- 1. Solve the following problems:
 - (a) Find the flux of $\mathbf{F} = \langle xy^2z^2, x^2z^2, -xy^2 \rangle$ outward through the surface S made up of the portions of the six planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1, with $0 \le x, y, z \le 1$.
 - (b) Find the flux of $\mathbf{F} = \langle x^3 z, y^3 z, 0 \rangle$ outward through the boundary of the solid region with $x^2 + y^2 \leq 4$ and $1 \leq z \leq 3$.
 - (c) Find the flux of $\mathbf{F} = \langle xy^2, yz^2, x^2z \rangle$ through the surface of the unit sphere with outward orientation.
 - (d) Find the flux of the curl $\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma$, where $\mathbf{F}(x, y, z) = \langle -2y \cos(z), 2x, xe^y \rangle$ and S is the upper half of the sphere $x^2 + y^2 + z^2 = 9$ with outward orientation.
 - (e) Find the outward flux $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$ where S is the surface of the "ice cream cone" (the portion of the cone $z = \sqrt{x^2 + y^2}$ that lies inside the sphere $x^2 + y^2 + z^2 = 1$ along with that portion of the sphere that lies above the cone), and $\mathbf{F}(x, y, z) = \langle x + 2y, x + 2z, y + 2z \rangle$.
 - (f) Find the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle x + y^2, y + z^2, z + x^2 \rangle$ and C is the quadrilateral with vertices (0, 0, 1), (1, 0, 0), (1, 1, -1), and (0, 1, 0) lying in the plane x + y + z = 1, oriented in the counterclockwise direction when viewed from above.
 - (g) Find the circulation of the vector field $\mathbf{F} = \langle 2xy, x^2, y \rangle$ around the counterclockwise boundary of the portion of the surface $z = x^2y$ that lies above the plane region with $0 \le x \le 1$ and $0 \le y \le x$.
 - (h) Find the flux of $\mathbf{F} = \langle 3x^2y, xy^2, 8xy \rangle$ outward through the surface S made up of the portions of the five planes x = 0, x = 1, y = 0, y = 1, z = 1, with $0 \le x, y, z \le 1$.
 - (i) Find the flux of $\mathbf{F} = \langle xy^2 + e^z, x^2y + e^{2z}, \sqrt{x^2 + y^2} \rangle$ through the portion of the surface $z = 1 x^2 y^2$ that lies above the *xy*-plane.