Part I: Calculation Problems

1. Suppose the logical operator $*$ is defined so that $P * Q = \neg P \land Q$. Using a truth table or otherwise, determine whether the following pairs of statements are logically equivalent for arbitrary propositions P, Q, and R:

- (a) The residue class $\overline{10}$ modulo 25.
- (b) The residue class $\overline{11}$ modulo 25.
- (c) The residue class $\overline{12}$ modulo 25.
- (d) The residue class $\overline{30}$ modulo 42.
- (e) The residue class $\overline{31}$ modulo 42.
- (f) The residue class $\overline{32}$ modulo 42.

Part II: Proof Problems

- 1. Suppose A, B, and C are arbitrary sets contained in a universal set U. Identify which statements are true and which are false. Then prove the true statements and give a counterexample for the false ones.
	- (a) $(A \cup B)\setminus A = B\setminus A$.
	- (b) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C).$

(c) $(A \cap B)^c \cup B \subseteq (A^c \cup B)^c$. (d) $A^c \cap B^c \subseteq (A \backslash B)^c \cap (B \backslash A)^c$.

2. Write, and then prove, the contrapositive of each of these statements (assume n refers to an integer):

- (a) If a and b are integers, then $3a 9b \neq 2$.
- (b) Suppose $a, b \in \mathbb{Z}$. If $ab = 1$ then $a \leq 1$ or $b \leq 1$.
- (c) If $5n + 1$ is even, then n is odd.
- (d) If n^3 is odd, then n is odd.
- (e) If n is not a multiple of 3, then n cannot be written
- as the sum of 3 consecutive integers.
- (f) Suppose p is prime. If p does not divide a and p does not divide b, then p does not divide ab.
- 3. Find a counterexample to each of the following statements:
	- (a) For any integers a, b, and c, if a|b and a|c, then $b|c$. (b) If p and q are prime, then $p + q$ is never prime.
	- (c) If *n* is an integer, then $n^2 + n + 11$ is always prime.
- (d) There do not exist integers a and b with $a^2 b^2 = 23$.
- (e) The sum of two irrational numbers is always irrational.
- (f) If $n > 1$ is an integer, then \sqrt{n} is always irrational.

4. Prove the following (recall the Fibonacci numbers F_i are defined by $F_1 = F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for all $n \ge 2$):

- (a) If F_n is the nth Fibonacci number, prove that $F_1 + F_3 + F_5 + \cdots + F_{2n+1} = F_{2n+2}$ for every positive integer n.
- (b) Suppose *n* is an integer. Prove that $2|n$ and $3|n$ if and only if $6|n$.
- (c) Prove that $1+\frac{1}{2}$ $\frac{1}{2} + \frac{1}{4}$ $\frac{1}{4} + \cdots + \frac{1}{2^{r}}$ $\frac{1}{2^n} = 2 - \frac{1}{2^n}$ $\frac{1}{2^n}$ for every positive integer *n*.
- (d) Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that $p|a$.
- (e) Prove there do not exist integers a and b such that $a^2 = 33 + 9b$. [Hint: Use the previous part.]
- (f) Prove any two consecutive perfect squares (i.e., the integers k^2 and $(k+1)^2$) are relatively prime.
- (g) Prove that $\frac{1}{1\cdot 2} + \frac{1}{2\cdot \cdot \cdot}$ $\frac{1}{2 \cdot 3} + \frac{1}{3}$ $\frac{1}{3 \cdot 4} + \cdots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$ $\frac{n}{n+1}$ for every positive integer *n*.
- (h) If $A = \{4a + 6b : a, b \in \mathbb{Z}\}\$ and $B = \{2c : c \in \mathbb{Z}\}\$, prove that $A = B$.
- (i) Prove that the sum of any four consecutive integers is congruent to 2 modulo 4.
- (j) If p is a prime, prove that $gcd(n, n + p) > 1$ if and only if $p|n$.
- (k) Suppose $a_1 = 1$ and $a_n = 3a_{n-1} + 4$ for all $n \ge 2$. Prove that $a_n = 3^n 2$ for every positive integer n.
- (l) If $C = \{6c : c \in \mathbb{Z}\}\$ and $D = \{10a + 14b : a, b \in \mathbb{Z}\}\$, prove that $C \subseteq D$.
- (m) If n is any positive integer, prove that $n-1$ is invertible modulo n and its multiplicative inverse is itself.
- (n) Suppose $b_1 = 3$ and $b_n = 2b_{n-1} n + 1$ for all $n \ge 2$. Prove that $b_n = 2^n + n$ for every positive integer n.
- (o) Using only basic facts about divisibility, prove every integer $n > 1$ has a prime divisor. [Hint: Strong induction.]
- (p) Suppose $c_1 = c_2 = 2$, and for all $n \geq 3$, $c_n = c_{n-1}c_{n-2}$. Prove that $c_n = 2^{F_n}$ for every positive integer n.
- (q) Suppose $d_1 = 2$, $d_2 = 4$, and for all $n \geq 3$, $d_n = d_{n-1} + 2d_{n-2}$. Prove that $d_n = 2^n$ for every positive integer n.
- (r) If a and b are positive integers, prove that $gcd(a, b) = lcm(a, b)$ if and only if $a = b$.