In all problems, assume each surface is oriented with "upward" or "outward" orientation. Circulation and flux along/across a curve always refer to counterclockwise circulation and outward normal flux.

- 1. Compute the following:
 - (a) $\int_C x^2 ds$, where C is the line segment from (0,1) to (3,2).
 - (b) $\int_C x \, dx + y \, dy$, where C is the circle $x^2 + y^2 = 9$.
 - (c) The integral of $\sqrt{x^2 + y^2}$ on the portion of the helix $\mathbf{r}(t) = \langle \cos 3t, \sin 3t, 4t \rangle$ for $0 \le t \le \pi$.
 - (d) The average value of y on the upper half of the circle $x^2 + y^2 = 4$.
 - (e) The work done by $\mathbf{F}(x, y, z) = \langle yz, xz, x^3 \rangle$ on a particle that travels from (0, 0, 0) to (1, 1, 1) along the curve parametrized by $\mathbf{r}(t) = \langle t^2, t^4, t^3 \rangle$.
 - (f) The (outward normal) flux of $\mathbf{F}(x, y) = \langle y + x, y x \rangle$ across, and the circulation of \mathbf{F} along, the path C along the upper half of $x^2 + y^2 = 1$ from (1, 0) to (-1, 0).
 - (g) The (outward normal) flux of $\mathbf{F}(x,y) = \langle xy, y^2 \rangle$ across, and the circulation of \mathbf{F} along, the curve $\mathbf{r}(t) = \langle t^2, t^3 \rangle$ for $0 \le t \le 1$.
- 2. Find an equation for the tangent plane to each surface at the given point:
 - (a) The surface parametrized by $\mathbf{r}(s,t) = \langle s+t, s^2+t^2, s^3+t^3 \rangle$ where s=1 and t=2.
 - (b) The surface parametrized by $\mathbf{r}(s,t) = \langle s^2, 2st, 3t^3 \rangle$ at the point (x, y, z) = (1, 2, -3).
- 3. Parametrize each surface, and then set up (do not evaluate) an iterated double integral for each of the following:
 - (a) $\iint_S (x^2 + y^2) d\sigma$ where S is the portion of the plane z = 2x + 2y above the rectangle with $1 \le x \le 2$, $2 \le y \le 4$.
 - (b) $\iint_S (zx^2 + zy^2) d\sigma$ where S is the portion of the cylinder $x^2 + y^2 = 4$ between z = 0 and z = 4.
 - (c) $\iint_S \sqrt{x^2 + y^2} \, d\sigma$ where S is the portion of the cone $z = 4\sqrt{x^2 + y^2}$ below z = 8.
 - (d) $\iint_S z^2 d\sigma$ where S is the unit sphere.
- 4. Set up (do not evaluate) an iterated double integral giving the area of each surface:
 - (a) The portion of the plane z = 3x + 4y + 11 above the region with $0 \le x \le 1$ and $0 \le y \le 2$.
 - (b) The portion of the surface parametrized by $\mathbf{r}(s,t) = \langle s^2, st, t^2 \rangle$ with $0 \le s \le 1$ and $0 \le t \le 2$.
 - (c) The portion of the cone $z = 3\sqrt{x^2 + y^2}$ that lies between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.
 - (d) The portion of the sphere $x^2 + y^2 + z^2 = 9$ that lies below the cone $z = \sqrt{3} \cdot \sqrt{x^2 + y^2}$.

- 5. For each vector field **F** and surface S, compute the outward normal flux $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ of **F** across S:
 - (a) $\mathbf{F} = \langle x^2, 2x^2, 3x^2 \rangle$, where S is the portion of the plane x + y + z = 4 with $0 \le x \le 1$ and $0 \le y \le 2$.
 - (b) $\mathbf{F} = \langle xz, yz, x^2 + y^2 \rangle$, where S is the portion of the cone $z = \sqrt{x^2 + y^2}$ inside the cylinder $x^2 + y^2 = 6$.
 - (c) $\mathbf{F} = \langle -xz, -yz, z^4 \rangle$, where S is the portion of the cylinder $x^2 + y^2 = 4$ between z = 0 and z = 3.
 - (d) $\mathbf{F} = \langle y, -x, z \rangle$, where S is the portion of the surface $z = x^2 + y^2$ below z = 2.
 - (e) $\mathbf{F} = \langle x, y, z \rangle$, where S is the upper half of the unit sphere.
 - (f) $\mathbf{F} = \langle y^3, x^3, 1 \rangle$, where S is the portion of the paraboloid $z = 1 x^2 y^2$ above the xy-plane.
- 6. For each vector field, (i) find the divergence and curl of \mathbf{F} , and (ii) determine whether \mathbf{F} is conservative and (if so) find a potential function U:
 - (a) $\mathbf{F} = \langle x^3 + xy, y^3 + xy, 0 \rangle.$
 - (b) $\mathbf{F} = \langle yz + 2x, xz + 2z, xy + 2y \rangle.$
 - (c) $\mathbf{F} = \langle x^2 yz, x^2 z^2, 2x^2 yz \rangle.$
 - (d) $\mathbf{F} = \langle 2xyz + e^z, x^2z + 3, xe^z + x^2y + 2 \rangle.$
- 7. Evaluate $\int_C yz \, dx + xz \, dy + xy \, dz$, where C is the curve $\mathbf{r}(t) = \langle te^t, \arctan(t), \ln(1+t) \rangle$ for $0 \le t \le 1$.
- 8. Let C be the curve that runs once counterclockwise around the boundary of the square with vertices (0,0), (1,0), (1,1), and (0,1). Find $\oint_C (x^2 + y) dx + (2xy^2 xy) dy$.
- 9. For the given C and F, find the counterclockwise circulation $\oint_C \mathbf{F} \cdot \mathbf{T} \, ds$ and the outward normal flux $\oint_C \mathbf{F} \cdot \mathbf{N} \, ds$.
 - (a) $\mathbf{F} = \langle xy^2, y^3 \rangle$, C is the boundary of the rectangle with vertices (0,0), (2,0), (2,3), (0,3).
 - (b) $\mathbf{F} = \langle 6xy, 0 \rangle$, C is the boundary of the triangle with vertices (0,0), (1,0), and (0,2).
 - (c) $\mathbf{F} = \langle 2x + 3y, 4x + 5y \rangle$, C is the unit circle.
 - (d) $\mathbf{F} = \langle x^3 y^3, x^3 + y^3 \rangle$, C is the boundary of the quarter-disc $x^2 + y^2 \leq 16$ in the first quadrant.
- 10. Let $C = C_1 \cup C_2 \cup C_3$, where C_1 is the line segment from (-2, 0) to (0, 0), C_2 is the line segment from (0, 0) to $(\sqrt{2}, \sqrt{2})$, and C_3 is the shorter arc of the circle $x^2 + y^2 = 4$ from $(\sqrt{2}, \sqrt{2})$ to (-2, 0).
 - (a) Find the outward flux of $\mathbf{F} = \langle 2x^3y^2 + y^3, x^2 2x^2y^3 \rangle$ around C.
 - (b) Find the counterclockwise circulation of $\mathbf{F} = \langle x^2 y^3, x^3 + y^4 \rangle$ around C.
 - (c) Find the work done by $\mathbf{F} = \langle -2y, 2x \rangle$ on a particle that travels once around C.