immigration (in or out) to that city from across the border. At
a city inside the country, the value divF measures the net immigration (into or out of) that city.

◦ The normal form of Green's Theorem then says: if we add up the net immigration along the border, this
equals the total population �ow inside the country. (These two quantities are de�nitely equal, since they
both tally the net immigration into the country as a whole.)

• Example: Find the outward �ux through, and the (counterclockwise) circulation around, the square with
vertices (0, 0), (2, 0), (2, 2), and (0, 2), for the vector �eld F(x, y) =

〈
x2 − 2xy, y3 − x

〉
.

◦ We could parametrize the boundary of this region and evaluate the line integrals to �nd the �ux and
circulation. However, this would be very tedious, as it requires computing four line integrals each time
(one for each side of the square). We can save a lot of e�ort by using Green's Theorem, which applies
because the boundary is a closed curve.
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◦ For the �ux, Green's Theorem says that Flux across C =
¸
C
F ·N ds =

˜
R

(
∂P

∂x
+
∂Q

∂y

)
dy dx.

◦ Here, we have P = x2 − 2xy and Q = y3 − x, and the region is 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2.

◦ Therefore, since
∂P

∂x
= 2x− 2y and

∂Q

∂y
= 3y2, the �ux is

ˆ 2

0

ˆ 2

0

(
2x− 2y + 3y2

)
dy dx =

´ 2
0

(
2xy − y2 + y3

) ∣∣∣2
y=0

dx =
´ 2
0

(4x+ 4) dx = 16 .

◦ Green's Theorem also says that Circulation around C =
¸
C
F ·T ds =

˜
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx.

◦ Since
∂Q

∂x
= −1 and

∂P

∂y
= −2x, the circulation is

ˆ 2

0

ˆ 2

0

(−1 + 2x) dy dx =
´ 2
0

(−2 + 4x) dx = 4 .

• Example: For F(x, y) =
〈
−x2y, xy2

〉
, �nd the outward �ux through and the (counterclockwise) circulation

around the circle x2 + y2 = 4.

◦ We apply Green's Theorem: in this case, the region R is the region x2 + y2 ≤ 4.

◦ The �ux is
˜
R

(
∂P

∂x
+
∂Q

∂y

)
dy dx =

˜
R

(−2xy + 2xy) dA =
˜
R

0 dA = 0 .

◦ The circulation is
˜
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx =

˜
R

(y2 + x2) dA =
´ 2π
0

´ 2
0
r2 · r dr dθ = 8π , upon switching

to polar coordinates.

• One of the many applications of Green's Theorem is to give various ways to compute the area of a planar
region using a line integral around its boundary. Speci�cally, if C is the counterclockwise boundary curve of
the region R (and C and R satisfy the hypotheses of Green's Theorem), then

Area of R =

˛
C

x dy =

˛
C

−y dx =

˛
C

1

2
(x dy − y dx)

because by Green's Theorem, each of the line integrals is equal to
˜
R

1 dy dx, which is the area of R.

◦ One physical application of this idea is the construction of planimeters: they are devices used for mea-
suring the area of a region that operate by tracing along its boundary.

◦ The basic principle is that the planimeter measures the amount of movement perpendicular to its measur-
ing arm: integrating the resulting dot product around the boundary of the curve, per Green's theorem,
then yields the area.

• Example: Compute the area enclosed by the ellipse x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

◦ Using the third formula, we compute

A =
¸
C

1

2
(x dy − y dx) =

´ 2π
0

1

2
[(a cos t)(b cos t)− (b sin t)(−a sin t)] dt =

´ 2π
0

ab

2
dt = πab .

4.6 Stokes's Theorem and Gauss's Divergence Theorem

• We now discuss two generalizations of Green's theorem to 3 dimensions: these are Stokes's Theorem and
Gauss's Divergence Theorem.

◦ As with Green's Theorem, these theorems can be used in either direction, depending on which integral
is easier to set up and evaluate.

◦ Indeed, taken together, the Fundamental Theorem of Calculus for line integrals, Green's Theorem,
Stokes's Theorem, and Gauss's Divergence Theorem collectively unify all of our notions of integration,
and are all di�erent generalizations of the Fundamental Theorem of Calculus.

◦ They all relate the integral of a function on the boundary of a region to the integral of a derivative on
the interior of the region.

◦ Symbolically, their statements all read as

ˆ
∂R

dω =

ˆ
R

ω, where dω represents an appropriate di�erential

of a function ω and ∂R represents the boundary of the region R.
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4.6.1 Stokes's Theorem

• We begin with Stokes's theorem, which is the 3-dimensional version of the tangential form of Green's theorem:

• Theorem (Stokes's Theorem): If C is a simple closed recti�able curve in 3-space that is oriented counterclock-

wise around the surface S, then the circulation around C is given by

˛
C

F ·T ds =

¨
S

(curlF) · n dσ, where
T is the unit tangent to the curve and n is the unit normal to the surface.

◦ Important Note: The curve C must run counterclockwise around S: in other words, when walking along
C, the surface should be on its left-hand side. If one wishes to set up a problem where a curve runs
clockwise around a surface, it is equivalent to traversing the curve in the opposite direction, and so the
integral will be scaled by −1.

◦ The hypotheses about the curve (�simple closed recti�able, oriented counterclockwise�) are the same as
in Green's Theorem, and they ensure the curve is nice enough for the theorem to hold.

◦ Recall curl F = ∇×F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
P Q R

∣∣∣∣∣∣ =

〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉
if F = 〈P,Q,R〉.

◦ Intuitively, if we think of a vector �eld as modeling the �ow of a �uid, the quantity (curlF) ·n at (x, y, z)
measures how much the �uid is circulating around the point (x, y, z) along the surface. Stokes's Theorem
then says: we can measure how much the �uid circulates around the whole surface by measuring how
much it circles around its boundary.

◦ The proof of Stokes's Theorem (which we omit) is essentially the same as the proof of Green's Theorem:
we can reduce to the case of showing the result for �simple� patches on the surface. Then, by parametrizing
the patches explicitly, we can show Stokes's Theorem is essentially the same as the tangential form of
Green's Theorem on each patch.

• Stokes's Theorem generalizes the tangential form of Green's Theorem to cover 3-dimensional closed curves
and the surfaces they bound. Note that unlike in Green's Theorem, there are many possible surfaces that any
given curve can bound.

◦ For example, the unit circle x2 + y2 = 1, z = 0 in the xy-plane bounds the upper portions (i.e., where

z ≥ 0) of the sphere x2 + y2 + z2 = 1, the paraboloid z = 2(1−x2− y2), and the cone z = 1−
√
x2 + y2,

as pictured below:

• Typically, we use Stokes's Theorem when the line integral over the boundary is di�cult, but there is a nicer
surface available.

• Example: Find the circulation of the �eld F(x, y, z) =
〈
y2z3, 2xyz3, 3xy2z2

〉
around the ellipse given by the

intersection of the upper half of the ellipsoid x2 + 2y2 + 2z2 = 12 with the cone x2 + 2y2 = z2.
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◦ Here is a picture of the surfaces and the ellipse:

◦ We could write down a parametrization for this ellipse with a little bit of e�ort: substituting the cone's
equation into the sphere's equation gives 3z2 = 12 hence z = 2. Then using the fact that x2 + 2y2 = 4
is parametrized by x = 2 cos(t) and y =

√
2 sin(t) gives us a parametrization for the curve as r(t) =〈

2 cos(t),
√

2 sin(t), 2
〉
. The resulting circulation integral does not look so wonderful, although it is

possible to evaluate it.

◦ Another way is to try to use Stokes's Theorem. We have two obvious surfaces to choose from (ellipsoid
and cone); since the curve runs counterclockwise around the ellipsoid, we will use that.

◦ Stokes's Theorem tells us that Circulation around C =
¸
C
F ·T ds =

˜
S

(curlF) · n dσ.

◦ We have curlF =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
y2z3 2xyz3 3xy2z2

∣∣∣∣∣∣ =
〈
6xyz2 − 6xyz2, 3y2z2 − 3y2z2, 2yz3 − 2yz3

〉
= 〈0, 0, 0〉.

◦ So the curl of F is zero. Hence (curlF) ·n will also be zero, so we see that the circulation is 0 , without
even having to set up the surface integral.

• Example: Find the �ux of the curl
˜
S
curl(F) · n dσ, where F = yzi− xzj + ex+yk, S is the surface which is

the part of the sphere x2 + y2 + z2 = 25 below the plane z = 3, and n is the outward normal.

◦ We will use Stokes's Theorem. In this case, we want S to be the part of the sphere x2 + y2 + z2 = 25
which is below the plane z = 3.

◦ The boundary of this surface will be the intersection of the plane and the sphere: we see that the
curve is the set of points

{
(x, y, z) : x2 + y2 = 16, z = 3

}
, which is a circle that we can parametrize as

r(t) = 〈4 cos(t), 4 sin(t), 3〉 for 0 ≤ t ≤ 2π.

◦ However: the surface S lies below the curve C, not above it: so, when viewed from below (which is
required because we are using the the outward normal), the curve runs clockwise around the surface.

◦ In order to apply Stokes's Theorem, we need to reverse the orientation of the curve C, which we can do
by interchanging the limits of integration: thus we start at t = 2π and end at t = 0.

◦ From Stokes's Theorem, the �ux of the curl is given by the line integral
´
C
F ·dr =

´
C
P dx+Qdy+Rdz.

◦ We have P = 12 sin(t), Q = −12 cos(t), and R = e4 cos(t)+4 sin(t), and also dx = −4 sin(t) dt, dy =
4 cos(t) dt, and dz = 0 dt.

◦ We get
´
C
F · dr =

´ 0
2π

[
(12 sin(t)) · (−4 sin(t) dt) + (−12 cos(t)) · (4 cos(t) dt)) + e4 cos(t)+4 sin(t) · 0 dt

]
=´ 0

2π
−48 dt = 96π .

4.6.2 Gauss's Divergence Theorem

• Now we discuss Gauss's Divergence Theorem, which is the 3-dimensional version of the normal form of Green's
theorem:

• Theorem (Gauss's Divergence Theorem): If S is a closed, bounded, piecewise-smooth surface that fully encloses
a solid region D, and F is a continuously di�erentiable vector �eld, then the �ux across S is given by¨
S

F · n dσ =

˚
D

(div F) dV , where n is the outward unit normal to the surface.

◦ To get an idea of the setup, if S is the unit sphere x2 + y2 + z2 = 1, then D would be the unit ball
x2 + y2 + z2 ≤ 1. If S consists of the 6 faces of the unit cube, then D would be the interior of the cube.
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◦ Here, if F = 〈P,Q,R〉 then div F = ∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

◦ Intuitively, if we think of a vector �eld as modeling the �ow of a �uid, the divergence measures whether
there is a �source� or a �sink� at a given point (i.e., whether �uid is �owing inward toward that point,
or outward from that point). The �ux through a surface measures how much �uid is �owing across the
surface.

◦ The Divergence Theorem then says that we can measure how much �uid is �owing in or out of a solid
region by measuring how much �uid is �owing across its boundary.

◦ The proof of the Divergence Theorem (which we omit) is essentially the same as the proof of Green's
Theorem: we reduce to the case of showing the result for rectangular boxes, and then parametrize the
boxes explicitly.

• Typically, we want to use the Divergence Theorem to compute the �ux through a closed surface, since it is
usually easier to evaluate the triple integral than the surface integral.

• Example: Find the outward �ux of the �eld F(x, y, z) =
〈
x3 − 3y, 2yz + 1, xyz

〉
through the cube bounded

by the planes x = ±1, y = ±1, z = ±1.

◦ We could do this directly by computing the �ux across each of the six faces of the cube. This is not the
best idea, because it would require setting up six surface integrals.

◦ Instead, we use the Divergence Theorem: it says Flux across S =
˜
S
F · n dσ =

˝
V

(div F) dV .

◦ The solid region V is de�ned by −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1, and div F =
(
3x2
)

+ (2z) + (xy).

◦ Thus, the �ux integral is

ˆ 1

−1

ˆ 1

−1

ˆ 1

−1

(
3x2 + 2z + xy

)
dz dy dx =

ˆ 1

−1

ˆ 1

−1

(
3x2z + z2 + xyz

) ∣∣∣1
z=−1

dy dx

=

ˆ 1

−1

ˆ 1

−1

(
6x2 + 2xy

)
dy dx

=

ˆ 1

−1

(
6x2y + xy2

) ∣∣∣1
y=−1

dx =

ˆ 1

−1
12x2 dx = 8 .

• Example: Compute the �ux
‚
S
F ·n dσ, where F = (x3 + yz)i+ (y3 + xz)j+ (z3 + xy)k, S is the unit sphere

x2 + y2 + z2 = 1, and n is the outward normal.

◦ We will use the Divergence Theorem. If F = 〈P,Q,R〉 then div(F) = Px + Qy + Rz, so here we have
div(F) = 3x2 + 3y2 + 3z2.

◦ The region enclosed by S is the unit ball x2 + y2 + z2 ≤ 1.

◦ Thus the triple integral is
˝

x2+y2+z2≤1

(
3x2 + 3y2 + 3z2

)
dz dy dx.

◦ To evaluate this integral we switch to spherical coordinates: the region is bounded by the inequalities
0 ≤ ρ ≤ 1, 0 ≤ φ ≤ π, and 0 ≤ θ ≤ 2π, the function is 3ρ2, and the di�erential is ρ2 sin(φ) dρ dφ dθ.

◦ So we obtain
´ 2π
0

´ π
0

´ 1
0

3ρ2 · ρ2 sin(φ) dρ dφ dθ =
´ 2π
0

´ π
0

3

5
sin(φ) dφ dθ =

´ 2π
0

6

5
dθ =

12π

5
.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2020. You may not reproduce or distribute this
material without my express permission.
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