Math 1341 - Midterm 1 Review $# 2$

October 16, 2019

General List of Exam Topics

- Limits (finite limits, infinite limits, limits at infinity)
- **•** Continuity
- Limit definition of derivative, differentiability
- Computing derivatives (product, quotient, chain rule)
- **•** Derivatives of inverse functions
- Logarithmic differentiation
- **•** Implicit differentiation
- Parametric differentiation (velocity, speed, acceleration)
- Tangent lines and rates of change
- **•** Linearization and linear approximation

Calculate the average rate of change of $f(x) = 2x^2 + 2$ on the interval [1, 3].

Calculate the average rate of change of $f(x) = 2x^2 + 2$ on the interval [1, 3].

Calculate the average rate of change of $f(x) = 2x^2 + 2$ on the interval [1, 3].

Answer: The average rate of change is
\n
$$
\frac{f(3) - f(1)}{3 - 1} = \frac{20 - 4}{3 - 1} = \boxed{8}.
$$

Use the limit definition of the derivative to find $s'(1)$ for See the fill denote the $s(t) = \sqrt{3t + 1}$.

Use the limit definition of the derivative to find $s'(1)$ for See the fill denote the $s(t) = \sqrt{3t + 1}$.

Use the limit definition of the derivative to find $s'(1)$ for See the fill denote the $s(t) = \sqrt{3t + 1}$.

Answer: By definition, this is

$$
s'(1) = \lim_{h \to 0} \frac{s(1+h) - s(1)}{h}
$$

=
$$
\lim_{h \to 0} \frac{\sqrt{3(1+h) + 1} - 2}{h}
$$

=
$$
\lim_{h \to 0} \frac{\sqrt{3h + 4} - 2}{h} \cdot \frac{\sqrt{3h + 4} + 2}{\sqrt{3h + 4} + 2}
$$

=
$$
\lim_{h \to 0} \frac{3h}{h \cdot (\sqrt{3h + 4} + 2)} = \frac{3}{4}.
$$

Calculate
$$
\lim_{x \to 1} \frac{1}{(x-1)^6}
$$
.

Calculate
$$
\lim_{x \to 1} \frac{1}{(x-1)^6}
$$
.

Calculate
$$
\lim_{x \to 1} \frac{1}{(x-1)^6}
$$
.

Answer: As $x \rightarrow 1-$, the denominator approaches zero and is positive, while the numerator is positive, so the limit as $x \rightarrow 1-$ is $+\infty$. As $x \to 1+$, the denominator approaches zero and is positive, while the numerator is positive, so the limit as $x \to 1+$ is $+\infty$. These values are equal so the overal limit is $|+\infty|$.

Find
$$
f''(x)
$$
 if $f(x) = \tan^{-1}(x)$.

Find
$$
f''(x)
$$
 if $f(x) = \tan^{-1}(x)$.

Find
$$
f''(x)
$$
 if $f(x) = \tan^{-1}(x)$.

Answer: First,
$$
f'(x) = \frac{1}{x^2 + 1}
$$
. Then by the quotient rule, we see

$$
f''(x) = \frac{2x}{(x^2 + 1)^2}
$$

Interlude!

Use logarithmic differentiation to find the derivative of $f(x) = \sqrt{(\sin x)^{\cos x}}$.

Use logarithmic differentiation to find the derivative of $f(x) = \sqrt{(\sin x)^{\cos x}}$.

Use logarithmic differentiation to find the derivative of $f(x) = \sqrt{(\sin x)^{\cos x}}$.

Answer: First take the natural logarithm and simplify, yielding $\mathsf{In}(f) = \frac{1}{2}\cos(x) \cdot \mathsf{In}(\sin(x))$. Now take the derivative of both sides, which gives $\frac{f'}{f}$ $\frac{f'}{f}=\left[-\frac{1}{2}\right]$ $\frac{1}{2}\sin(x)\ln(\sin(x))+\frac{1}{2}\cos(x)\cdot\frac{\cos(x)}{\sin(x)}$ $\mathsf{sin}(x)$. Finally, solving for f' yields $f'(x) = \left[\sqrt{(\sin x)^{\cos x}} \left[-\frac{1}{2}\right]\right]$ $\frac{1}{2}\sin(x)\ln(\sin(x))+\frac{1}{2}\cos(x)\cdot\frac{\cos(x)}{\sin(x)}$ $sin(x)$ 1 .

Consider the implicit curve $x^2y + x^5y^6 = 2$, which defines y implicitly as a function of x . Find an equation for the line tangent to the curve at the point $(x, y) = (1, 1)$.

Consider the implicit curve $x^2y + x^5y^6 = 2$, which defines y implicitly as a function of x . Find an equation for the line tangent to the curve at the point $(x, y) = (1, 1)$.

Consider the implicit curve $x^2y + x^5y^6 = 2$, which defines y implicitly as a function of x . Find an equation for the line tangent to the curve at the point $(x, y) = (1, 1)$.

Answer: First use implicit differentiation to find the slope of the tangent line $dy/dx = y'$: we get $2xy + x^2y' + 5x^4y^6 + x^5 \cdot 6y^5y' = 0$, so solving yields $y' = -\frac{2xy + 5x^4y^6}{2x^6 + 5x^5}$ $\frac{2xy + 5x^4y^6}{x^2 + 6x^5y^5}$. Then the slope is $\frac{dy}{dx}$ at $(x, y) = (1, 1)$, which is −1. Thus the equation is $\boxed{y-1 = -(x-1)}$, or equivalently, $|y = -x + 2|$.

Calculate
$$
\frac{d}{dt} \left[\sqrt{\ln(\sin(t))} \right].
$$

Calculate
$$
\frac{d}{dt} \left[\sqrt{\ln(\sin(t))} \right].
$$

Calculate
$$
\frac{d}{dt} \left[\sqrt{\ln(\sin(t))} \right]
$$
.

Answer: By the chain rule (repeatedly), we obtain the derivative

.

$$
\frac{1}{2}[\ln(\sin(t))]^{-1/2} \cdot \cos(t) \cdot \frac{1}{\sin(t)}
$$

Find the linearization of $f(x) = 7x^4 + 2x + 1$ at $x = 1$.

Find the linearization of $f(x) = 7x^4 + 2x + 1$ at $x = 1$.

Find the linearization of $f(x) = 7x^4 + 2x + 1$ at $x = 1$.

Answer: By definition, the linearization of
$$
f(x)
$$
 at $x = a$ is
\n
$$
L(x) = f(a) + f'(a) \cdot (x - a).
$$
 Since $f(1) = 10$ and $f'(1) = 30$, the linearization is $L(x) = \boxed{10 + 30(x - 1)}$.

Interlude!

Find $f'(2)$ if $f(x) = x^3 2^x$.

Find
$$
f'(2)
$$
 if $f(x) = x^3 2^x$.

Find $f'(2)$ if $f(x) = x^3 2^x$.

Answer: The first derivative is $f'(x) = 3x^2 \cdot 2^x + x^3 \cdot 2^x \ln(2)$ by the product rule. Then $f'(2) = |48 + 32 \ln(2)|$.

The function $f(x) = 4x + \sin(3x)$ is one-to-one, so it has an inverse function $g(x)$. Find $g'(4\pi)$.

The function $f(x) = 4x + \sin(3x)$ is one-to-one, so it has an inverse function $g(x)$. Find $g'(4\pi)$.

The function $f(x) = 4x + \sin(3x)$ is one-to-one, so it has an inverse function $g(x)$. Find $g'(4\pi)$.

Answer: This is a "differentiating an inverse function" problem. The formula to use here is $\frac{d}{dx}$ $[f^{-1}(x)] = \frac{1}{f'(x)}$ $\frac{1}{f'(f^{-1}(x))}$. Since $f(\pi)=4\pi$ we see $g(4\pi)=f^{-1}(4\pi)=\pi.$ Note $f'(x) = 4 + 3\cos(3x)$. Then by the formula this gives $g'(4\pi) = \frac{1}{f'(f^{-1}(4\pi))} = \frac{1}{f'(t)}$ $\frac{1}{f'(\pi)}=\frac{1}{4+3\,\mathsf{cc}}$ $\frac{1}{4 + 3\cos(3\pi)} = \boxed{1}.$

Problem 11a

A particle moves through the plane so that at time t seconds, its position is $(x, y) = (3e^{2t}, e^{6t})$ meters. Find the particle's velocity, speed, and acceleration at time t.

Problem 11a

A particle moves through the plane so that at time t seconds, its position is $(x, y) = (3e^{2t}, e^{6t})$ meters. Find the particle's velocity, speed, and acceleration at time t.

Problem 11a

A particle moves through the plane so that at time t seconds, its position is $(x, y) = (3e^{2t}, e^{6t})$ meters. Find the particle's velocity, speed, and acceleration at time t.

Answer: The velocity is
$$
(x', y') = \boxed{(6e^{2t}, 6e^{6t})}
$$
. The speed is
\n
$$
\sqrt{[x'(t)]^2 + [y'(t)]^2} = \boxed{\sqrt{(6e^{2t})^2 + (6e^{6t})^2}}
$$
And the acceleration
\nis $(x'', y'') = \boxed{(12e^{2t}, 36e^{6t})}$.

Problem 11b

A particle moves through the plane so that at time t seconds, its position is $(x, y) = (3e^{2t}, e^{6t})$ meters. Find an equation for the tangent line to the particle's path at time $t = 0$.

Problem 11b

A particle moves through the plane so that at time t seconds, its position is $(x, y) = (3e^{2t}, e^{6t})$ meters. Find an equation for the tangent line to the particle's path at time $t = 0$.

Problem 11b

A particle moves through the plane so that at time t seconds, its position is $(x, y) = (3e^{2t}, e^{6t})$ meters. Find an equation for the tangent line to the particle's path at time $t = 0$.

Answer: First, at time $t = 0$, the particle's position is $(x(0), y(0)) = (3, 1)$. We also need the slope of the tangent line, which at time t is $\frac{dy}{dx} = \frac{y'(t)}{x'(t)}$ $\frac{y'(t)}{x'(t)} = \frac{6e^{6t}}{6e^{2t}}$ $\frac{\partial e}{\partial e^{2t}} = e^{4t}$. So at time $t = 0$ the slope is 1, and therefore the equation of the tangent line is $|y-1=1(x-3)|$.

Interlude!

Suppose that $f(1)=5$, $f'(1)=6$, $f(5)=5$, $f'(5)=2$, $g(1)=5$, and $g'(1) = 8$. Find the derivative of $f(x)/g(x)$ at $x = 1$.

Suppose that
$$
f(1) = 5
$$
, $f'(1) = 6$, $f(5) = 5$, $f'(5) = 2$, $g(1) = 5$, and $g'(1) = 8$. Find the derivative of $f(x)/g(x)$ at $x = 1$.

Suppose that
$$
f(1) = 5
$$
, $f'(1) = 6$, $f(5) = 5$, $f'(5) = 2$, $g(1) = 5$, and $g'(1) = 8$. Find the derivative of $f(x)/g(x)$ at $x = 1$.

Answer: By the quotient rule, this is
\n
$$
\frac{f'(1)g(1) - f(1)g'(1)}{[g(1)]^2} = \boxed{-\frac{2}{5}}.
$$

Using an appropriate linear approximation, estimate the value of Using an
 $\sqrt[5]{32.08}$.

Using an appropriate linear approximation, estimate the value of Using an
 $\sqrt[5]{32.08}$.

Using an appropriate linear approximation, estimate the value of Using an
 $\sqrt[5]{32.08}$.

Answer: We use the linearization of $f(x) = \sqrt[5]{x} = x^{1/5}$ at $a = 32$, since we can easily evaluate $f(32)$. The linearization is $L(x) = f(a) + f'(a) \cdot (x - a)$, so since $f'(x) = \frac{1}{5}x^{-4/5}$ we compute $f(32) = 2$ and $f'(32) = \frac{1}{80}$. Then the desired estimate is $L(32.08) = 2 + \frac{1}{80}(32.08 - 32) = 2.001$.

Interlude!

End of Review

Good luck with your studying, and I'll see you tomorrow for the exam!