Part I: Calculation Problems

1. Suppose the logical operator * is defined so that $P * Q = \neg P \land Q$. Using a truth table or otherwise, determine whether the following pairs of statements are logically equivalent for arbitrary propositions P, Q, and R:

	(a) $P * (P * P)$ and $\neg P$. (b) $(P \Rightarrow Q) \Rightarrow (P * Q)$ and True.	(c) $P * Q$ and $\neg (Q \Rightarrow P)$. (d) $(Q * Q) * P$ and $P \land Q$.	(e) $(P * Q) * R$ and $P * (Q * R)$. (f) $(P * Q) \lor R$ and $(R * \neg Q) * (R * P)$.		
2.	Suppose that $A = \{1, 2, \{1\}, \{2\}, \{1, 3\}\}$ and $B = \{1, \{1, 2\}, \{1, 3\}, \{2\}\}$. Find the truth value of each statement:				
	(a) $1 \in A$. (c) $\{1\} \in B$.	(e) $\{1\} \in A \cap B$.	(g) $\{1, 2\} \in A \cup B$.	(i) $\{1,3\} \in A \cap B$.	
	(b) $1 \subseteq A$. (d) $\{1\} \subseteq B$.	(f) $\{1\} \subseteq A \cap B$.	(h) $\{1,2\} \subseteq A \cup B$.	(j) $\{1,3\} \subseteq A \cap B$.	
3.	Suppose that $A = \{1, 3, 5, 7, 9\}$, $B = \{1, 3, 5, 7, 9\}$	$\{1, 2, 4, 8\}$, and $C = \{2, 3, 5, 7\}$ with	ith universal set $U = \{1$,2,3,4,5,6,7,8,9}. Find:	
	(a) $A \cap B$. (b) $A \cup C$.	(c) $A^c \cap C^c$.	(d) $B^c \cup (A \cap C)$.	(e) $(B \cap C) \cap (A \cup B^c)$.	
4.	In a survey of 100 pet owners, 43 owned a cat, 44 owned a dog, 31 owned a fish, 23 owned a cat and a dog, 3 owned a cat and a fish, and 11 owned a dog and fish. If 1 person owned all three pets, find:				
	(a) The number of people who owned a cat or a dog. (c) The number of people who owned a fish and either			owned a fish and either a	
	(b) The number of people who owned a cat, but neither a		cat or dog but not both.		
	dog nor a fish.	(d) The	number of people who	owned none of the three.	
5.	Write a negation for each of the following statements:				
	(a) $\forall x \forall y \exists z, x + y + z > 5.$		(e) The integer n is a prime number and $n < 10$.		
	(b) Every integer is a rational number	er. (f) $\forall \epsilon >$	(f) $\forall \epsilon > 0 \exists \delta > 0, (x - a < \delta) \Rightarrow (x^2 - a^2 < \epsilon).$		
	(c) $\forall x \in A \forall y \in B, x \cdot y \in A \cap B.$	(g) For a	(g) For any $x \in \mathbb{R}$ there exists an $n \in \mathbb{Z}$ such that $x < n$.		
	(d) There is a perfect square that is not even. (h) There exist integers a and b such that $\sqrt[3]{2} = a/b$.			such that $\sqrt[3]{2} = a/b$.	
6.	Find the truth values of the following statements, where the universe of discourse is \mathbb{R} :				
	(a) $\forall x \forall y, y \neq x.$ (c) $\exists x$	$\forall y, \ y \neq x. \tag{e} \forall x \forall y$	$y, y^2 \ge x. \tag{8}$	g) $\exists x \forall y, y^2 \ge x.$	
	(b) $\forall x \exists y, y \neq x.$ (d) $\exists x$	$\exists y, \ y \neq x. \tag{f} \forall x \exists y$	$y, y^2 \ge x. \tag{f}$	a) $\exists x \exists y, y^2 \ge x.$	
7.	Calculate the following things:				
	(a) The gcd and lcm of 256 and 520 .	(d) The	ne gcd and lcm of $2^3 3^2 5^4 7$ and $2^4 3^3 5^4 11$.		
	(b) The gcd and lcm of 921 and 177.	(e) The	e values of $\overline{4} + \overline{6}$, $\overline{4} - \overline{6}$, and $\overline{4} \cdot \overline{6}$ modulo 8.		
	(c) The gcd and lcm of 2019 and 567	78. (f) The	remainder when $12 \cdot 13 \cdot 14 \cdot 15$ is divided by 11.		
8.	Decide whether each residue class has a multiplicative inverse modulo m . If so, find it, and if not, explain why not:				
	(a) The residue class $\overline{10}$ modulo 25.	(d) The	ne residue class $\overline{30}$ modulo 42.		
	(b) The residue class $\overline{11}$ modulo 25.	(e) The	residue class $\overline{31}$ modulo 42.		
	(c) The residue class $\overline{12}$ modulo 25. (f)		The residue class $\overline{32}$ modulo 42.		

Part II: Proof Problems

- 1. Suppose A, B, and C are arbitrary sets contained in a universal set U. Identify which statements are true and which are false. Then prove the true statements and give a counterexample for the false ones.
 - (a) $(A \cup B) \setminus A = B \setminus A$.
 - (b) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C).$

- (c) $(A \cap B)^c \cup B \subseteq (A^c \cup B)^c$.
- (d) $A^c \cap B^c \subseteq (A \setminus B)^c \cap (B \setminus A)^c$.

2. Write, and then prove, the contrapositive of each of these statements (assume n refers to an integer):

- (a) If a and b are integers, then $3a 9b \neq 2$.
- (b) Suppose $a, b \in \mathbb{Z}$. If ab = 1 then $a \leq 1$ or $b \leq 1$.
- (c) If 5n + 1 is even, then n is odd.
- (d) If n^3 is odd, then n is odd.

- (e) If n is not a multiple of 3, then n cannot be written as the sum of 3 consecutive integers.
- (f) Suppose p is prime. If p does not divide a and p does not divide b, then p does not divide ab.
- 3. Find a counterexample to each of the following statements:
 - (a) For any integers a, b, and c, if a|b and a|c, then b|c.
 (b) If p and q are prime, then p + q is never prime.
 - (c) If n is an integer, then $n^2 + n + 11$ is always prime.
- (d) There do not exist integers a and b with $a^2 b^2 = 23$.
- (e) The sum of two irrational numbers is always irrational.
- (f) If n > 1 is an integer, then \sqrt{n} is always irrational.

4. Prove the following (recall the Fibonacci numbers F_i are defined by $F_1 = F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for all $n \ge 2$):

- (a) If F_n is the *n*th Fibonacci number, prove that $F_1 + F_3 + F_5 + \cdots + F_{2n+1} = F_{2n+2}$ for every positive integer *n*.
- (b) Suppose n is an integer. Prove that 2|n and 3|n if and only if 6|n.
- (c) Prove that $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for every positive integer n.
- (d) Suppose p is a prime and a is a positive integer. If $p|a^2$, prove that p|a.
- (e) Prove there do not exist integers a and b such that $a^2 = 33 + 9b$. [Hint: Use the previous part.]
- (f) Prove any two consecutive perfect squares (i.e., the integers k^2 and $(k+1)^2$) are relatively prime.
- (g) Prove that $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$ for every positive integer n.
- (h) If $A = \{4a + 6b : a, b \in \mathbb{Z}\}$ and $B = \{2c : c \in \mathbb{Z}\}$, prove that A = B.
- (i) Prove that the sum of any four consecutive integers is congruent to 2 modulo 4.
- (j) If p is a prime, prove that gcd(n, n+p) > 1 if and only if p|n.
- (k) Suppose $a_1 = 1$ and $a_n = 3a_{n-1} + 4$ for all $n \ge 2$. Prove that $a_n = 3^n 2$ for every positive integer n.
- (l) If $C = \{6c : c \in \mathbb{Z}\}$ and $D = \{10a + 14b : a, b \in \mathbb{Z}\}$, prove that $C \subseteq D$.
- (m) If n is any positive integer, prove that n-1 is invertible modulo n and its multiplicative inverse is itself.
- (n) Suppose $b_1 = 3$ and $b_n = 2b_{n-1} n + 1$ for all $n \ge 2$. Prove that $b_n = 2^n + n$ for every positive integer n.
- (o) Using only basic facts about divisibility, prove every integer n > 1 has a prime divisor. [Hint: Strong induction.]
- (p) Suppose $c_1 = c_2 = 2$, and for all $n \ge 3$, $c_n = c_{n-1}c_{n-2}$. Prove that $c_n = 2^{F_n}$ for every positive integer n.
- (q) Suppose $d_1 = 2$, $d_2 = 4$, and for all $n \ge 3$, $d_n = d_{n-1} + 2d_{n-2}$. Prove that $d_n = 2^n$ for every positive integer n.
- (r) If a and b are positive integers, prove that gcd(a,b) = lcm(a,b) if and only if a = b.