Part I: Calculation Problems

- For each of the following relations, decide whether they are (i) reflexive, (ii) symmetric, (iii) transitive, (iv) antisymmetric, (v) irreflexive, (vi) an equivalence relation, (vii) a partial ordering, and (viii) a total ordering.
 - (a) $R = \{(1,1), (2,1), (2,2)\}$ on the set $\{1,2\}$.
 - (b) $R = \{(1,2), (2,1)\}$ on the set $\{1,2\}$.
 - (c) $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}$ on the set $\{1,2,3,4\}$.
 - (d) The divisibility relation on the set $\{2, -3, 4, -5, 6\}$.
 - (e) The divisibility relation on the set $\{2, -4, -12, 36\}$.
 - (f) The relation R on Z with a R b precisely when $|a| \equiv |b|$ modulo 5.
 - (g) The relation R on \mathbb{R} with a R b precisely when ab > 0.

2. For each of the following functions $f: A \to B$, determine whether (i) f is one-to-one, (ii) f is onto, (iii) f is a bijection.

- (a) f(x) = 2x from $A = \mathbb{R}$ to $B = \mathbb{R}$.
- (b) f(n) = 2n from $A = \mathbb{Z}$ to $B = \mathbb{Z}$.
- (c) $f(x) = \frac{x}{x-1}$ from $A = \mathbb{R} \setminus \{1\}$ to $B = \mathbb{R}$.
- (d) $f(x) = x^3$ from $A = \mathbb{R}$ to $B = \mathbb{R}$.
- (e) $f = \{(1,2), (2,3), (3,4), (4,1)\}$ from $\{1,2,3,4\}$ to itself.
- (f) $f = \{(1,3), (2,4), (3,1), (4,4)\}$ from $\{1,2,3,4\}$ to itself.
- 3. Identify the ordered pairs in the equivalence relation that corresponds to the partition $\{1, 2, 4\}, \{3, 5\}, \{6\}$ of $\{1, 2, 3, 4, 5, 6\}$
- 4. Show $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : |x| = |y|\}$ is an equivalence relation and list the equivalence classes of 0, 1, 2, -2, and 4.
- 5. Find the coefficients of x^{18} in $(2x+1)^{24}$, in $(x^2+x)^{13}$, and in $(x^3-2/x)^{14}$.
- 6. A U.S. social security number (SSN) is a 9-digit string of the form abc-de-fghi. Find:
 - (a) The number of SSNs where all of the digits are odd.
 - (b) The number of SSNs that have no 0s.
 - (c) The number of SSNs that have at least one 0.
 - (d) The number of SSNs that have exactly four 0s.
 - (e) The number of SSNs that have at least one 0 or 8.
 - (f) The number of SSNs with no repeated digits.
 - (g) The number of SSNs with no double digits (i.e., no 00, 11, etc.).
 - (h) The number of SSNs where abc + de = fghi.
 - (i) The number of SSNs where abc, de, and fghi are all multiples of 3.
 - (j) The number of SSNs where $abc \cdot de \cdot fghi$ is a multiple of 3.
 - (k) The number of SSNs where each digit is \geq the one to its left (e.g., 997-64-3100).

Part II: Proof Problems

- 1. Suppose $f : A \to B$ is a function.
 - (a) If f is one-to-one, show that there is a bijection between A and im(f). Deduce that #A = #im(f).
 - (b) If A and B are both finite and #A = #B, show that f is one-to-one implies that f is onto.
 - (c) Show that (b) is false for infinite sets by giving a function $f : \mathbb{R} \to \mathbb{R}$ where f is one-to-one but not onto.
- 2. A real number is algebraic if it is a root of a nonzero polynomial p(x) with integer coefficients, and it is transcendental if it is not the root of any such polynomial.
 - (a) Let S_n be the set of all roots of nonzero polynomials of degree at most n whose coefficients are integers and at most n in absolute value. Show that S_n is finite and that the set of algebraic numbers is $\bigcup_{n>1} S_n$.
 - (b) Show that the set of algebraic numbers is countable. Deduce there are uncountably many transcendental numbers.
- 3. Let A, B, C be sets, R be a relation, f, g be functions, and m, k, n be nonnegative integers. Prove the following:
 - (a) Show that the only equivalence relation R on A that is a function from A to A is the identity relation.
 - (b) Prove that if A is countable and B is uncountable, then $B \setminus A$ is uncountable.
 - (c) Prove that $\sum_{k=0}^{n} \binom{n}{k} 9^{k} = 10^{n}.$
 - (d) Find the number of partitions of $\{1, 2, ..., 2n\}$ into n unordered sets of 2 elements. Deduce that $2^n n!$ divides (2n)!.
 - (e) Prove that the set $\mathbb{Q} \times \mathbb{Z}$ is countable and that the set $\mathbb{R} \times \mathbb{Z}$ is uncountable.
 - (f) Prove that there exists a bijection between \mathbb{Q} and $\mathbb{Q} \cap (0,1)$, the set of rational numbers strictly between 0 and 1.
 - (g) A committee of 3 people is chosen from n mathematicians and n computer scientists. Prove that the number of possible committees is $2\binom{n}{3} + 2n\binom{n}{2}$ and deduce that $2\binom{n}{3} + 2n\binom{n}{2} = \binom{2n}{3}$.
 - (h) Prove that if $f: A \to B$ is one-to-one and $S \subseteq A$, then $f^{-1}(f(S)) = S$.
 - (i) Prove that if $f: A \to B$ is onto and $T \subseteq B$, then $f(f^{-1}(T)) = T$.
 - (j) Prove that there exists a bijection between (0,1) and [0,1]. [Hint: Use the Cantor-Schröder-Bernstein theorem.]
 - (k) Prove that $\sum_{k=1}^{n} k \cdot k! = (n+1)! 1$ for every positive integer n.
 - (l) Suppose $f: A \to B$ is a bijection. Show that $\tilde{f}: \mathcal{P}(A) \to \mathcal{P}(B)$ given by $\tilde{f}(S) = \{f(s) : s \in S\}$ is also a bijection.
 - (m) If $R, S: A \to B$ are relations, prove that $R^{-1} \cap S^{-1} = (R \cap S)^{-1}$.
 - (n) Prove that $\sum_{k=0}^{n} \frac{2^k}{k!(n-k)!} = \frac{3^n}{n!}.$