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Math 1341 - Midterm 2 Review #2

Midterm 2 Topics:

Related rates

Minimum and maximum values, critical points + classification

Increasing and decreasing behavior, concavity

Rolle’s theorem + mean value theorem

L’Hôpital’s rule

Antiderivatives

Riemann sums + properties of definite integrals

Fundamental theorem of calculus

Evaluating definite and indefinite integrals

(Differentiating integrals and substitution are not on the midterm,
though they are fair game for the final.)
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Problem 1

Find

∫ (
1√

1− x2
+

1

1 + x2

)
dx .

Answer: By our basic integrals this is sin−1(x) + tan−1(x) + C .
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Problem 2

Find the left-endpoint, midpoint, and right-endpoint Riemann
sums for f (x) =

√
x on [0, 4] with 2 equal subintervals.

Answer: With 2 equal subintervals the intervals are [0, 2] and [2, 4].
So we see

RSleft = f (0) · 2 + f (2) · 2 = 2
√

2 ≈ 2.828,

RSmid = f (1) · 2 + f (3) · 2 = 2 + 2
√

3 ≈ 5.464,

RSright = f (2) · 2 + f (4) · 2 = 4 + 2
√

2 ≈ 6.828.
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Problem 3

Evaluate lim
x→∞

(x2 + 3x)4/ ln(x).

Answer: This is an ∞0 limit. Take the natural log to see ln L =

lim
x→∞

ln
[
(x2 + 3x)4/ ln(x)

]
= lim

x→∞

4 ln(x2 + 3x)

ln(x)
.

Now apply L’Hôpital’s rule to obtain ln L =

lim
x→∞

4(2x + 3)/(x2 + 3x)

1/x
= lim

x→∞

4x(2x + 3)

x2 + 3x
= lim

x→∞

8x2 + 12x

x2 + 3x
.

By another two applications of L’Hôpital (or just by comparing

leading terms) we see that this limit is 8. So ln L = 8 and L = e8 .
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Now apply L’Hôpital’s rule to obtain ln L =

lim
x→∞

4(2x + 3)/(x2 + 3x)

1/x
= lim

x→∞

4x(2x + 3)

x2 + 3x
= lim

x→∞

8x2 + 12x

x2 + 3x
.

By another two applications of L’Hôpital (or just by comparing
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Problem 4

If
∫ 3
1 f (x) dx = 4 and

∫ 4
3 f (x) dx = 5, find

∫ 4
1 [2f (x) + x ] dx .

Answer: Using integration properties we see that∫ 4
1 [2f (x) + x ] dx =

∫ 4
1 2f (x) dx +

∫ 4
1 x dx .

Then
∫ 4
1 f (x) dx =

∫ 3
1 f (x) dx +

∫ 4
3 f (x) dx = 9 and∫ 4

1 x dx =
1

2
x2|4x=1 =

15

2
.

So the integral is
∫ 4
1 [2f (x) + x ] dx = 2 · 9 +

15

2
=

51

2
.
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Problem 5

Allan has 12 feet of string. He uses some to form a square and the
rest to form a right triangle with sides in the ratio 3:4:5. Find the
maximum and minimum possible total areas of Allan’s two shapes.
[Hint: Take the triangle sides to be 3s, 4s, 5s.]

Answer: If the triangle has side lengths 3s, 4s, 5s then there is a
length 12− 12s for the square, so its side length is 3− 3s and
0 ≤ s ≤ 1. The total area of the shapes is then
A(s) = 1

2 · 3s · 4s + (3− 3s)2 = 15s2 − 18s + 9. Since
A′(s) = 30s − 18 is zero for s = 3/5, point list is s = 0, 3/5, 1.

Since A(0) = 9, A(3/5) = 18/5, A(1) = 6, minimum area is 18/5

(at s = 3/5) and the maximum area is 9 (at s = 1).



Math 1341 - Midterm 2 Review #2

Problem 5

Allan has 12 feet of string. He uses some to form a square and the
rest to form a right triangle with sides in the ratio 3:4:5. Find the
maximum and minimum possible total areas of Allan’s two shapes.
[Hint: Take the triangle sides to be 3s, 4s, 5s.]

Answer:

If the triangle has side lengths 3s, 4s, 5s then there is a
length 12− 12s for the square, so its side length is 3− 3s and
0 ≤ s ≤ 1. The total area of the shapes is then
A(s) = 1

2 · 3s · 4s + (3− 3s)2 = 15s2 − 18s + 9. Since
A′(s) = 30s − 18 is zero for s = 3/5, point list is s = 0, 3/5, 1.

Since A(0) = 9, A(3/5) = 18/5, A(1) = 6, minimum area is 18/5

(at s = 3/5) and the maximum area is 9 (at s = 1).



Math 1341 - Midterm 2 Review #2

Problem 5

Allan has 12 feet of string. He uses some to form a square and the
rest to form a right triangle with sides in the ratio 3:4:5. Find the
maximum and minimum possible total areas of Allan’s two shapes.
[Hint: Take the triangle sides to be 3s, 4s, 5s.]

Answer: If the triangle has side lengths 3s, 4s, 5s then there is a
length 12− 12s for the square, so its side length is 3− 3s and
0 ≤ s ≤ 1. The total area of the shapes is then
A(s) = 1

2 · 3s · 4s + (3− 3s)2 = 15s2 − 18s + 9. Since
A′(s) = 30s − 18 is zero for s = 3/5, point list is s = 0, 3/5, 1.

Since A(0) = 9, A(3/5) = 18/5, A(1) = 6, minimum area is 18/5

(at s = 3/5) and the maximum area is 9 (at s = 1).



Math 1341 - Midterm 2 Review #2

Interlude!



Math 1341 - Midterm 2 Review #2

Problem 6

Sand falls into a conical pile whose height is always 5/2 its radius.
If the height of the sandpile is currently 5 meters and sand is being
deposited onto the pile at a rate of π cubic meters per minute,
how fast are the height and radius of the pile increasing? (Note:
The volume of a cone of radius r and height h is V = 1

3πr
2h.)

Answer: We are given r = 2
5h, so V = 1

3πr
2h = 4

75πh
3.

Then V ′(t) = 4
25πh

2 · h′(t).

It is given that h = 5m and V ′ = π m3

min , so h′ =
V ′

4
25πh

2
=

1

4
m
min ,

and then r ′ = 2
5h
′ =

1

10
m
min .
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Problem 7

For f (x) = x4 − 2x2 + 3, find and classify all critical numbers and
find all intervals where f is increasing and where f is decreasing.

Answer: Since f ′ = 4x(x − 1)(x + 1), critical numbers are
x = −1, 0, 1. Sign diagram is f ′ : 	 |

−1
⊕ |

0
	 |

1
⊕ so

local minima at x = ±1 and local maximum at x = 0 , and

increasing on (−1, 0), (1,∞) , decreasing on (−∞,−1), (0, 1) .
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Problem 8

Evaluate
∫ π/4
0 sec(x) tan(x) dx .

Answer: From basic integrals,
∫

sec(x) tan(x) dx = sec(x) + C , so∫ π/4
0 sec(x) tan(x) dx = sec(x)|π/4x=0 = sec(

π

4
)− sec(0) =

√
2− 1 .
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Problem 9

Find

∫ √
sin2 x + cos2 x dx .

Answer: Note that sin2 x + cos2 x = 1, so the integral is just∫
1 dx = x + C .
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Problem 10

Compute

∫ π/3

0
sec2(?) d?.

Answer: Since

∫
sec2(?) d? = tan(?) + C , we see∫ π/3

0
sec2(?) d? = tan(?)|π/3?=0 = tan(π/3)− tan(0) =

√
3 .

(don’t be fooled by the variable ?: it behaves just like any other!)



Math 1341 - Midterm 2 Review #2

Problem 10

Compute

∫ π/3

0
sec2(?) d?.

Answer:

Since

∫
sec2(?) d? = tan(?) + C , we see∫ π/3

0
sec2(?) d? = tan(?)|π/3?=0 = tan(π/3)− tan(0) =

√
3 .

(don’t be fooled by the variable ?: it behaves just like any other!)



Math 1341 - Midterm 2 Review #2

Problem 10

Compute

∫ π/3

0
sec2(?) d?.

Answer: Since

∫
sec2(?) d? = tan(?) + C , we see∫ π/3

0
sec2(?) d? = tan(?)|π/3?=0 = tan(π/3)− tan(0) =

√
3 .

(don’t be fooled by the variable ?: it behaves just like any other!)



Math 1341 - Midterm 2 Review #2

Interlude!



Math 1341 - Midterm 2 Review #2

Problem 11

Find the absolute minimum and maximum values of
f (x) = 2x + 4 sin(x) on [0, π] and all places where they occur.

Answer: We have f ′(x) = 2 + 4 cos(x) so critical numbers occur
when cos(x) = −1

2 , and on [0, π] the only such x is x = 2π
3 .

Including the endpoints, our point list is x = 0, 2π3 , π. We compute

f (0) = 0, f (2π3 ) = 4π
3 + 2

√
3 ≈ 7.653, and f (π) = 2π ≈ 6.283.

So the max is
4π

3
+ 2
√

3 at x =
2π

3
and the min is 0 at x = 0 .
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Problem 12

Find lim
x→∞

(1 + 2/x)3x .

Answer: This is a 1∞ limit. Take the natural log to see ln L =

lim
x→∞

ln
[
(1 + 2/x)3x

]
= lim

x→∞
3x ln(1 + 2/x) = lim

x→∞

3 ln(1 + 2/x)

1/x
.

Now apply L’Hôpital’s rule:

ln L = lim
x→∞

3(−2/x2)/(1 + 2/x)

−1/x2
= lim

x→∞

3(−2)/(1 + 2/x)

−1
= 6.

Therefore ln L = 6 and so L = e6 .
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Problem 13

A population of goats grows at a rate proportional to its current
size. In 2010 the population is 500 and in 2020 the population is
1500. Find the population in 2030.

Answer: The information says the population grows exponentially,
so P(t) = Cekt for some constants C and k, where we can take t
to be years after 2010.
We are given P(0) = 500 and P(10) = 1500, so plugging in gives
C = 500 and Ce10k = 1500 so that k = ln(3)/10.

The population in 2030 is P(20) = 500e20 ln(3)/10 = 4500 .
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Problem 14

You cut squares of side length s in from each of the four corners of
a rectangular piece of paper measuring 14 in by 30 in, and fold the
resulting shape up into a box with no top. What value of s
maximizes the volume?

Answer: Drawing the paper shows that the box will have a height
of s, width 14− 2s, and length 30− 2s, so must have 0 ≤ s ≤ 7.
Volume is V (s) = s(14− 2s)(30− 2s) = 4s3 − 88s2 + 420s.

Then V ′(s) = 12s2 − 176s + 420 = 4(3s − 35)(s − 3) so the only
critical point in interval is at s = 3. Including endpoints, point list
is s = 0, 3, 7. Since V (0) = V (7) = 0, the maximum is at s = 3 .
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Problem 15

For f (x) = xe−x
2/8, find and classify all critical numbers, find all

inflection numbers, and find all intervals where f is increasing,
decreasing, concave up, and concave down.

Answer: Since f ′ = −1
4(x2 − 4)e−x

2/8, the critical numbers are

x = −2, 2 . Sign diagram is f ′ : 	 |
−2
⊕ |

2
	 so

local min at x = −2 and local max at x = 2 , and

increasing on (−2, 2) , decreasing on (−∞,−2), (2,∞) .

Also f ′′ = 1
16(x2 − 12)e−x

2/8, the inflection numbers are

x = −2
√

3, 2
√

3 . Sign diagram is f ′′ : ⊕ |
−2
√
3

	 |
2
√
3

⊕ so

conc up on (−∞,−2
√

3), (2
√

3,∞) , conc down on (−2, 2) .
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End

Happy studying, and I will see you at the exam on Wednesday.


