- **Definition 1** An integer x is even if x = 2k for some integer.
- **Definition 2** An integer x is odd if x = 2k + 1 for some integer k.
- **Definition 3** An integer *a* is divisible by an integer *b* or *b* divides *a*, denoted b|a, if there is an integer *c* such that bc = a.
- **Definition 4** An integer p is prime if p > 1 and the only positive divisors of p are 1 and p.
- **Definition 5** An integer is composite if there is an integer *b* such that b|a and 1 < b < a.
- **Definition 6** Set *A* is a subset of set *B* ($A \subseteq B$) if every element of *A* is also an element of *B*.
- **Definition 7** Two sets *A* and *B* are equal if $A \subseteq B$ and $B \subseteq A$.
- **Definition 8** The intersection of sets *A* and *B* is $A \cap B = \{x : x \in A \text{ and } x \in B\}$.
- **Definition 9** The union of sets *A* and *B* is $A \cup B = \{x : x \in A \text{ or } x \in B\}$.
- **Definition 10** Let A be a set. The power set of A, denoted 2^A , is the set of all subsets of A.
- **Definition 11** The difference of sets *A* and $A B = \{x : x \in A \text{ and } x \notin B\}$.
- **Definition 12** The symmetric difference of sets *A* and *B* is $A \Delta B = (A B) \cup (B A)$.
- **Definition 13** The Cartesian product of sets *A* and *B* is $A \times B = \{(a, b) : a \in A, b \in B\}$.
- **Definition 14** *R* is a relation on a set *A* if $R \subseteq A \times A$. *Notation*: $(x, y) \in R$ is equivalent to xRy.
- **Definition 15** The inverse of relation *R* is $R^{-1} = \{(x, y) : (y, x) \in R\}$
- **Definition 16** Let *R* be a relation on set *A*.
 - *R* is reflexive if xRx for all $x \in A$.
 - *R* is irreflexive if x R x for all $x \in A$.
 - *R* is symmetric if $xRy \rightarrow yRx$ for all $x, y \in A$.
 - *R* is antisymmetric if $(xRy \land yRx) \rightarrow x = y$ for all $x, y \in A$.
 - *R* is transitive if $(xRy \land yRz) \rightarrow xRz$ for all $x, y, z \in A$.
- **Definition 17** A relation *R* on *A* is an equivalence relation if *R* is reflexive, symmetric, and transitive.
- **Definition 18** Let *n* be a positive integer. Then the "congruence modulo *n*" relation on \mathbb{Z} is defined as follows: $x \equiv y \pmod{n}$ if n|(x y).
- **Definition 19** Let *R* be an equivalence relation on a set *A* and let $a \in A$. The equivalence class of *a* is

$$[a] = \{x \in A : xRa\}$$

- **Definition 20** $n! = n(n-1)\cdots(3)(2)(1), 0! = 1$
- **Definition 21** $(n)_k = n(n-1)\cdots(n-k+1)$

$$(n)_k = \frac{n!}{(n-k)!}$$

Definition 22 $\binom{n}{k}$ = the number of *k*-element subsets of an *n*-element set

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

- **Definition 23** Let f be a relation from set A to set B. Then f is a function from A to B, $f: A \rightarrow B$, if
 - the set of all possible first elements of f, called the **domain** of f, is A
 - $(x, y) \in f$ and $(x, z) \in f$ imply y = z.
 - <u>Notation</u>: $(x, y) \in f$ is equivalent to y = f(x).
 - The **image** of *f* is the set im $f = \{y \in B : (x, y) \text{ for some } x \in A\}$.
- **Definition 24** Let *A* and *B* be sets, and $f: A \rightarrow B$. Then
 - f is one-to-one if f(x) = f(y) implies x = y.
 - f is **onto** if for each $b \in B$, there exists an $a \in A$ such that f(a) = b.
 - *f* is a **bijection** if it is one-to-one and onto.
- **Definition 25** Let A, B, and C be sets, and $f : A \to B$ and $g : B \to C$. Then $g \circ f$ is a function from A to C and $(g \circ f)(a) = g(f(a))$.
- Basic Proposition An integer is either odd or even but not both.