Math 1341 - Final Exam Review #2

December 4, 2019

Final Exam Topics:

- Average rate of change, limit definition of derivative
- Computing derivatives (product/quotient/chain rules)
- Logarithmic, inverse, implicit differentiation
- Parametric curves and derivatives, velocity/speed/acceleration
- Related rates
- Minimum and maximum values, crit points + classification, increasing and decreasing behavior, concavity, inflection points
- L'Hôpital's rule
- Applied optimization
- Antiderivatives
- Riemann sums + definite integrals, Fund Thm of Calculus
- Evaluating definite and indefinite integrals, substitution
- Areas under and between curves

(Fa14, #10) A box with an open top is to be constructed with $600 \,\mathrm{in}^2$ of material. The length of the base is to be twice its width. Find the dimensions that maximize the volume of the box.

(Fa14, #10) A box with an open top is to be constructed with $600 \,\mathrm{in}^2$ of material. The length of the base is to be twice its width. Find the dimensions that maximize the volume of the box.

(Fa14, #10) A box with an open top is to be constructed with $600 \,\mathrm{in^2}$ of material. The length of the base is to be twice its width. Find the dimensions that maximize the volume of the box.

Answer: Width w, height h, length l = 2w, vol $V = lwh = 2w^2h$. Base has area $2w^2$, two sides have area wh, and the other two sides have area 2wh. Hence total area is $2w^2 + 6wh$, so $2w^2 + 6wh = 600$, thus $h = \frac{300 - w^2}{3w}$. Then $V = 2w^2 \cdot \frac{300 - w^2}{3w} = 200w - \frac{2}{3}w^3$ so $V' = 200 - 2w^2$ which is zero when w = 10 in. Sign diagram for V' shows w = 10 in is a global max. So dimensions are w = 10 in, l = 20 in, $h = \frac{20}{3}$ in.

Find the area of the region lying under the curve $y = 2x - x^2$ and above the *x*-axis.

Find the area of the region lying under the curve $y = 2x - x^2$ and above the x-axis.

Find the area of the region lying under the curve $y = 2x - x^2$ and above the x-axis.

Answer: The curve intersects the x-axis when $2x - x^2 = 0$ so that x = 0, 2. Then the desired area is

$$\int_0^2 (2x - x^2) \, dx = x^2 - \frac{1}{3} x^3 \Big|_{x=0}^2 = \boxed{\frac{4}{3}}.$$

(Fa14, #11a) Compute
$$\int (7+8x)^{49} dx$$
.

(Fa14, #11a) Compute
$$\int (7+8x)^{49} dx$$
.

(Fa14, #11a) Compute
$$\int (7+8x)^{49} dx$$
.

Answer: Substituting
$$u = 7 + 8x$$
 with $du = 8 dx$ yields
 $I = \int u^{49} \cdot \frac{1}{8} du = \frac{1}{400}u^{50} + C = \boxed{\frac{1}{400}(7 + 8x)^{50} + C}.$

Interlude!

(Fa14, #13) Find the area bounded by $y = x^2 - 5x + 3$ and $y = -x^2 + x - 1$.

(Fa14, #13) Find the area bounded by $y = x^2 - 5x + 3$ and $y = -x^2 + x - 1$.

(Fa14, #13) Find the area bounded by $y = x^2 - 5x + 3$ and $y = -x^2 + x - 1$.

Answer: The curves intersect when $x^2 - 5x + 3 = -x^2 + x - 1$ so that $2x^2 - 6x + 4 = 0$. Factoring gives 2(x - 1)(x - 2) = 0 so intersection points are at x = 1, 2.

Testing at x = 3/2, or comparing the graphs, shows that $y = -x^2 + x - 1$ is the top curve and $y = x^2 - 5x + 3$ is the bottom curve.

Hence area is
$$\int_{1}^{2} [top - bottom] dx = \int_{1}^{2} (-2x^{2} + 6x - 4) dx = (-\frac{2}{3}x^{3} + 3x^{2} - 4x) \Big|_{x=1}^{2} = \boxed{\frac{1}{3}}.$$

(Fa14, #11b) Compute
$$\int_{\pi}^{2\pi} \frac{3\sin x}{2 + \cos x} \, dx.$$

(Fa14, #11b) Compute
$$\int_{\pi}^{2\pi} \frac{3\sin x}{2 + \cos x} \, dx.$$

(Fa14, #11b) Compute
$$\int_{\pi}^{2\pi} \frac{3\sin x}{2 + \cos x} \, dx.$$

Answer: Substitute $u = 2 + \cos x$ with $du = -\sin x \, dx$. Then $x = \pi$ corresponds to u = 1 and $x = 2\pi$ corresponds to u = 3, so then we obtain $I = \int_{1}^{3} \frac{-3}{u} \, du = -\ln(u) \Big|_{x=1}^{3} = \boxed{-3 \ln 3}$.

Interlude!

(Fa15, #10) Suppose we need to construct a coffee cup in the shape of a circular cylinder that holds 128π cubic centimeters. The cup has no top! The cost per square centimeter of material for the sides of the cup is 1 cent, and for the bottom of the cup the cost per square centimeter is 2 cents. Find the radius *r* and height *h* of the cup that minimizes the cost.

(Fa15, #10) Suppose we need to construct a coffee cup in the shape of a circular cylinder that holds 128π cubic centimeters. The cup has no top! The cost per square centimeter of material for the sides of the cup is 1 cent, and for the bottom of the cup the cost per square centimeter is 2 cents. Find the radius *r* and height *h* of the cup that minimizes the cost.

(Fa15, #10) Suppose we need to construct a coffee cup in the shape of a circular cylinder that holds 128π cubic centimeters. The cup has no top! The cost per square centimeter of material for the sides of the cup is 1 cent, and for the bottom of the cup the cost per square centimeter is 2 cents. Find the radius *r* and height *h* of the cup that minimizes the cost.

Answer: Volume is $V = \pi r^2 h \text{ cm}^3$, so $r^2 h = 128$ hence $h = \frac{128}{r^2}$. Area of sides is $2\pi rh \text{ cm}^2$, area of base is $\pi r^2 \text{ cm}^2$, so total cost is $C = 2\pi rh + 2\pi r^2 = 2\pi (128/r + r^2)$ cents. So $C'(r) = 2\pi (-128/r^2 + 2r)$ which is zero for r = 4 cm, and is the global min by C' sign diagram. So r = 4 cm and h = 8 cm.

(Fa14, #7) Consider the function $f(x) = x^3 + \frac{1}{2}x^2$. Find f(2) and $(f^{-1})'(10)$.

(Fa14, #7) Consider the function $f(x) = x^3 + \frac{1}{2}x^2$. Find f(2) and $(f^{-1})'(10)$.

(Fa14, #7) Consider the function $f(x) = x^3 + \frac{1}{2}x^2$. Find f(2) and $(f^{-1})'(10)$.

Answer: Note that
$$f'(x) = 3x^2 + x$$
.
Clearly $f(2) = \boxed{10}$, meaning that $f^{-1}(10) = 2$.
Then by the inverse function differentiation formula,
 $(f^{-1})'(10) = \frac{1}{f'(f^{-1}(10))} = \frac{1}{f'(2)} = \boxed{\frac{1}{14}}$.

Interlude!

(Fa14, #10) Find the area of the region bounded by the graphs of $f(x) = x^2 - x - 1$ and g(x) = x + 2.

(Fa14, #10) Find the area of the region bounded by the graphs of $f(x) = x^2 - x - 1$ and g(x) = x + 2.

(Fa14, #10) Find the area of the region bounded by the graphs of $f(x) = x^2 - x - 1$ and g(x) = x + 2.

Answer: The curves intersect when $x^2 - x - 1 = x + 2$ so that $x^2 - 2x - 3 = 0$. Factoring gives (x - 3)(x + 1) = 0 so intersection points are at x = -1, 3.

Testing at x = 0, or comparing the graphs, shows that y = x + 2 is the top curve and $y = x^2 - x - 1$ is the bottom curve.

Hence area is
$$\int_{-1}^{3} [top - bottom] dx = \int_{-1}^{3} (-x^2 + 2x + 3) dx = (-\frac{1}{3}x^3 + x^2 + 3x) \Big|_{x=-1}^{3} = \boxed{\frac{32}{3}}.$$

(Fa14, #12) Compute the midpoint Riemann sum for $f(x) = x^2$ for the partition of the interval $\left[-\frac{1}{2}, 1\right]$ into 3 subintervals of equal length.

(Fa14, #12) Compute the midpoint Riemann sum for $f(x) = x^2$ for the partition of the interval $\left[-\frac{1}{2}, 1\right]$ into 3 subintervals of equal length.

(Fa14, #12) Compute the midpoint Riemann sum for $f(x) = x^2$ for the partition of the interval $\left[-\frac{1}{2}, 1\right]$ into 3 subintervals of equal length.

Answer: The width of the subintervals is $\frac{1-(-1/2)}{3} = \frac{1}{2}$, and the subintervals are $[-\frac{1}{2}, 0]$, $[0, \frac{1}{2}]$, $[\frac{1}{2}, 1]$.

Then the Riemann sum is $RS_{\text{mid}} = f(-\frac{1}{4}) \cdot \frac{1}{2} + f(\frac{1}{4}) \cdot \frac{1}{2} + f(\frac{3}{4}) \cdot \frac{1}{2} = \boxed{\frac{11}{32}}.$

Interlude!

(Sp17, #10c) Evaluate
$$\int_{-\pi}^{\pi} \sin(x) \cos^2(x) dx$$
.

(Sp17, #10c) Evaluate
$$\int_{-\pi}^{\pi} \sin(x) \cos^2(x) dx$$
.

(Sp17, #10c) Evaluate
$$\int_{-\pi}^{\pi} \sin(x) \cos^2(x) dx$$
.

Answer: Substitute $u = \cos(x)$ so that $du = -\sin(x) dx$. Then $x = -\pi$ corresponds to u = -1 and $x = \pi$ also corresponds to u = -1, so the integral is $I = \int_{-1}^{-1} -u^2 du = -\frac{1}{3}u^3\Big|_{u=-1}^{-1} = \boxed{0}$.

Find the area of the finite region enclosed between the curves y = 5x and $y = x^2 + 4$.

Find the area of the finite region enclosed between the curves y = 5x and $y = x^2 + 4$.

Find the area of the finite region enclosed between the curves y = 5x and $y = x^2 + 4$.

Answer: The curves intersect when $5x = x^2 + 4$ so x = 1, 4.

Using a test point or comparing graphs shows that y = 5x is the top curve and $y = x^2 + 4$ is the bottom curve for $1 \le x \le 4$.

Then the desired area is

$$\int_{1}^{4} (5x - x^{2} - 4) \, dx = \left(\frac{5}{2}x^{2} - \frac{1}{3}x^{3} - 4x\right) \Big|_{x=1}^{4} = \boxed{\frac{9}{2}}.$$

Interlude!

Evaluate
$$\int \tan^3 x \sec^2 x \, dx$$
.

Evaluate
$$\int \tan^3 x \sec^2 x \, dx$$
.

Evaluate
$$\int \tan^3 x \sec^2 x \, dx$$
.

Answer: Substitute u = tan(x) so that $du = sec^2(x)dx$. Then

$$I = \int u^2 \, du = \frac{1}{3}u^3 + C = \boxed{\frac{1}{3}\tan^3(x) + C}$$

(Fa14, #11d) Compute
$$\int \frac{4t^4 - 3t + \sqrt[3]{t}}{t^2} dt$$
.

(Fa14, #11d) Compute
$$\int \frac{4t^4 - 3t + \sqrt[3]{t}}{t^2} dt$$
.

(Fa14, #11d) Compute
$$\int rac{4t^4-3t+\sqrt[3]{t}}{t^2}\,dt.$$

Answer: Distribute the integrand to obtain $I = \int \left(4t^2 - \frac{3}{t} + t^{-5/3}\right) dt = \boxed{\frac{4}{3}t^3 - 3\ln t - \frac{3}{2}t^{-2/3}}.$

End

Enjoy WeBWorK #12, and happy last day of fall classes!

