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Midterm 2 Topics:

Related Rates

Minimum and maximum values, critical points + classification

Increasing and decreasing behavior, concavity

Rolle’s theorem + mean value theorem

L’Hôpital’s rule

Antiderivatives

Riemann sums + properties of definite integrals

Fundamental theorem of calculus

Evaluating definite and indefinite integrals

(Differentiating integrals and substitution are not on the midterm,
though they are fair game for the final.)
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Problem 1

Compute lim
x→0

ex − 1

sin(3x)
.

Answer: Use L’Hôpital’s rule to get lim
x→0

ex

3 cos(3x)
=

1

3
.
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Problem 2

Find all intervals where f (x) = x5 + 5x4 + 7 is increasing,
decreasing, concave up, concave down.

Answer: Note f ′ = 5x3(x + 4) so f has critical #s x = 0,−4.
Using test points gives a sign diagram f ′ : ⊕ |

−4
	 |

0
⊕, so f is

incr on (−∞,−4) and (0,∞) and decr on (0, 4) .

Likewise, f ′′ = 20x2(x + 3) so f has inflection #s x = 0,−3.
Using test points gives a sign diagram f ′′ : 	 |

−3
⊕ |

0
⊕, so f is

conc up on (−3, 0) and (0,∞) and conc down on (−∞,−3) .
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Interlude!
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Problem 3

The sum of three positive numbers is 12 and two of them are
equal. Find the largest possible product.

Answer: Suppose the numbers are x , x , y . Then 2x + y = 12
meaning that y = 12− 2x , and so the product is
p(x) = x2(12− 2x) = 12x2 − 2x3. Since we must have 0 < x < 6
we look for critical #s in this range.

Since p′(x) = 24x − 6x2 = 6x(4− x), the only critical # of p in
that range is x = 4, which is local max via the sign diagram for p′.
This means the maximum product is p(4) = 64 .
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Problem 4

Evaluate

∫
(x2 + 1)2 dx .

Answer: Expand the integrand:∫
(x2 + 1)2 dx =

∫
(x4 + 2x2 + 1) dx =

1

5
x5 +

2

3
x3 + x + C .
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Problem 5

Find the absolute minimum and maximum of f (x) = x + 16/x on
the interval [1, 8], and all places where they occur.

Answer: Since f ′(x) = 1− 16

x2
, the critical #s occur when

x = −4, 4. So the only critical # in the interval is at x = 4.

So, including the endpoints, our point list is x = 1, 4, 8.

Since f (1) = 17, f (4) = 8, and f (8) = 10, the
minimum is 8 at x = 4 and the maximum is 17 at x = 1 .
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Problem 6

The volume of a cylindrical block of ice is V = πr2h. If the radius
r is currently 10cm and decreasing at 1 cm

min and the height h is
currently 20cm and decreasing at 3 cm

min , how fast is the volume
decreasing?

Answer: Taking the derivative of the volume formula gives
V ′(t) = 2πrh · r ′(t) + πr2 · h′(t). The given information says
r = 10cm, r ′ = −1 cm

min , h = 20cm, h′ = −3 cm
min .

Plugging in gives V ′ = −700π cm3

min .
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Problem 7

Evaluate
∫ 2
2

√
3e2x + sin(x) dx .

Answer: The top and bottom limits are the same so the integral is
0 , regardless of the function.
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Problem 8

Evaluate

∫ e

1

x2 − x + 1

x
dx .

Answer: Distributing the fraction gives∫ e

1

x2 − x + 1

x
dx =

∫ e

1

(
x − 1 +

1

x

)
dx =(

1

2
x2 − x + ln(x)

)∣∣∣∣e
x=1

=
1

2
(e2 − 2e + 3) .
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Problem 9

Find all critical numbers of f (x) = f (x) = x3 + 9x2 − 21x + 2 and
classify them as local minima, local maxima, or neither.

Answer: Note that f ′(x) = 3x2 + 18x − 21 = 3(x − 1)(x + 7) so
the critical numbers are x = −7, 1 .

Using test points gives a sign diagram f ′ : ⊕ |
−7
	 |

1
⊕, so there is a

local maximum at x = −7 and a local minimum at x = 1 .
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Problem 10

Compute lim
x→0

sin(x2)

1− cos(x)
.

Answer: Use L’Hôpital’s rule: L = lim
x→0

2x cos(x2)

sin(x)
. This is still

indeterminate so use it again: L = lim
x→0

2 cos(x2)− 4x2 sin(x2)

cos(x)

which then evaluates to 2 at x = 0.
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Problem 11

Find f (x) if f ′′(x) = 12x2 − ex + sin(x), where f ′(0) = 1 and
f (0) = 2.

Answer: Take the antiderivative to get
f ′(x) = 4x3 − ex − cos(x) + C . Then f ′(0) = 1 says
f ′(0) = −1− 1 + C so C = 3, and f ′(x) = 4x3 − ex − cos(x) + 3.

Take the antiderivative again to see
f (x) = x4 − ex − sin(x) + 3x + D. Then f (0) = 2 says

f (0) = −1 + D so D = 3. So f (x) = x4 − ex − sin(x) + 3x + 3 .
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Problem 12

Evaluate

∫ π/3

π/6

sin(2x)

cos2(x)
dx .

Answer: Here we need to use the trig identity
sin(2x) = 2 sin(x) cos(x). This gives I =∫ π/3

π/6

2 sin(x) cos(x)

cos2(x)
dx =

∫ π/3

π/6

2 sin(x)

cos(x)
dx =

∫ π/3

π/6
2 tan(x) dx .

Then
∫ π/3
π/6 2 tan(x) dx = −2 ln(cos(x))|π/3x=π/6 = ln 3 .
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Problem 13

Find the left-endpoint Riemann sum for f (x) = x2 on [0, 1] with 5
equal subintervals.

Answer: The interval width is
1− 0

5
=

1

5
so the intervals are [0, 15 ],

[15 ,
2
5 ], [25 ,

3
5 ], [35 ,

4
5 ], [45 , 1].

So the Riemann sum is
[f (0) + f (1/5) + f (2/5) + f (3/5) + f (4/5)] · 15 , which evaluates to

[02 + 1/25 + 4/25 + 9/25 + 16/25] · 15 = 30
125 = 0.24 .
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Problem 14

Find the absolute minimum and maximum of f (x) = x2ex on the
interval [−3, 1] and all places where they occur.

Answer: We have f ′(x) = 2xex + x2ex = x(x + 2)ex so the critical
numbers are where f ′ is zero, which occurs for x = −2, 0.
Including the endpoints, our point list is x = −3,−2, 0, 1.

We have f (−3) = 9/e3, f (−2) = 4/e2, f (0) = 0, f (1) = e. The
minimum is 0 at x = 0 and the maximum is e at x = 1 .
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Problem 15

Use the Intermediate Value Theorem + Rolle’s Theorem to show
f (x) = x3 + 3x + 1 has exactly 1 real root.

Answer: Since f is continuous with f (−1) = −1 and f (0) = 1, by
the Intermediate Value Theorem, f has a real root in (−1, 0).

Also, since f ′ = 3x2 + 3 is never zero, f cannot have 2 roots since
by Rolle’s theorem, f ′ would be zero somewhere between them.

So f has exactly 1 real root.
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End

Enjoy WeBWorK #10, and I will see you on Monday for more
review!


