Math 1341 - Midterm 2 Review #2

November 18, 2019

Midterm 2 Topics:

- Related rates
- Minimum and maximum values, critical points + classification
- Increasing and decreasing behavior, concavity
- Rolle's theorem + mean value theorem
- L'Hôpital's rule
- Antiderivatives
- Riemann sums + properties of definite integrals
- Fundamental theorem of calculus
- Evaluating definite and indefinite integrals

(Differentiating integrals and substitution are not on the midterm, though they are fair game for the final.)

Find
$$\int \left(\frac{1}{\sqrt{1-x^2}}+\frac{1}{1+x^2}\right) dx$$
.

Find
$$\int \left(\frac{1}{\sqrt{1-x^2}}+\frac{1}{1+x^2}\right) dx$$
.

Find
$$\int \left(\frac{1}{\sqrt{1-x^2}}+\frac{1}{1+x^2}\right) dx.$$

Answer: By our basic integrals this is $|\sin^{-1}(x) + \tan^{-1}(x) + C|$.

Find the left-endpoint, midpoint, and right-endpoint Riemann sums for $f(x) = \sqrt{x}$ on [0, 4] with 2 equal subintervals.

Find the left-endpoint, midpoint, and right-endpoint Riemann sums for $f(x) = \sqrt{x}$ on [0, 4] with 2 equal subintervals.

Find the left-endpoint, midpoint, and right-endpoint Riemann sums for $f(x) = \sqrt{x}$ on [0, 4] with 2 equal subintervals.

Answer: With 2 equal subintervals the intervals are [0, 2] and [2, 4]. So we see

$$RS_{\text{left}} = f(0) \cdot 2 + f(2) \cdot 2 = 2\sqrt{2} \approx 2.828,$$

$$RS_{\text{mid}} = f(1) \cdot 2 + f(3) \cdot 2 = 2 + 2\sqrt{3} \approx 5.464,$$

$$RS_{\text{right}} = f(2) \cdot 2 + f(4) \cdot 2 = 4 + 2\sqrt{2} \approx 6.828.$$

Evaluate
$$\lim_{x\to\infty} (x^2 + 3x)^{4/\ln(x)}$$
.

Evaluate
$$\lim_{x\to\infty} (x^2 + 3x)^{4/\ln(x)}$$

Evaluate
$$\lim_{x\to\infty} (x^2 + 3x)^{4/\ln(x)}$$

Answer: This is an ∞^0 limit. Take the natural log to see $\ln L = \lim_{x \to \infty} \ln \left[(x^2 + 3x)^{4/\ln(x)} \right] = \lim_{x \to \infty} \frac{4 \ln(x^2 + 3x)}{\ln(x)}$. Now apply L'Hôpital's rule to obtain $\ln L = \lim_{x \to \infty} \frac{4(2x+3)/(x^2+3x)}{1/x} = \lim_{x \to \infty} \frac{4x(2x+3)}{x^2+3x} = \lim_{x \to \infty} \frac{8x^2+12x}{x^2+3x}$. By another two applications of L'Hôpital (or just by comparing leading terms) we see that this limit is 8. So $\ln L = 8$ and $L = \boxed{e^8}$.

Interlude!

If $\int_{1}^{3} f(x) dx = 4$ and $\int_{3}^{4} f(x) dx = 5$, find $\int_{1}^{4} [2f(x) + x] dx$.

If
$$\int_{1}^{3} f(x) dx = 4$$
 and $\int_{3}^{4} f(x) dx = 5$, find $\int_{1}^{4} [2f(x) + x] dx$.
Answer:

If
$$\int_{1}^{3} f(x) dx = 4$$
 and $\int_{3}^{4} f(x) dx = 5$, find $\int_{1}^{4} [2f(x) + x] dx$.

Answer: Using integration properties we see that

$$\int_{1}^{4} [2f(x) + x] dx = \int_{1}^{4} 2f(x) dx + \int_{1}^{4} x dx.$$
Then $\int_{1}^{4} f(x) dx = \int_{1}^{3} f(x) dx + \int_{3}^{4} f(x) dx = 9$ and
 $\int_{1}^{4} x dx = \frac{1}{2} x^{2} |_{x=1}^{4} = \frac{15}{2}.$
So the integral is $\int_{1}^{4} [2f(x) + x] dx = 2 \cdot 9 + \frac{15}{2} = \frac{51}{2}.$

Allan has 12 feet of string. He uses some to form a square and the rest to form a right triangle with sides in the ratio 3:4:5. Find the maximum and minimum possible total areas of Allan's two shapes. [Hint: Take the triangle sides to be 3s, 4s, 5s.]

Allan has 12 feet of string. He uses some to form a square and the rest to form a right triangle with sides in the ratio 3:4:5. Find the maximum and minimum possible total areas of Allan's two shapes. [Hint: Take the triangle sides to be 3s, 4s, 5s.]

Allan has 12 feet of string. He uses some to form a square and the rest to form a right triangle with sides in the ratio 3:4:5. Find the maximum and minimum possible total areas of Allan's two shapes. [Hint: Take the triangle sides to be 3s, 4s, 5s.]

Answer: If the triangle has side lengths 3s, 4s, 5s then there is a length 12 - 12s for the square, so its side length is 3 - 3s and $0 \le s \le 1$. The total area of the shapes is then $A(s) = \frac{1}{2} \cdot 3s \cdot 4s + (3 - 3s)^2 = 15s^2 - 18s + 9$. Since A'(s) = 30s - 18 is zero for s = 3/5, point list is s = 0, 3/5, 1. Since A(0) = 9, A(3/5) = 18/5, A(1) = 6, minimum area is 18/5 (at s = 3/5) and the maximum area is 9 (at s = 1).

Interlude!

Sand falls into a conical pile whose height is always 5/2 its radius. If the height of the sandpile is currently 5 meters and sand is being deposited onto the pile at a rate of π cubic meters per minute, how fast are the height and radius of the pile increasing? (Note: The volume of a cone of radius r and height h is $V = \frac{1}{3}\pi r^2 h$.)

Sand falls into a conical pile whose height is always 5/2 its radius. If the height of the sandpile is currently 5 meters and sand is being deposited onto the pile at a rate of π cubic meters per minute, how fast are the height and radius of the pile increasing? (Note: The volume of a cone of radius r and height h is $V = \frac{1}{3}\pi r^2 h$.)

Sand falls into a conical pile whose height is always 5/2 its radius. If the height of the sandpile is currently 5 meters and sand is being deposited onto the pile at a rate of π cubic meters per minute, how fast are the height and radius of the pile increasing? (Note: The volume of a cone of radius r and height h is $V = \frac{1}{3}\pi r^2 h$.)

Answer: We are given
$$r = \frac{2}{5}h$$
, so $V = \frac{1}{3}\pi r^2 h = \frac{4}{75}\pi h^3$.
Then $V'(t) = \frac{4}{25}\pi h^2 \cdot h'(t)$.

It is given that h = 5m and $V' = \pi \frac{m^3}{min}$, so $h' = \frac{V'}{\frac{4}{25}\pi h^2} = \left\lfloor \frac{1}{4} \frac{m}{min} \right\rfloor$, and then $r' = \frac{2}{5}h' = \left\lfloor \frac{1}{10} \frac{m}{min} \right\rfloor$.

For $f(x) = x^4 - 2x^2 + 3$, find and classify all critical numbers and find all intervals where f is increasing and where f is decreasing.

For $f(x) = x^4 - 2x^2 + 3$, find and classify all critical numbers and find all intervals where f is increasing and where f is decreasing.

For $f(x) = x^4 - 2x^2 + 3$, find and classify all critical numbers and find all intervals where f is increasing and where f is decreasing.

Answer: Since
$$f' = 4x(x-1)(x+1)$$
, critical numbers are $x = -1, 0, 1$. Sign diagram is $f' : \bigoplus_{\substack{-1 \\ 0 \\ 1}} | \bigoplus_{\substack{0 \\ -1 \\ 0 \\ 1}} | \bigoplus_{\substack{0 \\ 1} | \bigoplus_{\substack{0 \\ 1}} | \bigoplus_{\substack{0 \\ 1} | \bigoplus_{0$

Interlude!

Evaluate $\int_0^{\pi/4} \sec(x) \tan(x) dx$.

Evaluate
$$\int_0^{\pi/4} \sec(x) \tan(x) dx$$
.

Evaluate
$$\int_0^{\pi/4} \sec(x) \tan(x) dx$$
.

Answer: From basic integrals,
$$\int \sec(x) \tan(x) dx = \sec(x) + C$$
, so $\int_0^{\pi/4} \sec(x) \tan(x) dx = \sec(x)|_{x=0}^{\pi/4} = \left[\sec(\frac{\pi}{4}) - \sec(0) = \sqrt{2} - 1 \right].$

Find
$$\int \sqrt{\sin^2 x + \cos^2 x} \, dx$$
.

Find
$$\int \sqrt{\sin^2 x + \cos^2 x} \, dx$$
.

Find
$$\int \sqrt{\sin^2 x + \cos^2 x} \, dx$$
.

Answer: Note that $\sin^2 x + \cos^2 x = 1$, so the integral is just $\int 1 dx = \boxed{x + C}$.

Compute
$$\int_0^{\pi/3} \sec^2(\star) d\star$$
.

Compute
$$\int_0^{\pi/3} \sec^2(\star) d\star$$
.

Compute
$$\int_{0}^{\pi/3} \sec^{2}(\star) d\star$$
.
Answer: Since $\int \sec^{2}(\star) d\star = \tan(\star) + C$, we see
 $\int_{0}^{\pi/3} \sec^{2}(\star) d\star = \tan(\star)|_{\star=0}^{\pi/3} = \boxed{\tan(\pi/3) - \tan(0) = \sqrt{3}}.$

(don't be fooled by the variable *****: it behaves just like any other!)

Interlude!

Find the absolute minimum and maximum values of $f(x) = 2x + 4\sin(x)$ on $[0, \pi]$ and all places where they occur.

Find the absolute minimum and maximum values of $f(x) = 2x + 4\sin(x)$ on $[0, \pi]$ and all places where they occur.

Find the absolute minimum and maximum values of $f(x) = 2x + 4\sin(x)$ on $[0, \pi]$ and all places where they occur.

Answer: We have $f'(x) = 2 + 4\cos(x)$ so critical numbers occur when $\cos(x) = -\frac{1}{2}$, and on $[0, \pi]$ the only such x is $x = \frac{2\pi}{3}$.

Including the endpoints, our point list is $x = 0, \frac{2\pi}{3}, \pi$. We compute $f(0) = 0, f(\frac{2\pi}{3}) = \frac{4\pi}{3} + 2\sqrt{3} \approx 7.653$, and $f(\pi) = 2\pi \approx 6.283$.

So the max is
$$\frac{4\pi}{3} + 2\sqrt{3}$$
 at $x = \frac{2\pi}{3}$ and the min is 0 at $x = 0$.

Find
$$\lim_{x\to\infty}(1+2/x)^{3x}$$
.

Find
$$\lim_{x\to\infty}(1+2/x)^{3x}$$
.

Find
$$\lim_{x\to\infty}(1+2/x)^{3x}$$
.

Answer: This is a 1^{∞} limit. Take the natural log to see $\ln L = \lim_{x \to \infty} \ln \left[(1 + 2/x)^{3x} \right] = \lim_{x \to \infty} 3x \ln(1 + 2/x) = \lim_{x \to \infty} \frac{3 \ln(1 + 2/x)}{1/x}.$

Now apply L'Hôpital's rule:

$$\ln L = \lim_{x \to \infty} \frac{3(-2/x^2)/(1+2/x)}{-1/x^2} = \lim_{x \to \infty} \frac{3(-2)/(1+2/x)}{-1} = 6.$$
Therefore $\ln L = 6$ and so $L = \boxed{e^6}$.

A population of goats grows at a rate proportional to its current size. In 2010 the population is 500 and in 2020 the population is 1500. Find the population in 2030.

A population of goats grows at a rate proportional to its current size. In 2010 the population is 500 and in 2020 the population is 1500. Find the population in 2030.

A population of goats grows at a rate proportional to its current size. In 2010 the population is 500 and in 2020 the population is 1500. Find the population in 2030.

Answer: The information says the population grows exponentially, so $P(t) = Ce^{kt}$ for some constants C and k, where we can take t to be years after 2010. We are given P(0) = 500 and P(10) = 1500, so plugging in gives

We are given P(0) = 500 and P(10) = 1500, so plugging in gives C = 500 and $Ce^{10k} = 1500$ so that $k = \ln(3)/10$.

The population in 2030 is $P(20) = 500e^{20\ln(3)/10} = 4500$.

You cut squares of side length s in from each of the four corners of a rectangular piece of paper measuring 14 in by 30 in, and fold the resulting shape up into a box with no top. What value of s maximizes the volume?

You cut squares of side length s in from each of the four corners of a rectangular piece of paper measuring 14 in by 30 in, and fold the resulting shape up into a box with no top. What value of s maximizes the volume?

You cut squares of side length s in from each of the four corners of a rectangular piece of paper measuring 14 in by 30 in, and fold the resulting shape up into a box with no top. What value of smaximizes the volume?

Answer: Drawing the paper shows that the box will have a height of s, width 14 - 2s, and length 30 - 2s, so must have $0 \le s \le 7$. Volume is $V(s) = s(14 - 2s)(30 - 2s) = 4s^3 - 88s^2 + 420s$.

Then $V'(s) = 12s^2 - 176s + 420 = 4(3s - 35)(s - 3)$ so the only critical point in interval is at s = 3. Including endpoints, point list is s = 0, 3, 7. Since V(0) = V(7) = 0, the maximum is at $s = \boxed{3}$.

For $f(x) = xe^{-x^2/8}$, find and classify all critical numbers, find all inflection numbers, and find all intervals where f is increasing, decreasing, concave up, and concave down.

For $f(x) = xe^{-x^2/8}$, find and classify all critical numbers, find all inflection numbers, and find all intervals where f is increasing, decreasing, concave up, and concave down.

For $f(x) = xe^{-x^2/8}$, find and classify all critical numbers, find all inflection numbers, and find all intervals where f is increasing, decreasing, concave up, and concave down.

Answer: Since
$$f' = -\frac{1}{4}(x^2 - 4)e^{-x^2/8}$$
, the critical numbers are $x = \boxed{-2,2}$. Sign diagram is $f' : \ominus | \oplus | \ominus$ so
 10 and 10 and

End

Happy studying, and I will see you at the exam on Wednesday.

