Math 1341 - Midterm 2 Review $#2$

November 18, 2019

Midterm 2 Topics:

- Related rates
- \bullet Minimum and maximum values, critical points $+$ classification
- **•** Increasing and decreasing behavior, concavity
- Rolle's theorem $+$ mean value theorem
- L'Hôpital's rule
- **Antiderivatives**
- Riemann sums $+$ properties of definite integrals
- **•** Fundamental theorem of calculus
- **•** Evaluating definite and indefinite integrals

(Differentiating integrals and substitution are not on the midterm, though they are fair game for the final.)

Find
$$
\int \left(\frac{1}{\sqrt{1-x^2}} + \frac{1}{1+x^2}\right) dx.
$$

Find
$$
\int \left(\frac{1}{\sqrt{1-x^2}} + \frac{1}{1+x^2}\right) dx.
$$

Find
$$
\int \left(\frac{1}{\sqrt{1-x^2}} + \frac{1}{1+x^2}\right) dx.
$$

Answer: By our basic integrals this is $\big| \sin^{-1}(x) + \tan^{-1}(x) + C \big|.$

Find the left-endpoint, midpoint, and right-endpoint Riemann sums for $f(x) = \sqrt{x}$ on [0, 4] with 2 equal subintervals.

Find the left-endpoint, midpoint, and right-endpoint Riemann sums for $f(x) = \sqrt{x}$ on [0, 4] with 2 equal subintervals.

Find the left-endpoint, midpoint, and right-endpoint Riemann sums for $f(x) = \sqrt{x}$ on [0, 4] with 2 equal subintervals.

Answer: With 2 equal subintervals the intervals are [0, 2] and [2, 4]. So we see

So we see
\n
$$
RS_{\text{left}} = f(0) \cdot 2 + f(2) \cdot 2 = \boxed{2\sqrt{2}} \approx 2.828,
$$
\n
$$
RS_{\text{mid}} = f(1) \cdot 2 + f(3) \cdot 2 = \boxed{2 + 2\sqrt{3}} \approx 5.464,
$$
\n
$$
RS_{\text{right}} = f(2) \cdot 2 + f(4) \cdot 2 = \boxed{4 + 2\sqrt{2}} \approx 6.828.
$$

Evaluate
$$
\lim_{x \to \infty} (x^2 + 3x)^{4/\ln(x)}
$$
.

Evaluate
$$
\lim_{x \to \infty} (x^2 + 3x)^{4/\ln(x)}
$$
.

Evaluate
$$
\lim_{x \to \infty} (x^2 + 3x)^{4/\ln(x)}
$$
.

Answer: This is an ∞^0 limit. Take the natural log to see In $L=$ $\lim_{x \to \infty} \ln \left[(x^2 + 3x)^{4/\ln(x)} \right] = \lim_{x \to \infty}$ $4 \ln(x^2 + 3x)$ $\frac{\ln |x|}{\ln |x|}.$ Now apply L'Hôpital's rule to obtain $L =$ lim x→∞ $4(2x+3)/(x^2+3x)$ $\frac{1}{x} = \lim_{x \to \infty}$ $4x(2x + 3)$ $\frac{x(2x+3)}{x^2+3x} = \lim_{x\to\infty}$ $8x^2 + 12x$ $\frac{x^2+12x}{x^2+3x}$. By another two applications of L'Hôpital (or just by comparing leading terms) we see that this limit is 8. So In $L=8$ and $L=\lfloor e^8 \rfloor.$

Interlude!

If $\int_1^3 f(x) dx = 4$ and $\int_3^4 f(x) dx = 5$, find $\int_1^4 [2f(x) + x] dx$.

If
$$
\int_1^3 f(x) dx = 4
$$
 and $\int_3^4 f(x) dx = 5$, find $\int_1^4 [2f(x) + x] dx$.
Answer:

If
$$
\int_1^3 f(x) dx = 4
$$
 and $\int_3^4 f(x) dx = 5$, find $\int_1^4 [2f(x) + x] dx$.

Answer: Using integration properties we see that
\n
$$
\int_{1}^{4} [2f(x) + x] dx = \int_{1}^{4} 2f(x) dx + \int_{1}^{4} x dx.
$$
\nThen
$$
\int_{1}^{4} f(x) dx = \int_{1}^{3} f(x) dx + \int_{3}^{4} f(x) dx = 9
$$
 and
\n
$$
\int_{1}^{4} x dx = \frac{1}{2} x^{2} \Big|_{x=1}^{4} = \frac{15}{2}.
$$
\nSo the integral is
$$
\int_{1}^{4} [2f(x) + x] dx = 2 \cdot 9 + \frac{15}{2} = \boxed{\frac{51}{2}}.
$$

Allan has 12 feet of string. He uses some to form a square and the rest to form a right triangle with sides in the ratio 3:4:5. Find the maximum and minimum possible total areas of Allan's two shapes. [Hint: Take the triangle sides to be 3s, 4s, 5s.]

Allan has 12 feet of string. He uses some to form a square and the rest to form a right triangle with sides in the ratio 3:4:5. Find the maximum and minimum possible total areas of Allan's two shapes. [Hint: Take the triangle sides to be 3s, 4s, 5s.]

Allan has 12 feet of string. He uses some to form a square and the rest to form a right triangle with sides in the ratio 3:4:5. Find the maximum and minimum possible total areas of Allan's two shapes. [Hint: Take the triangle sides to be 3s, 4s, 5s.]

Answer: If the triangle has side lengths 3s, 4s, 5s then there is a length $12 - 12s$ for the square, so its side length is $3 - 3s$ and $0 \leq s \leq 1$. The total area of the shapes is then $A(s) = \frac{1}{2} \cdot 3s \cdot 4s + (3 - 3s)^2 = 15s^2 - 18s + 9$. Since $A'(s) = 30s - 18$ is zero for $s = 3/5$, point list is $s = 0, 3/5, 1$. Since $A(0) = 9$, $A(3/5) = 18/5$, $A(1) = 6$, minimum area is $18/5$ (at $s = 3/5$) and the maximum area is 9 (at $s = 1$).

Interlude!

Sand falls into a conical pile whose height is always 5/2 its radius. If the height of the sandpile is currently 5 meters and sand is being deposited onto the pile at a rate of π cubic meters per minute. how fast are the height and radius of the pile increasing? (Note: The volume of a cone of radius r and height h is $V=\frac{1}{3}$ $\frac{1}{3}\pi r^2 h.$)

Sand falls into a conical pile whose height is always 5/2 its radius. If the height of the sandpile is currently 5 meters and sand is being deposited onto the pile at a rate of π cubic meters per minute, how fast are the height and radius of the pile increasing? (Note: The volume of a cone of radius r and height h is $V=\frac{1}{3}$ $\frac{1}{3}\pi r^2 h.$)

Sand falls into a conical pile whose height is always 5/2 its radius. If the height of the sandpile is currently 5 meters and sand is being deposited onto the pile at a rate of π cubic meters per minute, how fast are the height and radius of the pile increasing? (Note: The volume of a cone of radius r and height h is $V=\frac{1}{3}$ $\frac{1}{3}\pi r^2 h.$)

Answer: We are given
$$
r = \frac{2}{5}h
$$
, so $V = \frac{1}{3}\pi r^2 h = \frac{4}{75}\pi h^3$.
Then $V'(t) = \frac{4}{25}\pi h^2 \cdot h'(t)$.

It is given that $h = 5$ m and $V' = \pi \frac{m^3}{\min}$, so $h' = \frac{V'}{4\pi}$ $\frac{V'}{\frac{4}{25}\pi h^2} = \frac{1}{4}$ 4 $\frac{m}{\min}$, and then $r' = \frac{2}{5}$ $\frac{2}{5}h' = \frac{1}{10}$ 10 $\frac{m}{\min}$.

For $f(x) = x^4 - 2x^2 + 3$, find and classify all critical numbers and find all intervals where f is increasing and where f is decreasing.

For $f(x) = x^4 - 2x^2 + 3$, find and classify all critical numbers and find all intervals where f is increasing and where f is decreasing.

For $f(x) = x^4 - 2x^2 + 3$, find and classify all critical numbers and find all intervals where f is increasing and where f is decreasing.

Answer: Since
$$
f' = 4x(x - 1)(x + 1)
$$
, critical numbers are
\n $x = -1, 0, 1$. Sign diagram is $f' : \ominus \mid \oplus \mid \ominus \mid \oplus \infty$
\n $\frac{-1}{10}$ or $\frac{-1}{10}$
\nlocal minima at $x = \pm 1$ and local maximum at $x = 0$, and
\nincreasing on $(-1, 0), (1, \infty)$, decreasing on $(-\infty, -1), (0, 1)$.

Interlude!

Evaluate $\int_0^{\pi/4}$ sec(x) tan(x) dx.

Evaluate
$$
\int_0^{\pi/4} \sec(x) \tan(x) \, dx
$$
.

Evaluate
$$
\int_0^{\pi/4} \sec(x) \tan(x) \, dx
$$
.

Answer: From basic integrals,
$$
\int \sec(x) \tan(x) \, dx = \sec(x) + C
$$
, so $\int_0^{\pi/4} \sec(x) \tan(x) \, dx = \sec(x) \Big|_{x=0}^{\pi/4} = \left[\sec(\frac{\pi}{4}) - \sec(0) = \sqrt{2} - 1 \right].$

Find
$$
\int \sqrt{\sin^2 x + \cos^2 x} \, dx.
$$

Find
$$
\int \sqrt{\sin^2 x + \cos^2 x} \, dx.
$$

Find
$$
\int \sqrt{\sin^2 x + \cos^2 x} \, dx.
$$

Answer: Note that $\sin^2 x + \cos^2 x = 1$, so the integral is just $\int 1 dx = \sqrt{x + C}$.

Compute
$$
\int_0^{\pi/3} \sec^2(x) \, dx.
$$

Compute
$$
\int_0^{\pi/3} \sec^2(x) \, dx.
$$

Compute
$$
\int_0^{\pi/3} \sec^2(x) dx.
$$

Answer: Since
$$
\int \sec^2(x) dx = \tan(x) + C
$$
, we see

$$
\int_0^{\pi/3} \sec^2(x) dx = \tan(x) \Big|_{x=0}^{\pi/3} = \boxed{\tan(\pi/3) - \tan(0) = \sqrt{3}}.
$$

(don't be fooled by the variable \star : it behaves just like any other!)

Interlude!

Find the absolute minimum and maximum values of $f(x) = 2x + 4 \sin(x)$ on $[0, \pi]$ and all places where they occur.

Find the absolute minimum and maximum values of $f(x) = 2x + 4 \sin(x)$ on $[0, \pi]$ and all places where they occur.

Find the absolute minimum and maximum values of $f(x) = 2x + 4 \sin(x)$ on $[0, \pi]$ and all places where they occur.

Answer: We have $f'(x) = 2 + 4 \cos(x)$ so critical numbers occur when $\cos(x) = -\frac{1}{2}$ $\frac{1}{2}$, and on $[0, \pi]$ the only such x is $x = \frac{2\pi}{3}$ $rac{2\pi}{3}$.

Including the endpoints, our point list is $x = 0, \frac{2\pi}{3}$ $\frac{2\pi}{3}, \pi$. We compute $f(0) = 0, f(\frac{2\pi}{3})$ enaponts, our point list is $\lambda = 0$, $\frac{3}{3}$, λ . We comprise that $\frac{2\pi}{3}$ = $\frac{4\pi}{3} + 2\sqrt{3} \approx 7.653$, and $f(\pi) = 2\pi \approx 6.283$.

So the
$$
\boxed{\text{max is } \frac{4\pi}{3} + 2\sqrt{3} \text{ at } x = \frac{2\pi}{3}}
$$
 and the $\boxed{\text{min is 0 at } x = 0}$.

Find $\lim_{x\to\infty} (1+2/x)^{3x}$.

Find
$$
\lim_{x \to \infty} (1 + 2/x)^{3x}
$$
.

Find
$$
\lim_{x \to \infty} (1 + 2/x)^{3x}
$$
.

Answer: This is a 1[∞] limit. Take the natural log to see ln $L =$ $\lim_{x \to \infty} \ln \left[(1 + 2/x)^{3x} \right] = \lim_{x \to \infty} 3x \ln(1 + 2/x) = \lim_{x \to \infty}$ $3 \ln(1 + 2/x)$ $\frac{1}{1/x}$.

Now apply L'Hôpital's rule: $\ln L = \lim_{x \to \infty}$ $3(-2/x^2)/(1+2/x)$ $\frac{(-1/x^2)}{-1/x^2} = \lim_{x \to \infty}$ $3(-2)/(1+2/x)$ $\frac{(-1)^{x-1}}{-1} = 6.$ Therefore In $L = 6$ and so $L = |e^6|$.

A population of goats grows at a rate proportional to its current size. In 2010 the population is 500 and in 2020 the population is 1500. Find the population in 2030.

A population of goats grows at a rate proportional to its current size. In 2010 the population is 500 and in 2020 the population is 1500. Find the population in 2030.

A population of goats grows at a rate proportional to its current size. In 2010 the population is 500 and in 2020 the population is 1500. Find the population in 2030.

Answer: The information says the population grows exponentially, so $P(t) = Ce^{kt}$ for some constants C and k, where we can take t to be years after 2010. We are given $P(0) = 500$ and $P(10) = 1500$, so plugging in gives $C = 500$ and $Ce^{10k} = 1500$ so that $k = \ln(3)/10$.

The population in 2030 is $P(20) = | 500e^{20\ln(3)/10} = 4500 |.$

You cut squares of side length s in from each of the four corners of a rectangular piece of paper measuring 14 in by 30 in, and fold the resulting shape up into a box with no top. What value of s maximizes the volume?

You cut squares of side length s in from each of the four corners of a rectangular piece of paper measuring 14 in by 30 in, and fold the resulting shape up into a box with no top. What value of s maximizes the volume?

You cut squares of side length s in from each of the four corners of a rectangular piece of paper measuring 14 in by 30 in, and fold the resulting shape up into a box with no top. What value of s maximizes the volume?

Answer: Drawing the paper shows that the box will have a height of s, width $14 - 2s$, and length $30 - 2s$, so must have $0 \leq s \leq 7$. Volume is $V(s) = s(14-2s)(30-2s) = 4s^3 - 88s^2 + 420s$.

Then $V'(s) = 12 s^2 - 176 s + 420 = 4(3s - 35)(s - 3)$ so the only critical point in interval is at $s = 3$. Including endpoints, point list is $s = 0, 3, 7$. Since $V(0) = V(7) = 0$, the maximum is at $s = 3$.

For $f(x) = xe^{-x^2/8}$, find and classify all critical numbers, find all inflection numbers, and find all intervals where f is increasing, decreasing, concave up, and concave down.

For $f(x) = xe^{-x^2/8}$, find and classify all critical numbers, find all inflection numbers, and find all intervals where f is increasing, decreasing, concave up, and concave down.

For $f(x) = xe^{-x^2/8}$, find and classify all critical numbers, find all inflection numbers, and find all intervals where f is increasing, decreasing, concave up, and concave down.

Answer: Since
$$
f' = -\frac{1}{4}(x^2 - 4)e^{-x^2/8}
$$
, the critical numbers are
\n $x = [-2, 2]$. Sign diagram is $f' : \ominus \mid \oplus \mid \ominus$ so
\n $\frac{-2}{2}$
\nlocal min at $x = -2$ and local max at $x = 2$, and
\nincreasing on (-2, 2), decreasing on (- ∞ , -2), (2, ∞).
\nAlso $f'' = \frac{1}{16}(x^2 - 12)e^{-x^2/8}$, the inflection numbers are
\n $x = [-2\sqrt{3}, 2\sqrt{3}]$. Sign diagram is $f'' : \oplus \mid \ominus \mid \oplus$ so
\n $\frac{-2\sqrt{3}}{2\sqrt{3}} \cdot 2\sqrt{3}$
\ncone up on $(-\infty, -2\sqrt{3}), (2\sqrt{3}, \infty)$, [cone down on (-2, 2)].

End

Happy studying, and I will see you at the exam on Wednesday.

