Math 1341 - Final Exam Review $#2$

December 4, 2019

Final Exam Topics:

- Average rate of change, limit definition of derivative
- Computing derivatives (product/quotient/chain rules)
- Logarithmic, inverse, implicit differentiation
- Parametric curves and derivatives, velocity/speed/acceleration
- Related rates
- \bullet Minimum and maximum values, crit points $+$ classification, increasing and decreasing behavior, concavity, inflection points
- L'Hôpital's rule
- Applied optimization
- **•** Antiderivatives
- Riemann sums $+$ definite integrals, Fund Thm of Calculus
- Evaluating definite and indefinite integrals, substitution
- Areas under and between curves

(Fa14, $\#10$) A box with an open top is to be constructed with $600\,\mathrm{in}^2$ of material. The length of the base is to be twice its width. Find the dimensions that maximize the volume of the box.

(Fa14, $\#10$) A box with an open top is to be constructed with $600\,\mathrm{in}^2$ of material. The length of the base is to be twice its width. Find the dimensions that maximize the volume of the box.

 $(Fa14, #10)$ A box with an open top is to be constructed with $600\,\mathrm{in}^2$ of material. The length of the base is to be twice its width. Find the dimensions that maximize the volume of the box.

Answer: Width w, height h, length $l = 2w$, vol $V = lwh = 2w^2h$. Base has area 2 w^2 , two sides have area wh, and the other two sides have area 2 wh . Hence total area is 2 w^2+6wh , so $2w^2 + 6wh = 600$, thus $h = \frac{300 - w^2}{3w}$ $\frac{0-w^2}{3w}$. Then $V = 2w^2 \cdot \frac{300 - w^2}{3w} = 200w - \frac{2}{3}$ $\frac{2}{3}w^3$ so $V' = 200 - 2w^2$ which is zero when $w = 10$ in. Sign diagram for V' shows $w = 10$ in is a global max. So dimensions are $\vert\, w=10\, \text{in},\, l=20\, \text{in},\, h=\frac{20}{3}$ $rac{20}{3}$ in |.

Find the area of the region lying under the curve $y = 2x - x^2$ and above the x-axis.

Find the area of the region lying under the curve $y = 2x - x^2$ and above the x-axis.

Find the area of the region lying under the curve $y = 2x - x^2$ and above the x-axis.

Answer: The curve intersects the x-axis when $2x - x^2 = 0$ so that $x = 0, 2$. Then the desired area is

$$
\int_0^2 (2x - x^2) dx = x^2 - \frac{1}{3}x^3 \Big|_{x=0}^2 = \boxed{\frac{4}{3}}.
$$

(Fa14, #11a) Compute
$$
\int (7 + 8x)^{49} dx
$$
.

(Fa14, #11a) Compute
$$
\int (7 + 8x)^{49} dx
$$
.

(Fa14, #11a) Compute
$$
\int (7 + 8x)^{49} dx
$$
.

Answer: Substituting
$$
u = 7 + 8x
$$
 with $du = 8 dx$ yields
\n
$$
I = \int u^{49} \cdot \frac{1}{8} du = \frac{1}{400} u^{50} + C = \boxed{\frac{1}{400} (7 + 8x)^{50} + C}.
$$

Interlude!

(Fa14, $\#13$) Find the area bounded by $y = x^2 - 5x + 3$ and $y = -x^2 + x - 1.$

(Fa14, $\#13$) Find the area bounded by $y = x^2 - 5x + 3$ and $y = -x^2 + x - 1.$

(Fa14, $\#13$) Find the area bounded by $y = x^2 - 5x + 3$ and $y = -x^2 + x - 1.$

Answer: The curves intersect when $x^2 - 5x + 3 = -x^2 + x - 1$ so that $2x^2-6x+4=0$. Factoring gives $2(x-1)(x-2)=0$ so intersection points are at $x = 1, 2$.

Testing at $x = 3/2$, or comparing the graphs, shows that $y=-x^2+x-1$ is the top curve and $y=x^2-5x+3$ is the bottom curve.

Hence area is
$$
\int_1^2 [\text{top} - \text{bottom}] dx = \int_1^2 (-2x^2 + 6x - 4) dx =
$$

 $\left(-\frac{2}{3}x^3 + 3x^2 - 4x\right)\Big|_{x=1}^2 = \boxed{\frac{1}{3}}$.

(Fa14, #11b) Compute
$$
\int_{\pi}^{2\pi} \frac{3\sin x}{2 + \cos x} dx.
$$

(Fa14, #11b) Compute
$$
\int_{\pi}^{2\pi} \frac{3\sin x}{2 + \cos x} dx.
$$

(Fa14, #11b) Compute
$$
\int_{\pi}^{2\pi} \frac{3\sin x}{2 + \cos x} dx.
$$

Answer: Substitute $u = 2 + \cos x$ with $du = -\sin x dx$. Then $x = \pi$ corresponds to $u = 1$ and $x = 2\pi$ corresponds to $u = 3$, so then we obtain $I=\int^3$ 1 −3 $\frac{-3}{u} du = -\ln(u)$ 3 $x=1$ = $-3 \ln 3$.

Interlude!

 $(Fa15, #10)$ Suppose we need to construct a coffee cup in the shape of a circular cylinder that holds 128π cubic centimeters. The cup has no top! The cost per square centimeter of material for the sides of the cup is 1 cent, and for the bottom of the cup the cost per square centimeter is 2 cents. Find the radius r and height h of the cup that minimizes the cost.

 $(Fa15, #10)$ Suppose we need to construct a coffee cup in the shape of a circular cylinder that holds 128π cubic centimeters. The cup has no top! The cost per square centimeter of material for the sides of the cup is 1 cent, and for the bottom of the cup the cost per square centimeter is 2 cents. Find the radius r and height h of the cup that minimizes the cost.

 $(Fa15, #10)$ Suppose we need to construct a coffee cup in the shape of a circular cylinder that holds 128π cubic centimeters. The cup has no top! The cost per square centimeter of material for the sides of the cup is 1 cent, and for the bottom of the cup the cost per square centimeter is 2 cents. Find the radius r and height h of the cup that minimizes the cost.

Answer: Volume is $V = \pi r^2 h \text{ cm}^3$, so $r^2 h = 128$ hence $h = \frac{128}{r^2}$. Area of sides is $2\pi rh$ cm², area of base is πr^2 cm², so total cost is $C = 2\pi rh + 2\pi r^2 = 2\pi(128/r + r^2)$ cents.

So $C'(r) = 2\pi(-128/r^2 + 2r)$ which is zero for $r = 4$ cm, and is the global min by C' sign diagram. So $\vert r=4\,\mathrm{cm}$ and $h=8\,\mathrm{cm}$.

(Fa14, #7) Consider the function $f(x) = x^3 + \frac{1}{2}$ $\frac{1}{2}x^2$. Find $f(2)$ and $(f^{-1})'(10)$.

(Fa14, #7) Consider the function $f(x) = x^3 + \frac{1}{2}$ $\frac{1}{2}x^2$. Find $f(2)$ and $(f^{-1})'(10)$.

(Fa14, #7) Consider the function $f(x) = x^3 + \frac{1}{2}$ $\frac{1}{2}x^2$. Find $f(2)$ and $(f^{-1})'(10)$.

Answer: Note that
$$
f'(x) = 3x^2 + x
$$
.
Clearly $f(2) = \boxed{10}$, meaning that $f^{-1}(10) = 2$.
Then by the inverse function differentiation formula,

$$
(f^{-1})'(10) = \frac{1}{f'(f^{-1}(10))} = \frac{1}{f'(2)} = \boxed{\frac{1}{14}}
$$
.

Interlude!

(Fa14, $\#10$) Find the area of the region bounded by the graphs of $f(x) = x^2 - x - 1$ and $g(x) = x + 2$.

(Fa14, $\#10$) Find the area of the region bounded by the graphs of $f(x) = x^2 - x - 1$ and $g(x) = x + 2$.

(Fa14, $\#10$) Find the area of the region bounded by the graphs of $f(x) = x^2 - x - 1$ and $g(x) = x + 2$.

Answer: The curves intersect when $x^2-x-1=x+2$ so that $x^2-2x-3=0$. Factoring gives $(x-3)(x+1)=0$ so intersection points are at $x = -1, 3$.

Testing at $x = 0$, or comparing the graphs, shows that $y = x + 2$ is the top curve and $y = x^2 - x - 1$ is the bottom curve.

Hence area is
$$
\int_{-1}^{3} [\text{top} - \text{bottom}] dx = \int_{-1}^{3} (-x^2 + 2x + 3) dx =
$$

 $\left(-\frac{1}{3}x^3 + x^2 + 3x\right)\Big|_{x=-1}^{3} = \boxed{\frac{32}{3}}$.

(Fa14, $\#12$) Compute the midpoint Riemann sum for $f(x) = x^2$ for the partition of the interval $[-\frac{1}{2}]$ $\frac{1}{2}$, 1] into 3 subintervals of equal length.

(Fa14, $\#12$) Compute the midpoint Riemann sum for $f(x) = x^2$ for the partition of the interval $[-\frac{1}{2}]$ $\frac{1}{2}$, 1] into 3 subintervals of equal length.

(Fa14, $\#12$) Compute the midpoint Riemann sum for $f(x) = x^2$ for the partition of the interval $[-\frac{1}{2}]$ $\frac{1}{2}$, 1] into 3 subintervals of equal length.

Answer: The width of the subintervals is $\frac{1-(-1/2)}{3}=\frac{1}{2}$ $\frac{1}{2}$, and the subintervals are $[-\frac{1}{2}]$ $\frac{1}{2}$, 0], $[0, \frac{1}{2}]$ $\frac{1}{2}$, $[\frac{1}{2}, 1]$. Then the Riemann sum is

$$
RS_{\text{mid}} = f(-\frac{1}{4}) \cdot \frac{1}{2} + f(\frac{1}{4}) \cdot \frac{1}{2} + f(\frac{3}{4}) \cdot \frac{1}{2} = \boxed{\frac{11}{32}}.
$$

Interlude!

(Sp17, #10c) Evaluate
$$
\int_{-\pi}^{\pi} \sin(x) \cos^2(x) dx.
$$

(Sp17, #10c) Evaluate
$$
\int_{-\pi}^{\pi} \sin(x) \cos^2(x) dx.
$$

(Sp17, #10c) Evaluate
$$
\int_{-\pi}^{\pi} \sin(x) \cos^2(x) dx.
$$

Answer: Substitute $u = cos(x)$ so that $du = -sin(x) dx$. Then $x = -\pi$ corresponds to $u = -1$ and $x = \pi$ also corresponds to $u = -1$, so the integral is $I = \int_{-1}^{-1} -u^2 du = -\frac{1}{3}$ $\frac{1}{3}u^3$ −1 $_{u=-1} = 0.$

Find the area of the finite region enclosed between the curves $y = 5x$ and $y = x^2 + 4$.

Find the area of the finite region enclosed between the curves $y = 5x$ and $y = x^2 + 4$.

Find the area of the finite region enclosed between the curves $y = 5x$ and $y = x^2 + 4$.

Answer: The curves intersect when $5x = x^2 + 4$ so $x = 1, 4$.

Using a test point or comparing graphs shows that $y = 5x$ is the top curve and $y=x^2+4$ is the bottom curve for $1\leq \varkappa\leq 4.$

Then the desired area is

$$
\int_1^4 (5x - x^2 - 4) dx = \left(\frac{5}{2}x^2 - \frac{1}{3}x^3 - 4x\right)\Big|_{x=1}^4 = \boxed{\frac{9}{2}}.
$$

Interlude!

Evaluate
$$
\int \tan^3 x \sec^2 x \, dx
$$
.

Evaluate
$$
\int \tan^3 x \sec^2 x \, dx
$$
.

Evaluate
$$
\int \tan^3 x \sec^2 x \, dx
$$
.

Answer: Substitute $u = \tan(x)$ so that $du = \sec^2(x)dx$. Then

$$
I = \int u^2 du = \frac{1}{3}u^3 + C = \boxed{\frac{1}{3} \tan^3(x) + C}.
$$

(Fa14, #11d) Compute
$$
\int \frac{4t^4 - 3t + \sqrt[3]{t}}{t^2} dt
$$
.

(Fa14, #11d) Compute
$$
\int \frac{4t^4 - 3t + \sqrt[3]{t}}{t^2} dt
$$
.

(Fa14, #11d) Compute
$$
\int \frac{4t^4 - 3t + \sqrt[3]{t}}{t^2} dt
$$
.

Answer: Distribute the integrand to obtain $I = \int (4t^2 - \frac{3}{t})$ $\frac{3}{t} + t^{-5/3}$ dt = $\frac{4}{3}$ $\frac{4}{3}t^3 - 3 \ln t - \frac{3}{2}$ $\frac{3}{2}t^{-2/3}$.

End

Enjoy WeBWorK #12, and happy last day of fall classes!

