- 1. Find the minimum and maximum values of f (and all points where they occur) on the given region:
 - (a) $f(x,y) = x^2 2xy + 3y^2 4y$ on the triangle with vertices (0,0), (2,0), and (2,4).
 - (b) f(x,y) = x + y on the circular region $x^2 + y^2 \le 4$.
 - (c) $f(x,y) = 2x^2 y$ on the region between y = 8x and $y = x^2$.
- 2. Find the minimum and maximum values of f (and all points where they occur) subject to the given constraint:
 - (a) f(x,y) = x + 3y subject to x² + y² = 40.
 (b) f(x,y) = xy² subject to x² + y² = 12.
 (c) f(x,y) = xy subject to 3x + y = 60.
 (d) f(x,y,z) = 2x + 4y + 5z subject to x² + y² + z² = 1.
 - (e) f(x, y, z) = xyz subject to $x^2 + 4y^2 + 16z^2 = 16$.
- 3. You have 60 meters of fencing and wish to make a rectangular enclosure along a straight river, meaning that you only need to fence the east, west, and north sides (not the south side). What dimensions maximize the total area of the enclosure?
- 4. Evaluate the following double integrals:

(a)
$$\int_0^2 \int_y^{2y} xy^2 \, dx \, dy.$$
 (b) $\int_0^1 \int_{x^3}^{x^2} x \, dy \, dx.$

- 5. Set up (but do not evaluate) integrals for the following, using both integration orders dy dx and dx dy:
 - (a) The integral of x^2y on the region $0 \le x \le 1, 0 \le y \le 3$.
 - (b) $\iint_R (x+y) \, dA$ on the region R between the curves $y = 8\sqrt{x}$ and $y = x^2$.
 - (c) The volume under $z = x^3$ above the triangle in the xy-plane with vertices (0,0), (1,1), and (2,0).
- 6. Reverse the order of integration for each of the following integrals:

(a)
$$\int_0^3 \int_0^{x^2} xy \, dy \, dx.$$
 (b) $\int_1^2 \int_y^{y^2} y^4 \, dx \, dy$

- 7. Set up, and then evaluate, the following integrals in polar coordinates:
 - (a) The integral of f(x, y) = x on the region inside $x^2 + y^2 = 1$ with $x \le 0$ and $y \le 0$.
 - (b) $\iint_R \sqrt{x^2 + y^2} dA$ where R is the region inside $x^2 + y^2 = 16$, above y = x and y = -x.
 - (c) The volume under $z = 4 x^2 y^2$ and above the *xy*-plane.

- 8. Evaluate the double integral $\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{1}{\sqrt{x^2+y^2}} \, dy \, dx$ by converting it to polar coordinates.
- 9. Evaluate the double integral $\int_0^8 \int_{x/2}^4 \frac{e^y}{y} \, dy \, dx$ by reversing the order of integration.
- 10. Evaluate each of the following triple integrals:

(a)
$$\int_0^2 \int_x^{2x} \int_x^y 6z \, dz \, dy \, dx.$$
 (b) $\int_0^\pi \int_0^\pi \int_0^2 \rho^3 \sin \varphi d\rho \, d\varphi \, d\theta.$

11. Compute the following integrals by converting to cylindrical or spherical coordinates:

(a)
$$\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{x+y} \sqrt{x^{2}+y^{2}} \, dz \, dy \, dx.$$

(b)
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} \, dz \, dy \, dx.$$

(c)
$$\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{-1}^{x^{2}+y^{2}} \frac{1}{\sqrt{x^{2}+y^{2}}} \, dz \, dy \, dx.$$

(d)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} \frac{z^{2}}{\sqrt{x^{2}+y^{2}+z^{2}}} \, dz \, dy \, dx.$$

- 12. Set up (but do not evaluate) triple integrals for the following:
 - (a) The integral $\iiint_D (x^2 + y^2) dV$ on the region D above $z = x^2 + y^2$, below z = 7, for $0 \le x \le 1$ and $0 \le y \le 2$.
 - (b) The integral of xyz on the region above $z = y^2$, below z = 9, between x = 1 and x = 2.
 - (c) The integral $\iiint_D (x^2 + y^2 + z^2) dV$ on the region D above $z = \sqrt{x^2 + y^2}$ and below z = 3.
 - (d) The integral of $z\sqrt{x^2+y^2}$ on the region with $x \le 0$, inside $x^2+y^2=4$, above z=0, below y+z=4.
 - (e) The integral of $\sqrt{x^2 + y^2 + z^2}$ on the region below $z = \sqrt{x^2 + y^2}$ and inside $x^2 + y^2 + z^2 = 4$.
 - (f) The volume of the solid below $z = 5 x^2 y^2$, above the xy-plane, and outside $x^2 + y^2 = 1$.
 - (g) The average value of $x^2 + y^2 + z^2$ on the portion of $x^2 + y^2 + z^2 \le 4$ inside the first octant (with $x, y, z \ge 0$).
 - (h) The integral of x on the region with $x \ge 0$, $y \ge 0$, $z \ge 0$ and below $z = 4 x y^2$.
- 13. A solid rectangular rock is bounded by $0 \text{cm} \le x \le 1 \text{cm}$, $0 \text{cm} \le y \le 2 \text{cm}$, and $0 \text{cm} \le z \le 3 \text{cm}$ and has a variable density $\rho(x, y, z) = z^{\text{g/cm}^3}$. Find its total mass and the coordinates of its center of mass.