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Basic Proposition

An integer x is even if x = 2k for some integer.
An integer x is odd if x = 2k + 1 for some integer k.

An integer a is divisible by an integer b or b divides a, denoted b|a, if there is an integer

¢ such that bc = a.
An integer p is prime if p > 1 and the only positive divisors of p are 1 and p.
An integer is composite if there is an integer b such that bjaand 1 < b < a.
Set A is a subset of set B (A € B) if every element of A is also an element of B.
Two sets A and B are equal if A € B and B € A.
The intersection of sets Aand BisANB ={x: x € Aand x € B}.
The union of sets Aand BisAUB ={x: x € Aorx € B}.
Let A be a set. The power set of A, denoted 24 is the set of all subsets of A.
The difference of sets Aand A— B ={x:x € Aand x ¢ B}.
The symmetric difference of sets Aand BisAAB = (A—B) U (B — A).
The Cartesian product of sets A and BisA X B = {(a,b) : a € A,b € B}.
R is arelation on a set A if R € A X A. Notation: (x,y) € R is equivalent to xRYy.
The inverse of relation R is R~ = {(x,y) : (y,x) € R}
Let R be a relation on set A.
R is reflexive if xRx for all x € A.
R is irreflexive if xFx for all x € A.
R is symmetric if xRy — yRx for all x,y € A.
R is antisymmetric if (xRy A yRx) — x = y forall x,y € A.
e Ristransitive if (xRy A yRz) = xRz forall x,y,z € A.
A relation R on A is an equivalence relation if R is reflexive, symmetric, and transitive.

Let n be a positive integer. Then the “congruence modulo n” relation on Z is defined as

follows: x = y (mod n) if n|(x — y).

Let R be an equivalence relation on a set A and let a € A. The equivalence class of a is
[a] = {x € A: xRa}
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Let f be a relation from set A to set B. Then f is a function from A to B, f: A = B, if
o the set of all possible first elements of f, called the domain of f, is A
e (x,y)Efand(x,z)€ fimplyy =z

Notation: (x,y) € f is equivalentto y = f(x).

The image of f is the setim f = {y € B: (x, y) for some x € A}.

Let A and B be sets, and f: A = B. Then
e fisone-to-one if f(x) = f(y) implies x = y.
e fisonto if for each b € B, there exists an a € A such that f(a) = b.
e f is a bijection if it is one-to-one and onto.

Let A,B,and Cbesets,and f : A > Band g : B — C. Then g o f is a function from A to

Cand (g f)(a) = g(f(a@)).

An integer is either odd or even but not both.



