- 1. For vectors $\mathbf{v} = \langle 3, 0, -4 \rangle$ and $\mathbf{w} = \langle -1, 6, 2 \rangle$, compute the following:
 - (a) $\mathbf{v} + 2\mathbf{w}$, $||\mathbf{v}||$, and $||\mathbf{w}||$.
 - (b) $\mathbf{v} \cdot \mathbf{w}$ and $\mathbf{v} \times \mathbf{w}$.
 - (c) A unit vector in the opposite direction of \mathbf{v} .
 - (g) The area of the parallelogram with sides \mathbf{v} , \mathbf{w} .
- (e) The angle between \mathbf{v} and \mathbf{w} .
- (f) The vector projection $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$ of \mathbf{v} onto \mathbf{w} .
 - (d) A vector of length 4 in the same direction as **w**.
- 2. Find an equation or a parametrization for each of the following:
 - (a) The plane parallel to x + 2y 3z = 1 containing the point (2, -1, 2).
 - (b) The line containing (2, -1, 4) and (3, 6, 2).
 - (c) The line parallel to $\langle x, y, z \rangle = \langle 1 2t, 3 + 2t, 2 + 5t \rangle$ containing the point (1, 1, 1).
 - (d) The plane perpendicular to the line $\langle x, y, z \rangle = \langle t, 1+2t, 3-3t \rangle$ containing the origin.
 - (e) The plane containing the points (1, 0, 1), (2, 1, 2), and (3, 3, 5).
 - (f) The intersection of the planes x + y + 2z = 4 and 2x y z = 5.
 - (g) The plane containing the vectors (1, 2, -1) and (2, -1, 1) and the point (1, -1, 2).
- 3. Find the distance from the point (1,3,2) to the plane x + 2y + z = 5.

4. At time t, a particle has position $\mathbf{r}(t) = \langle 3\cos(t), 5\sin(t), 4\cos(t) \rangle$. Compute the following:

- (a) The particle's velocity $\mathbf{v}(t)$.
- (b) The particle's speed $||\mathbf{v}(t)||$.
- (c) The distance traveled by the particle between t = 0 and t = 1.
- (d) The particle's acceleration $\mathbf{a}(t)$.
- (e) The unit tangent vector $\mathbf{T}(t)$.
- (f) The unit normal vector $\mathbf{N}(t)$.
- 5. Find a parametrization for the tangent line to the curve $\langle x, y, z \rangle = s^2 \mathbf{i} + s^3 \mathbf{j} + s^4 \mathbf{k}$ when s = 1.
- 6. A potato is fired into the air at time t = 0s from the origin in a vacuum with initial velocity $\mathbf{v}(0) =$ $(4\mathbf{i} + 8\mathbf{j} + 80\mathbf{k})^{\text{m/s}}$. Assuming that the only force acting on the potato is the downward acceleration due to gravity of $\mathbf{a}(t) = -10\mathbf{k}^{\mathrm{m/s^2}}$, find the following:
 - (a) The velocity of the potato at time t.
 - (b) The position of the potato at time t.
 - (c) The total time that the potato is in the air.
 - (d) The potato's speed when it hits the ground.

7. If
$$f(x,y) = 3x^2 e^{xy}$$
, find $\frac{\partial f}{\partial x}$, f_y , f_{xx} , $\frac{\partial^2}{\partial y \partial x} f$, f_{yy} , and $f_{yyyy}(1,2)$.

8. Let $f(x, y, z) = x^3yz^2$ and $g(x, y, z) = \ln(x^2 + y^2 + z^2)$.

- (a) Find the rates of change of f and g in the direction of $\mathbf{v} = \langle 2, -1, 2 \rangle$ at the point (1, 1, 1).
- (b) Find the minimum and maximum rates of change of f and g at the point (1, 2, 1), and the unit vector directions in which the minimum and maximum rates of change occur.
- (c) Find the linearizations to f and g at the point (2, 1, 1).
- 9. Consider the surface $e^{x-yz} + xz = 9$.
 - (a) Find an equation for the tangent plane to the surface at (4, 2, 2).
 - (b) Assuming that z is defined implicitly as a function of x and y, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

10. Suppose f(x, y) has $\frac{\partial f}{\partial x}(1, 5) = 9$, $\frac{\partial f}{\partial y}(1, 5) = -3$, $\frac{\partial f}{\partial x}(2, -2) = 4$, and $\frac{\partial f}{\partial y}(2, -2) = 5$, where x(s, t) and y(s, t) are such that x(1, 5) = 2, y(1, 5) = -2, $\frac{\partial x}{\partial s}(1, 5) = 3$, $\frac{\partial x}{\partial t}(1, 5) = 2$, $\frac{\partial y}{\partial s}(1, 5) = 4$, and $\frac{\partial y}{\partial t}(1, 5) = -2$. Find: (a) $\frac{\partial f}{\partial s}$ at (s, t) = (1, 5). (b) $\frac{\partial f}{\partial t}$ at (s, t) = (1, 5).

- 11. Suppose $f(x, y) = x^3 + 3xy$.
 - (a) Find f_{xxy} .
 - (b) Find the rate of change of f at the point (x, y) = (1, 2) in the direction of the origin.
 - (c) Find the direction in which f is decreasing the fastest at (x, y) = (2, 0).
 - (d) If $x = 3s^2 2t$ and $y = s^3t$, find $\partial f / \partial t$ when s = 1 and t = 2.
 - (e) Find the linearization of f at (x, y) = (1, 3) and use it to estimate f(1.01, 3.02).
 - (f) Find an equation for the tangent plane to z = f(x, y) at (x, y) = (-1, 1).
 - (g) Find and classify the critical points for f.

12. Find and classify the critical points for each function:

(a)
$$f(x, y) = xy - x^2 - y^2 - 2x - 2y$$
.
(b) $f(x, y) = x^4 + y^2 - 8x^2 + 4y$.
(c) $f(x, y) = xy + \frac{1}{x} + \frac{1}{y}$.
(d) $f(x, y) = x^3 - 3xy + 3y^2$.