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1 Relations, Orderings, and Functions

Our goal in this chapter is to discuss the basic properties of relations, orderings, and functions along with some
of their applications. We begin by examining the very general idea of a relation, which captures the idea of a
comparison between two objects, and then discuss equivalence relations, which generalize the concepts of equality
and modular congruence. Next we discuss partial and total orderings, which generalize the �order relations� of
subset (for sets), divisibility (for integers), and the natural ordering of the real numbers. We �nish by developing
the general notion of a function in the context of relations, and then discussing various formal properties of functions
including injectivity, surjectivity, function composition, and inverses along with applications to cardinality.

1.1 Relations

• The idea of a relation is quite simple, and generalizes the idea of a comparison between two objects. Here are
some familiar examples of relations that we have already discussed at length:

◦ The subset relation ⊆ on a pair of sets.

◦ The order relations ≤ and < and ≥ and > on a pair of integers (or rational numbers, or real numbers).

◦ The containment relation ∈ on an element and a set.

◦ The divisibility relation | on a pair of integers.

◦ The mod-m congruence relation ≡ on a pair of integers.

• In each of these examples, the relation R captures some information about two objects, and the relation
statement aR b is a proposition that is either true or false.

◦ For example, 5 < 3 is a statement about the two numbers 5 and 3 (it is a false statement, of course).

◦ The order of the objects in the relation statement is quite clearly important: for example, 3|6 is true
while 6|3 is false.

◦ Also, the objects in a relation statement need not be drawn from the same universe: in the containment
relation x ∈ A, for example, the object x can be anything, while the object A is a set.
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• In order to describe a general relation R, then, we could simply list all of the ordered pairs (a, b) for which
the relation statement a R b is true. In fact, we will take this as the de�nition of a relation!

• De�nition: If A and B are sets, we say R is a relation from A to B, written R : A→ B, if R is a subset of the
Cartesian product A×B. For any a ∈ A and b ∈ B, we write a R b if the ordered pair (a, b) is an element of
R, and we write a 6R b if the ordered pair (a, b) is not an element of R.

◦ We think of the statement a R b as saying the ordered pair (a, b) satis�es the relation R, and we think
of a 6R b as saying the ordered pair (a, b) does not satisfy the relation R.

• We can recast all of the familiar relations we have encountered already in this language of Cartesian products.

• Example: The relation R =≤ on integers can be de�ned by taking R = {(a, b) ∈ Z×Z : b− a ∈ Z≥0}, which
is the set of ordered pairs (a, b) where b− a is a nonnegative integer.

◦ Under this de�nition, we see that 3 R 5 and 4 R 13 because 5−3 = 2 and 13−4 = 9 are both nonnegative
integers.

◦ On the other hand, 2 6R 0 because 0− 2 = −2 is not a nonnegative integer.

• Example: The divisibility relation R = | on integers can be de�ned by taking R = {(a, b) ∈ Z × Z : ∃k ∈
Z such that b = ka} = {(a, ka) : a, k ∈ Z}.

◦ Under this de�nition, we see that 3 R 6 and 4 R 20 because the ordered pairs (3, 6) = (3, 2 · 3) and
(4, 20) = (4, 5 · 4) are in the set described above.

◦ On the other hand, 2 6R 3 because (2, 3) is not in the set above.

• Example: The congruence relation R =≡m modulo m can be de�ned by taking R = {(a, b) ∈ Z × Z : ∃k ∈
Z such that b− a = km} = {(a, a+ km) : a, k ∈ Z}.

◦ Under this de�nition, if m = 5 we see that 3 R 18 and 4 R −6 because the ordered pairs (3, 18) =
(3, 3 + 3 · 5) and (4,−6) = (4, 4 + (−2) · 5) are in the set described above.

◦ On the other hand, 1 6R 3 because (1, 3) is not in the set above.

• Example: If A is any set, the identity relation is de�ned by taking R = {(a, a) : a ∈ A}. This is simply the
equality relation, in which a R b precisely when a and b are equal.

◦ Under this de�nition, if A = R for example, we see that 3 R 3 since (3, 3) is an element of the set R, but
1 6R 3 and 3 6R π since (1, 3) and (3, π) are not elements of R.

• There are many other things we can also describe using the language of relations.

◦ Example: The relation R = {(a, b) ∈ Z × Z : gcd(a, b) = 1} is the �is relatively prime� relation on
integers: we have a R b precisely when a and b are relatively prime.

◦ Example: The relation R = {(x, y) ∈ R × R : x2 = y} = {(y2, y) : y ∈ R} is the �is a square root of�
relation on real numbers: we have x R y precisely when x is a square root of y (i.e., when x2 = y).

◦ Example: The relation R = {(x, y) ∈ R×R : x2 + y2 = 1} is the �lies on the unit circle� relation on real
numbers: we have x R y precisely when the point (x, y) satis�es the equation x2 + y2 = 1 (which is to
say, when the point lies on the unit circle).

◦ Example: The relation R = {(a, b) ∈ Z × Z : |b− a| = 1} is the �di�ers by 1� relation on integers: we
have a R b precisely when a and b di�er by 1.

• We can also simply write down arbitrary subsets of ordered pairs to obtain new relations:

• Example: If A = {1, 2, 3, 4} and B = {1, 3, 5, 7}, then some relations are as follows:

◦ The relation R1 = {(1, 1), (2, 3), (3, 5), (5, 7)} is a relation from A to B.

◦ The relation R2 = {(1, 1), (3, 2), (5, 3), (7, 5)} is a relation from B to A.

◦ The relation R3 = {(1, 4), (3, 2), (2, 1)} is a relation from A to A. (We say R3 is a relation on A.)
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◦ The relation R4 = {(1, 3), (3, 1), (4, 3)} is a relation from A to A. It is also a relation from A to B.

◦ The relation R5 = {(7, 1), (7, 3)} is a relation from B to A. It is also a relation from B to B.

◦ The relation R6 = {(1, 1), (3, 3)} is a relation from A to A. It is also a relation from A to B, and from
B to A, and from B to B.

◦ The relation R7 = {(1, 1), (2, 7), (3, 5), (5, 4)} is a relation but it is not a relation on A or on B, or from
A to B, or from B to A.

◦ The empty relation R8 = ∅ is a relation from A to A, and also from A to B, and from B to A, and from
B to B.

• Since relations are merely subsets of a Cartesian product, we can apply any of our set operations to them.

◦ For example, if C is a subset of A and D is a subset of B, then if RA,B : A → B is a relation, we may
construct a new relation RC,D : C → D given by R ∩ (C ×D); this relation is called the restriction of R
to C ×D.

◦ In the case where R is a relation on A and C is a subset of A, we call R ∩ (C × C) the restriction of R
to C.

• Another useful construction is the inverse of a relation, obtained by reversing all of the ordered pairs:

• De�nition: If R : A → B is a relation, then the inverse relation (also sometimes called the converse relation
or the transpose relation) R−1 : B → A is de�ned as R−1 = {(b, a) : (a, b) ∈ R}, the relation on B × A
consisting of the reverses of all of the ordered pairs in R.

◦ Example: IfA = {1, 2, 3, 4} andB = {1, 3, 5, 7}, then the inverse of the relationR1 = {(1, 1), (2, 3), (3, 5), (5, 7)}
from A to B is the relation R−11 = {(1, 1), (3, 2), (5, 3), (7, 5)} from B to A.

◦ Example: If A = R, then the inverse of the relation R2 =≤ is R−12 =≥. This follows from the observation
that (a, b) ∈ R2 precisely when b − a is nonnegative, and therefore (b, a) ∈ R−12 precisely when b − a is
nonnegative (which is to say, when the �rst element of the ordered pair is greater than or equal to the
second element).

◦ If R : A→ B is any relation, then it is easy to see that (R−1)−1 = R, since if (a, b) ∈ R then (b, a) ∈ R−1
so (a, b) ∈ (R−1)−1, and vice versa.

• In practice, most of the time we do not explicitly work with the de�nition of a relation as a set of ordered
pairs.

◦ Instead, we think of a relation a R b as a true or false statement that captures some information about
a and b, and we usually work using the language of relations rather than subsets of Cartesian products.

1.2 Equivalence Relations

• We now discuss relations that share similar properties to equality.

◦ We have already encountered one such relation, namely, modular congruence.

◦ The fundamental properties of equality and modular congruence that involve only properties of the
relation itself (and not other properties of arithmetic like addition or multiplication) are as follows: for
any a, b, c, we have (i) a = a, (ii) if a = b then b = a, and (iii) if a = b and b = c, then a = c.

1.2.1 De�nition and Examples

• We can easily give general de�nitions for each of these properties:

• De�nitions: If R : A → A is a relation on the set A, we say R is re�exive if a R a for all a ∈ A. We say R
is symmetric if a R b implies b R a for all a, b ∈ A. We say R is transitive if a R b and b R c together imply
a R c for all a, b, c ∈ A.
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◦ In formal language, R is re�exive when ∀a ∈ A, a R a, while R is symmetric when ∀a ∈ A∀b ∈ A, (a R
b)⇒ (b R a), and R is transitive when ∀a ∈ A∀b ∈ A∀c ∈ A, [(a R b) ∧ (b R c)]⇒ (a R c).

• Here are some examples of relations that (variously) do and do not possess these three properties:

• Example: Suppose A = {1, 2, 3, 4}. Some relations on A are as follows:

◦ The identity relation R1 = {(1, 1), (2, 2), (3, 3), (4, 4)} is re�exive, symmetric, and transitive. More
generally, the identity relation on any set will always be re�exive, symmetric, and transitive.

◦ The relation R2 = {(1, 1), (2, 3), (3, 2)} is not re�exive because for example the ordered pair (2,2) is
not in R2. It is symmetric because the reverses of all ordered pairs in R2 are also in R2, but it is not
transitive because 2 R2 3 and 3 R2 2, but 2 6R2 2.

◦ The relation R3 = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 4), (3, 3), (4, 2), (4, 4)} is easily seen to be re�exive and
symmetric since it contains all ordered pairs (a, a) and also contains the reverse of all its ordered pairs,
but it is not transitive because 1 R2 2 and 2 R2 4, but 1 6R2 4.

◦ The relation R4 = {(1, 2), (2, 4), (1, 4)} is not re�exive because for example it does not contain (1, 1). It
is also not symmetric because 1 R4 2 but 2 6R4 1. However, it is transitive since (observe) the only a, b, c
for which a R4 b and b R4 c are both true is a = 1, b = 2, and c = 4, and in such a case we also have
a R4 c.

◦ The relation R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}, the ≤ relation on
A, is clearly re�exive, but it is not symmetric because 1 R5 2 but 2 6R5 1. It is transitive, although
verifying this fact directly using the ordered pair de�nition is rather tedious.

◦ The relation R6 = {(1, 2), (2, 1)} is not re�exive and not transitive, but is symmetric.

◦ The relation R7 = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (4, 1), (4, 4)} is re�exive, transitive, and sym-
metric.

◦ The empty relation R8 = ∅ is not re�exive, but is symmetric because the conditional statement �for all
a, b ∈ A if a R8 b then b R8 a� is (vacuously) true because the hypothesis is always false. This relation
is also transitive, for the same reason.

• Example: The order relation ≤ on integers is re�exive and transitive but not symmetric.

◦ Recall that we de�ned a ≤ b to mean that b− a is a nonnegative integer, which is to say, an element of
the set {0, 1, 2, 3, 4, . . . }.
◦ Then the relation is re�exive because a ≤ a (because a−a = 0 is nonnegative), and it is transitive because
if a ≤ b and b ≤ c (meaning that b−a and c−b are nonnegative) then a ≤ c (because (c−b)+(b−a) = c−a
is nonnegative).

◦ However, the relation is not symmetric because for example 1 ≤ 2 but 2 6≤ 1.

◦ Remark: The same properties hold for the order relation ≤ on rational numbers and real numbers as
well, along with the subset relation ⊆ on sets and the divisibility relation | on positive integers. We will
return to discuss the general idea of an �order relation� later.

• Example: If m is any positive integer, the mod-m congruence relation ≡m on integers is re�exive, symmetric,
and transitive.

◦ Recall that we write a ≡ b (mod m), which here we abbreviate as a ≡m b to be consistent with our
notation a R b for relations, when m divides b− a.
◦ We have (in fact) already shown that this relation is re�exive, symmetric, and transitive as part of our
discussion of properties of congruences.

◦ To summarize: a ≡ a (mod m) because m always divides a− a = 0, so ≡m is re�exive.

◦ Also, if a ≡ b (mod m) then b ≡ a (mod m): this follows because if m divides b− a then m also divides
−(b− a) = a− b, so ≡m is symmetric.

◦ Finally, if a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m): this follows because if m divides
b− a and c− b then it also divides (c− b) + (b− a) = c− a, so ≡m is transitive.
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• We can now de�ne the general notion of an equivalence relation:

• De�nition: If R is a relation on the set A, we say R is an equivalence relation if it is re�exive, symmetric, and
transitive.

◦ Example: The identity relation on any set A is an equivalence relation. In particular, equality of integers,
equality of rational numbers, equality of real numbers, and equality of sets are all equivalence relations.

◦ Example: If m is any positive integer, the mod-m congruence relation ≡m on integers is an equivalence
relation.

◦ Non-Example: The subset relation ⊆ is not an equivalence relation since it is not symmetric.

◦ Example: The relation R7 = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (4, 1), (4, 4)} on A = {1, 2, 3, 4}
from above is an equivalence relation.

◦ Example: The relation of having the same birthday (on the set of people) is an equivalence relation:
everyone has the same birthday as themselves, if P has the same birthday as Q then Q has the same
birthday as P , and if P has the same birthday as Q and Q has the same birthday as R, then P has the
same birthday as R.

• Remark: It is very common to use a symbol like ∼ to represent an equivalence relation rather than the letter
R, simply because the letter R produces expressions that are harder to parse.

◦ In what follows, we will primarily use the letter R because we are still examining basic properties of
equivalence relations.

1.2.2 Equivalence Classes

• We saw previously that the residue classes a modulo m had a number of fundamental properties. There is a
natural extension of this concept to a general equivalence relation:

• De�nition: If R is an equivalence relation on the set A, we de�ne the equivalence class of a as [a] = {b ∈ A :
a R b}, the set of all elements b ∈ A that are related to a via R.

◦ Example: If R is the equality relation on the set A, the equivalence class [a] of the element a is simply
the set {a} containing a itself, since no other elements of A are related to a.

◦ Example: If R is the mod-m congruence relation on integers, the equivalence class [a] of the element a
is the residue class a = {b ∈ Z : a ≡ b (mod m)}. We saw earlier that these equivalence classes are [0],
[1], ... , [m− 1] and that every integer lies in exactly one of these equivalence classes.

◦ Example: Under the equivalence relation R7 = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (4, 1), (4, 4)} on
A = {1, 2, 3, 4}, the equivalence classes are [1] = {1, 4}, [2] = {2, 3}, [3] = {2, 3}, and [4] = {1, 4}. Notice
that there are two di�erent equivalence classes, namely [1] = [4] = {1, 4} and [2] = [3] = {2, 3}, and
every element of A lies in exactly one of these equivalence classes.

◦ Example: Under the equivalence relation of having the same birthday (on the set of people), the equiva-
lence class of any person [P ] is the set of all people having the same birthday as P . We may alternatively
label these equivalence classes by the shared birthday (e.g., January 1, January 2, ... , up through De-
cember 31), and from this description, we can see that there are exactly 366 equivalence classes (one for
each possible birthday, including February 29) and every person lies in exactly one of these equivalence
classes (namely, the one labeled with their birthday).

• Like with the residue classes modulo m (and as suggested by all of the examples above) we can establish some
basic properties of equivalence classes:

• Proposition (Properties of Equivalence Classes): Suppose R is an equivalence relation on the set A. Then

1. For any a ∈ A, a is an element of [a].

◦ Proof: Since R is re�exive, a R a, so by de�nition, a ∈ [a].

2. If a, b ∈ A, then [a] = [b] if and only if a R b.
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◦ Proof: If [a] = [b], then since b ∈ [b] by (1) above, this means that b is contained in the residue class
[a], meaning that a R b by de�nition.

◦ Conversely, suppose a R b. If c is any element of the equivalence class [a], then by de�nition a R c,
and so by symmetry c R a.

◦ Hence by transitivity applied to c R a and a R b, we see c R b, or equivalently, b R c.

◦ Therefore, c is an element of the equivalence class [b]. But since c was arbitrary, this means that [a]
is a subset of [b].

◦ By the same argument with a and b interchanged, we see that [b] is also a subset of [a], and thus
[a] = [b].

3. Two equivalence classes of R on A are either disjoint or identical.

◦ Proof: Suppose that [a] and [b] are two equivalence classes of R. If they are disjoint, we are done,
so suppose there is some c contained in both: then a R c and also b R c.

◦ By symmetry, b R c implies c R b, and then by transitivity, we conclude that a R b. Then by
property (2), we conclude [a] = [b].

◦ Hence the two equivalence classes [a] and [b] are either disjoint or identical, as claimed.

4. There is a unique equivalence class of R on A containing a, namely, [a].

◦ Proof: Clearly [a] is an equivalence class of R containing a by property (1) above.

◦ On the other hand, by property (3), any other equivalence class containing a must equal [a], so in
fact, [a] is the unique equivalence class of R containing a.

• From the results in the proposition, we can see that the equivalence classes are nonempty, pairwise disjoint
subsets of A whose union is A. This particular situation is given a name:

• De�nition: If A is a set, a partition P of A is a family of nonempty, pairwise disjoint sets whose union is A.
The sets in P are called parts of the partition.

◦ Example: The sets {1, 5} and {2, 3, 4} yield a partition of {1, 2, 3, 4, 5}; explicitly, we could write P =
{{1, 5}, {2, 3, 4}}.
◦ Example: The sets {1}, {2, 3}, {4, 5} yield a di�erent partition of {1, 2, 3, 4, 5}, as do the sets {1}, {2},
{3}, {4, 5}.
◦ Non-Example: The sets {1, 2}, {3, 4}, and {4, 5} do not form a partition of {1, 2, 3, 4, 5} because the sets
are not pairwise disjoint (speci�cally, {3, 4} and {4, 5} have the element 4 in common).

◦ Non-Example: The sets {1, 2, 3} and {5} do not form a partition of {1, 2, 3, 4, 5} because the union of
the sets is not all of {1, 2, 3, 4, 5}.
◦ Example: The sets Z+ = {1, 2, 3, 4, . . . }, {0}, and Z− = {−1,−2,−3, . . . } yield a partition of the integers.

• Our results above show that if R is any equivalence relation on a set A, then the equivalence classes of R yield
a partition of A. In fact, the converse of this statement is also true: if we have a partition of A, then it arises
as the equivalence classes of an equivalence relation on A.

◦ To illustrate the idea, consider the partition P = {{1, 5}, {2, 3, 4}} of {1, 2, 3, 4, 5}, and suppose we had
an equivalence relation R with these equivalence classes {1, 5} and {2, 3, 4}.

◦ Then R must contain the ordered pairs (1, 1), (2, 2), (3, 3), (4, 4), and (5, 5) since it is re�exive.

◦ Also, R must also contain the pairs (1, 5) and (5, 1) because 1 and 5 are supposed to lie in the same
equivalence class {1, 5}, and likewise R must contain all of the pairs (2, 3), (2, 4), (3, 2), (3, 4), (4, 2), and
(4, 3) because 2, 3, and 4 all lie in the same equivalence class.

◦ On the other hand, R cannot contain any other pairs than the ones we have listed, because the only
remaining ordered pairs involve elements from di�erent parts of the partition, and we cannot include any
of those ordered pairs because those elements are required to lie in di�erent equivalence classes.

◦ So the only choice isR = {(1, 1), (1, 5), (5, 1), (5, 5), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}.
◦ Notice here that R is the union of the Cartesian products {1, 5} × {1, 5} and {2, 3, 4} × {2, 3, 4} of the
underlying parts of the partition. From this description, it is quite easy to see that this relation R is
indeed an equivalence relation whose equivalence classes are {1, 5} and {2, 3, 4}.
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◦ Based on this example, we need only collect the important details of this construction and verify that
they do work in general.

• Theorem (Equivalence Relations and Partitions): Let A be a set. If R is any equivalence relation on A, then
the equivalence classes of R form a partition P of A. Conversely, if P is a partition of A, then there exists
a unique equivalence relation R on A whose equivalence classes are the sets in P, namely, the equivalence
relation R =

⋃
X∈P X × X consisting of all ordered pairs of elements that are in the same part X of the

partition P.

◦ Intuitively, the relation R is de�ned by saying that a R b when a and b are in the same part of the
partition. The choice R =

⋃
X∈P X ×X is simply a formalization of this idea.

◦ Proof: The �rst statement was shown above, so now suppose P is a partition of A.

◦ De�ne the relation R =
⋃

X∈P X × X consisting of all ordered pairs of elements that are in the same
part X of the partition P: we must show that this R is an equivalence relation and that its equivalence
classes are the parts of P.
◦ First, R is re�exive: for any a ∈ A, by the de�nition of a partition we must have a ∈ X for some X ∈ P.
Then the ordered pair (a, a) is an element of X ×X, as required.

◦ Second, R is symmetric: if (a, b) ∈ R, then by the de�nition of R as a union, we must have (a, b) ∈ X×X
for some X ∈ P. This means a ∈ X and b ∈ X: then (b, a) ∈ X ×X also, and so (b, a) ∈ R.
◦ Third, R is transitive: if (a, b) ∈ R and (b, c) ∈ R, then we must have (a, b) ∈ X ×X and (b, c) ∈ Y × Y
for some X,Y ∈ P. This means a ∈ X and b ∈ X, and also b ∈ Y and c ∈ Y . Because P is a partition,
since b ∈ X and b ∈ Y we must have X = Y . Then a ∈ X and also c ∈ X, so (a, c) ∈ X × X and so
(a, c) ∈ R.
◦ Hence R is an equivalence relation.

◦ Now let a ∈ A and consider the equivalence class [a] of a. Since P is a partition, a ∈ X for a unique
X ∈ P. We claim that [a] = X.

◦ To see this, if b ∈ X, we have (a, b) ∈ X × X hence (a, b) ∈ R hence a R b hence b ∈ [a]. This shows
X ⊆ [a].

◦ For the other containment, if b ∈ [a] then a R b so that (a, b) ∈ R. By the de�nition of R as a union,
this requires (a, b) ∈ Y × Y for some y ∈ P where a ∈ Y and b ∈ Y . Since a ∈ X we must have Y = X,
so we see b ∈ X. This shows [a] ⊆ X, so [a] = X as claimed.

◦ We conclude that the equivalence classes of R are the same as the parts of P, as required.
◦ Finally, for uniqueness, if S is another relation with the same property, then for each X ∈ P, the relation
S must contain X ×X, hence must contain R =

⋃
X∈P X ×X.

◦ If S contained any additional ordered pairs, then such an ordered pair would contain elements from two
di�erent parts X and Y of the partition, but then X ∪ Y would be contained in an equivalence class of
S, contrary to hypothesis. Hence we must have S = R, so R is unique as claimed.

• From the theorem above, we obtain another way to verify that a relation is an equivalence relation, namely,
by checking whether it is obtained from a partition.

• As a �nal example, we will remark that we can give a more precise construction for vectors (often simply
described as �arrows�, where any two arrows that have the same length and point in the same direction are
considered equivalent) using equivalence classes, as follows:

• Example (Vectors): A directed line segment in the plane (or 3-space) is given by drawing an arrow from its
starting point P to its ending point Q.

◦ Let R be the relation of translation (on the set of directed line segments): we write S1 R S2 if the
directed line segment S1 can be translated to obtain the directed line segment S2.

◦ It is easy to see from this geometric description that R is an equivalence relation. The equivalence classes
of directed line segments under R are called vectors.

◦ Because there is a unique element in each equivalence class whose starting point is the origin, we may
label each equivalence class with the endpoint of this unique vector. Thus, for example, the vector 〈1, 2〉
is the equivalence class of directed line segments, one of which starts at the origin (0, 0) and ends at the
point (1, 2).
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1.3 Orderings

• We now discuss relations that generalize the properties of the order relation ≤ on real numbers (and also
rational numbers and integers) and the subset relation ⊆ on sets.

◦ As we have already seen, both of these relations satisfy some of the properties of an equivalence relation:
speci�cally, both ≤ and ⊆ are re�exive and transitive.

◦ However, neither of these relations is symmetric: in fact, the only time when a ≤ b and b ≤ a are both
true is when a = b; similarly, the only time when A ⊆ B and B ⊆ A are both true is when A = B.

◦ This latter property is (almost) the opposite of being symmetric, and is given a name accordingly:

• De�nition: If R is a relation on the set A, then R is antisymmetric if a R b and b R a together imply a = b.

◦ In formal language, R is antisymmetric when ∀a ∈ A ∀b ∈ B, [(a R b) ∧ (b R a)]⇒ (a = b).

◦ Example: The order relation ≤ on real numbers is antisymmetric, because a ≤ b and b ≤ a implies a = b.
(In fact, these are equivalent.)

◦ Example: The subset relation ⊆ on sets is antisymmetric, because A ⊆ B and B ⊆ A implies A = B.
(In fact, these are equivalent.)

◦ Example: The identity relation R on A is antisymmetric, since the only time that a R b is true is when
a = b.

◦ Notice that the identity relation on A is both symmetric and antisymmetric. In particular, this says
(despite what may be suggested by the terminology) �antisymmetric� does not mean the same thing as
�not symmetric�, and �symmetric� does not mean the same thing as �not antisymmetric�.

• Both of these relations involve the idea of one object being �at least as big� as another, so we would like to
�nd a way to describe this concept in the abstract language of relations.

◦ If R is a generic relation in which a R b means that b is at least as big as a, then certainly we should
demand that a R a so that R is re�exive (since a is at least as big as itself).

◦ We would also want R to be transitive, since if c is at least as big as b and b is at least as big as a, then
c should be at least as big as a.

◦ Finally, antisymmetry is also a natural condition: the only situation in which we would like b to be at
least as big as a and a to be at least as big as b is when a = b.

◦ These are the conditions we will require for an order relation.

• De�nition: The relation R on a set A is called a partial ordering of A (or partial order) if R is re�exive,
antisymmetric, and transitive.

◦ Example: The order relation ≤ on real numbers (or rational numbers, or integers) is a partial ordering,
as is the subset relation ⊆ on sets.

◦ Example: The relation R9 = {(1, 1), (1, 2), (2, 2), (3, 3), (3, 4), (4, 4)} on the set {1, 2, 3, 4} is a partial
ordering. It is easy to see that R9 is re�exive (it contains all pairs (a, a)) and antisymmetric (it does not
contain both (a, b) and (b, a) for any a 6= b), and it is a straightforward check to see it is also transitive.

◦ Non-Example: The divisibility relation | on the set of all integers is not a partial ordering: although it
is re�exive and transitive, it is not antisymmetric because for example 1|(−1) and (−1)|1, but −1 6= 1.

◦ Example: The divisibility relation | on the set of positive integers is a partial ordering: it is re�exive and
transitive, and is also symmetric because if a and b are positive with a|b and b|a, then a = b (since a|b
implies a ≤ b for a, b positive, and then a ≤ b and b ≤ a implies a = b).

◦ It is not hard to see that if S is a subset of A, then the restriction of a partial ordering on A to S yields
a partial ordering on S. Hence, for example, the divisibility relation | is also a partial ordering on the
set of positive even integers.

• Example: Show that the relation R10 on all (�nite) strings of digits, where a R10 b when the string b contains
the string a (consecutively, in the same order) somewhere inside of it, is a partial ordering.
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◦ To illustrate this relation, note that 123 R10 412390 because the second string contains the �rst one (as
its second through fourth digits) but 123 6R10 31213 because the second string does not have �123� in it
anywhere.

◦ This relation is re�exive (any string contains itself), antisymmetric (if two strings each contain each
other, they would have to be the same length and identical), and transitive (if c contains b and b contains
a, then c contains a since a is located inside the string for b). Hence it is a partial ordering, as claimed.

• We use the term �partial ordering� because a partial order on A gives us a way of comparing some, but not
necessarily all, pairs of elements of A.

◦ For example, if R is the subset relation, then for A = {1, 2} and B = {3}, we cannot compare A to B
using R, because A 6⊆ B and also B 6⊆ A.
◦ If R is the divisibility relation on positive integers, then we cannot compare 2 to 3, since 2 - 3 and 3 - 2.
◦ Likewise, for the relation R9 on {1, 2, 3, 4} we cannot compare 1 to 3, because neither of the ordered
pairs (1, 3) and (3, 1) is in R9.

◦ Similarly, for the relation R10 on strings of digits, we cannot compare 123 to 4567, because neither string
contains the other.

◦ However, for some of the order relations we have listed, it is possible to compare any two elements in
the set: for example, for any two real numbers a and b, it is true that either a ≤ b or b ≤ a (or both, in
which case a = b).

◦ This situation is important enough that we give it a name:

• De�nition: If R is a partial ordering on A such that for any a, b ∈ A at least one of a R b and b R a is true1,
we call R a total ordering (or linear ordering) on A.

◦ Example: The order relation ≤ on real numbers (or rational numbers, or integers) is a total ordering.

◦ Example: The standard dictionary ordering on the letters of the alphabet (namely: a, b, c, ... , z) where
we write L1 ≤ L2 if L2 is after L1 in the alphabet, is a total ordering.

◦ Example: The divisibility relation on the set {1, 2, 4, 8, 16, . . . } of powers of 2 is a total ordering, since it
is clearly a partial ordering, and for any two powers of 2, one of them must divide the other.

• Notice that if R is a total ordering then since R is antisymmetric, we see that for any a, b with a 6= b, exactly
one of a R b and b R a is true.

◦ Thus, we may think of R as allowing us to compare any two unequal elements of A to identify which one
is �bigger�.

◦ Given a total ordering, we can also imagine arranging all of the elements of A �in order� along a line
(whence the name linear ordering); indeed, for the ordering ≤ on the real numbers, this is precisely the
so-called �number line�.

◦ Like with partial orderings, the restriction of a total ordering to a subset S of A is a total ordering on S.

• As a �nal comment, we will note that because partial orderings behave so much like the ≤ relation on real
numbers, it is very common to use a similar symbol, such as � (or even just the ≤ symbol itself) to represent
a generic partial ordering.

1.4 Functions

• We now discuss how to formalize the idea of a function using the language of relations.

1For a general relation R, the condition that a R b or b R a is true is called the connex property.
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1.4.1 De�nition and Examples

• The idea of a function is already quite familiar: to each element of its domain, a function f associates a unique
value in its range.

◦ More explicitly, we write f(a) = b to indicate that the value of f at the element a is equal to b.

◦ We can then view f as a relation by saying that f(a) = b precisely when (a, b) ∈ f .
◦ The requirement that f is de�ned on every element of its domain means that for all a ∈ A, where A
is the domain of f , there exists some value b in some other set B such that (a, b) ∈ f . Furthermore,
because f is well-de�ned, there is only one such element b.

◦ We can summarize all of this as follows:

• De�nition: If A and B are sets, a function (or map) from A to B is a relation f : A→ B such that for every
a ∈ A there exists a unique b ∈ B with (a, b) ∈ f , and in such an event we write f(a) = b. The set A is called
the domain of f and the set B is called the target (or codomain) of f .

◦ We emphasize that the domain and target are part of the de�nition of a function. Two functions are
equal when their domains are equal, their targets are equal, and their underlying sets of ordered pairs
are equal.

◦ Example: Some functions from {1, 2, 3, 4} to {1, 2, 3, 4} are f1 = {(1, 2), (2, 3), (3, 1), (4, 4)}, f2 =
{(1, 1), (2, 3), (3, 2), (4, 2)}, and f3 = {(1, 4), (2, 3), (3, 2), (4, 1)}. We have, for example, f1(1) = 2,
f1(3) = 1, f2(4) = 2, and f3(1) = 4.

◦ Example: One function from {a, b, c} to {31, 37} is given by f = {(a, 31), (b, 31), (c, 37)}. For this
function, f(a) = 31, f(b) = 31, and f(c) = 37.

◦ Non-Example: The relation R : {1, 2, 3} → {1, 2, 3, 4} given by R = {(1, 1), (1, 2), (2, 2), (3, 1)} is not
a function because it is not well-de�ned on the element 1 (since it contains the ordered pairs (1, 1) and
(1, 2)).

◦ Example: If T is the set of triangles in the Cartesian plane, then there is a function f4 : T → R where
f4(4) is the area of the triangle 4. Every triangle has a well-de�ned area, and this area is an element
of the target set R.
◦ Example: If S is the set of integers greater than 1, then there is a function f5 : S → Z where f5(n) is
the smallest prime number dividing n. For example, we have f5(100) = 2 and f5(33) = 3.

◦ Example: If A is the set of all capital cities and B is the set of all countries, then there is a function
l : A → B where l(C) is the country of which C is the capital. (In order for this to be a well-de�ned
function, we observe that no city is the capital of more than one country.)

◦ Example: If A is any set, the identity function iA : A→ A is the function with iA(a) = a for all a ∈ A.
Note that this de�nition is still well-posed when A is the empty set: in this case iA is the empty function
consisting of no ordered pairs at all.

◦ Non-Example: If S is the set of all people, then the relation R : S → S, consisting of all ordered pairs
(P,Q) where P is a parent of Q, is not a function: there exist some people P that are the parent of more
than one person, and for such people there is not a unique value to R(P ).

◦ Example: If S is the set of all people, consider the relation R : S → P(S) consisting of all ordered pairs
(P,Q) where Q is the set of all children of P . Then R is a function, because to each person in S there
is associated a unique element of P(S), namely, the set of all children of P . This set may be empty or
contain more than one person, but in all cases it is well-de�ned and unique.

• Many functions (and most of the functions we typically work with) can be de�ned by a general rule or
description, such as the function f3 : {1, 2, 3, 4} → {1, 2, 3, 4} above: explicitly, we can see that f3(n) = 5− n
for all n ∈ {1, 2, 3, 4}.

◦ We typically abbreviate such a de�nition by merely writing f3(n) = 5− n with the implicit assumption
that this rule is valid for all n in the domain of f3, which in this case is {1, 2, 3, 4}.
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◦ Example: Some examples of functions from R to R that can be de�ned in this way are the squaring
function p(x) = x2, the sine function s(x) = sin(x), and the absolute value function a(x) = |x| ={
x for x ≥ 0

−x for x < 0
.

◦ When de�ning a function in this way, it is very important to ensure that the de�nition is unambiguous
and well-de�ned.

◦ For example, although it may seem valid to de�ne a function f : Q → Z by saying f(a/b) = a for any
a/b ∈ Q, this de�nition does not actually yield a well-de�ned function: notice that, per the rule given,
we would have f(1/2) = 1 while f(2/4) = 2, but 1/2 = 2/4 as rational numbers. (One way to �x this
de�nition would be to specify that a/b must be in lowest terms, and also to clarify what happens with
negative elements of the domain.)

• It is crucial to specify the domain and target when we de�ne a function via a rule in this manner; otherwise,
the de�nition can be ambiguous.

◦ To illustrate why, consider the functions g1 : R→ R with g1(x) = x2 and g2 : Z→ Z with g2(x) = x2.

◦ The functions g1 and g2 are (seemingly) de�ned by the same rule, but they are di�erent functions
because their underlying sets of ordered pairs are di�erent: notice for example that (1/2, 1/4) ∈ g1, but
(1/2, 1/4) 6∈ g2.

• It is often very helpful to represent functions geometrically.

◦ For functions from (a subset of) R to (a subset of) R we may draw the graph of a function f , which
consists of all points (x, y) in the Cartesian plane such that (x, y) ∈ f .2

◦ If the domain is unbounded (i.e., contains points arbitrarily far from 0) we can of course only draw a
portion of the graph.

◦ Here are some examples of graphs of functions:

◦ For functions f : A → B de�ned on �nite sets, or sets that do not consist of real numbers, the graph
is typically either not useful, or not possible to draw sensibly. For this reason we also use �function
diagrams�, in which we represent the sets A and B as collections of points and draw an arrow from a ∈ A
to b ∈ B whenever f(a) = b.

◦ Here are function diagrams for f1 = {(1, 2), (2, 3), (3, 1), (4, 4)}, f2 = {(1, 1), (2, 3), (3, 2), (4, 2)}, and
f3 = {(1, 4), (2, 3), (3, 2), (4, 1)} from A = {1, 2, 3, 4} to B = {1, 2, 3, 4}:

2In fact, if R : A → B where A and B are both subsets of R, we may actually draw the graph of the relation R, consisting of all

points (x, y) ∈ R although we will not need to invoke this idea.
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• An important property of a function is its set of �output values�:

• De�nition: If f : A→ B is a function, the set of elements b ∈ B for which there exists at least one a ∈ A with
f(a) = b is called the image (or range) of f .

◦ Terminology: Some authors use the word �range� as a synonym for �codomain�, while others use it as
synonym for �image�. We will avoid using the word �range� for this reason.

◦ Example: For the functions on {1, 2, 3, 4} given by f1 = {(1, 2), (2, 3), (3, 1), (4, 4)}, f2 = {(1, 1), (2, 3), (3, 2), (4, 2)},
and f3 = {(1, 4), (2, 3), (3, 2), (4, 1)}, the image of f1 is {1, 2, 3, 4}, the image of f2 is {1, 2, 3}, and the
image of f3 is {1, 2, 3, 4}.
◦ The image of a function f : A → B is always a subset of the target set B, but need not be equal: for
example, the image of f2 above is only the set {1, 2, 3} even though the target set is {1, 2, 3, 4}.
◦ Example: The image of the function f : R → R with f(x) = x2 is the set R≥0 of nonnegative real
numbers.

• Since we view functions as relations, all of the operations we can perform with relations can also be performed
on functions. One important operation is that of restricting a function to a smaller domain:

• De�nition: If C is a subset of A and f : A → B is a function, the restriction of f to the domain C, denoted
f |C , is the function f |C : C → B given by f |C = f ∩ (C ×B).

◦ The ordered pairs in f |C are precisely those of the form (c, b) where c ∈ C and (c, b) ∈ f : we can think of
f |C as the function obtained by �throwing away� the information about the values on f on the elements
of A not in C.

◦ Example: For f : {1, 2, 3, 4} → {1, 2, 3, 4} with f = {(1, 2), (2, 3), (3, 1), (4, 4)}, the restriction of f to
the domain {1, 3} is the function g : {1, 3} → {1, 2, 3, 4} with g = {(1, 2), (3, 1)}.
◦ In the particular situation where f is de�ned using a rule, we simply use the same rule for f |C on the
smaller domain C.

◦ Example: For f : R→ R de�ned by f(x) = x2, we may restrict f to the positive real numbers to obtain
a new function g : R+ → R de�ned by g(x) = x2.

• In some situations we can also restrict (or enlarge) the target set of a function.

◦ Indeed, if f : A → B is a function with image im(f), then we also have a function g : A → im(f) given
by the same collection of ordered pairs, whose target set is now im(f).

◦ More generally, if C is any set with im(f) ⊆ C, we may also view the same collection of ordered pairs as
yielding a function h : A→ C.

◦ It is a matter of taste whether to consider this function h as being �the same as� f , since its underlying
collection of ordered pairs, domain, and image are the same as f 's. In practice, it is common to view
this function as being equivalent to f , since it carries the same information.

◦ However, we have adopted the convention that the domain and target are parts of the de�nition of a
function, and so we would not consider h to be equal to f , since its target set is di�erent.

1.4.2 Function Composition

• We now discuss ways of constructing new functions from other functions, of which the most fundamental is
function composition.

◦ Informally, if f and g are functions, the notation f(g(x)) is used to symbolize the result of applying f
to the value g(x). This operation is well-de�ned provided that the image of g is a subset of the domain
of f .

◦ We use the notation f ◦ g to refer to the composite function itself, so that (f ◦ g)(x) = f(g(x)).

◦ We may formalize this as follows:
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• De�nition: Let g : A→ B and f : B → C be functions. Then the composite function f ◦ g : A→ C is de�ned
by taking (f ◦ g)(a) = f(g(a)) for all a ∈ A.

◦ More explicitly, the ordered pairs in f ◦ g are those pairs (a, c) ∈ A × C for which there exists a b ∈ B
with (a, b) ∈ g (so that g(a) = b) and with (b, c) ∈ f (so that f(b) = c).

◦ In symbolic language, f ◦ g = {(a, c) ∈ A× C : ∃b ∈ B, [(a, b) ∈ g)] ∧ [(b, c) ∈ f ]}.

• In practice, if f and g are both described by rules, it is easiest to �nd compositions using the de�nition
(f ◦ g)(a) = f(g(a)).

• Example: Let f : R → R and g : R → R be the functions f(x) = x2 and g(x) = 2x + 1. Find f ◦ g, g ◦ f ,
f ◦ f , and g ◦ g.

◦ We have (f ◦g)(x) = f(g(x)) = f(2x+1) = (2x+1)2, and similarly (g◦f)(x) = g(f(x)) = g(x2) = 2x2+1.

◦ Also, (f ◦ f)(x) = f(f(x)) = f(x2) = x4, and (g ◦ g)(x) = g(g(x)) = g(2x+ 1) = 4x+ 3.

• Notice that the result of function composition depends on the order of the functions: in general, it will be the
case that f ◦ g and g ◦ f are completely unrelated functions.

◦ Indeed, depending on the domains and images of f and g, it is quite possible that one of f ◦ g is de�ned
while the other is not.

◦ For example, suppose f : {1, 2} → {a, b} has f(1) = a and f(2) = b, and g : {a, b} → {3, 4} has g(a) = 3
and g(b) = 4.

◦ Then the composite function g ◦ f exists and is a function from {1, 2} to {3, 4}, where, speci�cally, we
have (g ◦ f)(1) = g(f(1)) = g(a) = 3, and (g ◦ f)(2) = g(f(2)) = g(b) = 4.

◦ However, the composite function f ◦ g does not exist: the only possible elements in the domain are
the elements in the domain of g, but if we try to evaluate (f ◦ g)(a), for example, we would have
(f ◦ g)(a) = f(g(a)) = f(3), and this expression does not make sense because 3 is not in the domain of
f . Similarly, (f ◦ g)(b) = f(g(b)) = f(4) also does not make sense.

• If f and g are given as sets of ordered pairs, we can use function diagrams to visualize and evaluate com-
positions: we draw the diagrams for the two functions together, and then follow the arrows from left to
right.

◦ For example, for the functions f1 = {(1, 2), (2, 3), (3, 1), (4, 4)} and f2 = {(1, 1), (2, 3), (3, 2), (4, 2)} on
{1, 2, 3, 4}, here are composition diagrams for f1 ◦ f2 and f2 ◦ f1:

◦ By following the arrows from left to right, we can see that if g = f1◦f2, then g(1) = 2, g(2) = 1, g(3) = 3,
and g(4) = 3. Similarly, for h = f2 ◦ f1, we have h(1) = 3, h(2) = 2, h(3) = 1, and h(4) = 2.

• As we have seen, function composition is not commutative. However, composition does satisfy some other
algebraic properties:

• Proposition (Properties of Composition): Suppose A,B,C,D are sets. Then

1. Function composition is associative: If f : C → D, g : B → C, and h : A → B are any functions then
(f ◦ g) ◦ h and f ◦ (g ◦ h) are equal as functions from A to D.
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◦ Proof: Observe �rst that the domain of both (f ◦ g) ◦ h and f ◦ (g ◦ h) is A, and the target of both
(f ◦ g) ◦ h and f ◦ (g ◦ h) is D.

◦ Now let a ∈ A. Then by de�nition we have [(f ◦ g) ◦ h](a) = [(f ◦ g)](h(a)) = f(g(h(a))), and we
also have [f ◦ (g ◦ h)](a) = f [(g ◦ h)(a)] = f(g(h(a))).

◦ Since these two quantities are equal, we see [(f ◦ g) ◦ h](a) = [f ◦ (g ◦ h)](a) for all a ∈ A.
◦ Hence the functions (f ◦ g) ◦ h and f ◦ (g ◦ h) have the same domain and target, and take the same
value at every element of their common domain, so they are the same function.

2. The identity function behaves as a left and right identity: For any f : A→ B, f ◦ iA = f and iB ◦ f = f .

◦ Proof: Observe that the domain of f ◦ iA is A and the target is B, the same as for f .

◦ Then for any a ∈ A we have (f ◦ iA)(a) = f(iA(a)) = f(a), and so we see f ◦ iA and f take the same
value at every point of their shared domain. Hence they are equal as functions.

◦ In the same way, the domain of iB ◦ f is A and the target is B, the same as for f .

◦ Then for any a ∈ A we have (iB ◦ f)(a) = iB(f(a)) = f(a), and so we see iB ◦ f and f take the same
value at every point of their shared domain. Hence they are equal as functions.

1.4.3 Inverses of Functions, One-to-One and Onto Functions

• Next we examine inverses of functions.

◦ Under the common interpretation of a function f as a �machine� that operates on an input value to
produce an output value, the inverse f−1 would correspond to a machine that inverts this process,
taking an output value of f and giving the corresponding input value.

◦ In particular, if f : A→ B, then we would like to have f−1 : B → A, and on the level of ordered pairs,
if (a, b) ∈ f , then we would like (b, a) ∈ f−1.
◦ Indeed, we have already de�ned an object with this exact property, namely, the inverse relation to f .

◦ However, if f : A→ B is an arbitrary function, the inverse relation f−1 need not be a function from B
to A.

◦ For example, suppose f : {1, 2, 3} → {1, 2, 3, 4} is the function with f(1) = 2, f(2) = 4, and f(3) = 2, so
that as a set of ordered pairs, f = {(1, 2), (2, 4), (3, 2)}.
◦ Then the inverse relation is f−1 = {(2, 1), (4, 2), (2, 3)} = {(2, 1), (2, 3), (4, 2)}. However, f−1 is not a
function (on any domain) because it contains the ordered pairs (2, 1) and (2, 3), meaning that f−1 is not
well-de�ned on the element 2.

◦ It is easy to identify the di�culty here: the problem is that f maps both 1 and 3 to 2, so we cannot
assign a unique value to f−1(2) since we want it to equal both 1 and 3.

◦ As another example, suppose g : {1, 2, 3} → {1, 2, 3, 4} is the function with g(1) = 2, g(2) = 4, and
g(3) = 1.

◦ Then g = {(1, 2), (2, 4), (3, 1)} so g−1 = {(2, 1), (4, 2), (1, 3)} = {(1, 3), (2, 1), (4, 2)}. We can see that
g−1 is indeed a function, but it is a function from {1, 2, 4} → {1, 2, 3}, not a function from {1, 2, 3, 4} →
{1, 2, 3}.
◦ In this case, we see that the inverse relation to g : A → B is not a function g−1 : B → A from B to A,
but rather a function g−1 : im(g)→ A from the image of g to A.

◦ We can clarify this behavior by identifying the precise characteristics of the functions that cause these
behaviors:

• De�nition: The function f : A → B is one-to-one (or injective) if for any a1, a2 ∈ A, f(a1) = f(a2) implies
a1 = a2.

◦ Equivalently, f : A→ B is one-to-one when a1 6= a2 implies f(a1) 6= f(a2), which is the same as saying
that f maps unequal elements in its domain to unequal elements in its image.

◦ Example: The function f : R → R given by f(x) = 3x− 4 is one-to-one, because f(a1) = f(a2) implies
3a1 − 4 = 3a2 − 4, and this only occurs when a1 = a2.
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◦ Non-Example: The function f : R→ R given by f(x) = x2 is not one-to-one, because f(2) = 4 = f(−2).
◦ Example: The function f : Z → Z given by f(n) = 2n is one-to-one, because f(a1) = f(a2) implies
2a1 = 2a2, which only occurs for a1 = a2.

◦ Non-Example: The function f : R → R given by f(x) = sin(x) is not one-to-one, because f(0) = 0 =
f(π).

• De�nition: The function f : A→ B is onto (or surjective) if im(f) = B.

◦ Equivalently, f : A→ B is onto when for any b ∈ B, there exists an a ∈ A with f(a) = b.

◦ Example: The function f : R→ R given by f(x) = 3x− 4 is onto, because for any b ∈ R, there exists an
a ∈ R with f(a) = b, namely, a = (b+ 4)/3, as can be found by solving the equation 3a− 4 = b for a.

◦ Non-Example: The function f : R → R given by f(x) = x2 is not onto, because there is no a ∈ R such
that f(a) = −1.
◦ Non-Example: The function f : Z → Z given by f(n) = 2n is not onto, because there is no a ∈ Z with
2a = 1.

◦ Example: The function f : R→ R+ given by f(x) = ex is onto, because for any b ∈ R+, there exists an
a ∈ R with f(a) = b, namely, a = ln(b), since in such a case we have f(ln(b)) = eln(b) = b.

• Using function diagrams, it is easy to see visually whether a function is one-to-one or onto:

◦ For the functions shown above from A = {1, 2, 3, 4} to B = {1, 2, 3, 4}, we can see that f1 is one-to-one
since no two arrows land at the same point in the target, and onto since every point in the target has at
least one arrow pointing to it.

◦ On the other hand, f2 is not one-to-one because it has two arrows pointing to 2, and it is not onto
because it has no arrow pointing to 4.

• We can now establish the precise relationship between being one-to-one (or onto) and the existence of an
inverse function:

• Proposition (One-to-One, Onto, and Inverses): Suppose f : A→ B is a function.

1. The inverse relation f−1 is a function (from im(f) to A) if and only if f is one-to-one.

◦ Proof: Note that f−1 is a function precisely when (c, a) ∈ f−1 and (c, b) ∈ f−1 implies a = b.

◦ This condition is equivalent to saying that if (a, c) ∈ f and (b, c) ∈ f then a = b, which is in turn
equivalent to saying that if f(a) = c = f(b) then a = b. But this last condition is precisely the same
as saying f is one-to-one.

2. If f−1 : B → A is a function, then f−1 ◦ f = iA and f ◦ f−1 = iB .

◦ Proof: For the �rst statement, note that f−1 ◦ f is a function from A to A.

◦ Now let a ∈ A be arbitrary and set b = f(a) ∈ B. Then (a, b) ∈ f so (b, a) ∈ f−1, meaning that
f−1(b) = a.

◦ Now we compute (f−1 ◦ f)(a) = f−1(f(a)) = f−1(b) = a by the above.

◦ But since a was arbitrary, and f−1 ◦ f and iA have the same domain and target and take the same
values for all a ∈ A, they are equal as functions.
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◦ The argument to see that f ◦ f−1 = iB is similar: as above note f ◦ f−1 and iB have the same
domain and target.

◦ Now let b ∈ B be arbitrary and set a = f−1(b) ∈ A. Then (b, a) ∈ f−1 and so (a, b) ∈ f .
◦ We compute (f ◦ f−1)(b) = f(f−1(b)) = f(a) = b, so since b was arbitrary, f ◦ f−1 and iB are equal
as functions.

3. If there exists a function g : B → A such that g ◦ f = iA, then f is one-to-one.

◦ Proof: Suppose g : B → A has g ◦ f = iA and that f(a1) = f(a2).

◦ Then a1 = iA(a1) = (g◦f)(a1) = g(f(a1)) = g(f(a2)) = (g◦f)(a2) = iA(a2) = a2, so f is one-to-one.

4. If there exists a function g : B → A such that f ◦ g = iB , then f is onto.

◦ Proof: Suppose g : B → A has f ◦ g = iB and let b ∈ B be arbitrary.

◦ Then b = iB(b) = (f ◦ g)(b) = f(g(b)), meaning that if we set a = g(b), then we have f(a) = b, so f
is onto.

• By combining all of these observations we can give several equivalent characterizations of when a function has
an inverse function:

• Theorem (Inverse Functions): Suppose f : A→ B is a function. Then the following are equivalent:

1. f is one-to-one and onto.

2. f−1 is a function from B to A.

3. There exists a function g : B → A such that g ◦ f = iA and f ◦ g = iB .

◦ Proof: We show that (1) implies (2), that (2) implies (3), and that (3) implies (1). This is su�cient
because the other implications (such as (1) implies (3)) follows from these three.

◦ (1)⇒ (2): If f is one-to-one, then f−1 is a function from im(f) to A by result (1) from the proposition
above. If f is also onto, then im(f) = B, and so f−1 is a function from B to A.

◦ (2)⇒ (3): If f−1 is a function from B to A, then simply take g = f−1; by result (2) from the proposition
above, f−1 ◦ f = iA and f ◦ f−1 = iB as required.

◦ (3) ⇒ (1): If there exists a function g : B → A such that g ◦ f = iA, then by result (3) from the
proposition above, we see f is one-to-one. If g also has the property that f ◦ g = iB , then by result (4)
from the proposition above, we see f is also onto.

• We can also deduce that (when it exists) the inverse function is the unique two-sided inverse of f :

• Corollary (Uniqueness of Inverse): Suppose f : A→ B and g : B → A are functions such that g ◦ f = iA and
f ◦ g = iB . Then g = f−1.

◦ Proof: If there exists such a function g, then by the theorem above, f−1 is a function from B to A and
it satis�es the same properties as g.

◦ Then by the basic properties of function composition, we can write g = iA ◦ g = (f−1 ◦ f) ◦ g =
f−1 ◦ (f ◦ g) = f−1 ◦ iB = f−1, as required.

• The actual calculation of the inverse function, when it exists, is trivial when f is described as a list of ordered
pairs, since f−1 is obtained simply by reversing all of the pairs.

◦ When f is described as a rule (typically, for functions written algebraically), to �nd the inverse we simply
solve the equation y = f(x) for x in terms of y: this will give x = f−1(y).

• Example: Verify that the function h : R→ R given by h(x) = 3x−2 is invertible and �nd its inverse function.

◦ To show that h is one-to-one, notice that h(a) = h(b) is the same as 3a− 2 = 3b− 2, and this can easily
be rearranged to obtain a = b.

◦ To �nd h−1, we solve y = 3x− 2 for x in terms of y. We obtain x =
y + 2

3
, so h−1(y) =

y + 2

3
.

• In the example above, notice h is a composite function: h scales its argument by 3 and then subtracts 2.
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◦ Its inverse function reverses each of these operations in the opposite order: namely, h−1 �rst adds 2 and
then divides its argument by 3.

◦ The observation in this example holds in general:

• Proposition (Composition of Inverses): If f : B → C and g : A→ B are invertible functions, then so is f ◦ g,
and (f ◦ g)−1 = g−1 ◦ f−1.

◦ Proof: By our theorem on invertible functions, we need only verify that composing f ◦ g and g−1 ◦ f−1
in either order yields the appropriate identity function.

◦ Observe that, by properties of composition, we have [f ◦g]◦[g−1◦f−1] = f ◦[g◦g−1]◦f−1 = f ◦iB ◦f−1 =
f ◦ f−1 = iC .

◦ Likewise, [g−1 ◦ f−1] ◦ [f ◦ g] = g−1 ◦ [f−1 ◦ f ] ◦ g = g−1 ◦ iB ◦ g = g−1 ◦ g = iA.

◦ Hence f ◦ g is invertible and its inverse is g−1 ◦ f−1, as claimed.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2019. You may not reproduce or distribute this material
without my express permission.
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