Math 1341 - Midterm 1 Review

October 10, 2019

Midterm 1 Topics:

- Limits (finite limits, infinite limits, limits at infinity)
- Continuity
- Limit definition of derivative, differentiability
- Computing derivatives (product, quotient, chain rule)
- Derivatives of inverse functions
- Logarithmic differentiation
- Implicit differentiation
- Parametric differentiation (velocity, speed, acceleration)
- Tangent lines and rates of change
- Linearization and linear approximation

(Related rates are on midterm 2!)

Find the derivative of $(2x^3 + 6)^{11}$.

Find the derivative of $(2x^3 + 6)^{11}$.

Find the derivative of $(2x^3 + 6)^{11}$.

Answer: Use the Chain Rule to get $\left| 11 \cdot (2x^3 + 6)^{10} \cdot \overline{6x^2} \right|$.

Math 1341 - Midterm 1 Review

Problem 2

Calculate
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4}.$$

Calculate
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4}.$$

Calculate
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4}.$$

Answer:

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)(x - 1)}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{x - 1}{x + 2} = \boxed{\frac{1}{4}}$$

Suppose that at time t seconds, a particle has position $(x, y) = (3t^2, t^3 - t)$ meters. Find the particle's acceleration at time t = 2 seconds.

Suppose that at time t seconds, a particle has position $(x, y) = (3t^2, t^3 - t)$ meters. Find the particle's acceleration at time t = 2 seconds.

Suppose that at time t seconds, a particle has position $(x, y) = (3t^2, t^3 - t)$ meters. Find the particle's acceleration at time t = 2 seconds.

Answer: The velocity is $(x', y') = (6t, 3t^2 - 1)$ meters per second. Then the acceleration is (x'', y'') = (6, 6t) meters per second squared, so at time t = 2 seconds, it is (6, 12) meters per second squared. (Yes, the units are required!)

Find an equation for the tangent line to the graph of $y = (x + 1)^2 + \sin(2x)$ at x = 0.

Find an equation for the tangent line to the graph of $y = (x + 1)^2 + \sin(2x)$ at x = 0.

Find an equation for the tangent line to the graph of $y = (x + 1)^2 + \sin(2x)$ at x = 0.

Answer: The line passes through (0, y(0)) = (0, 1) and has slope y'(0) = 4, so it is y - 1 = 4(x - 0), alternatively written as y = 4x + 1. [Note that $y'(x) = 2(x + 1) + 2\cos(2x)$.]

Interlude!

Find the derivative of $\sin^2(5x + \cos(5x))$.

Find the derivative of $\sin^2(5x + \cos(5x))$.

Find the derivative of $\sin^2(5x + \cos(5x))$.

Answer: $2\sin(5x + \cos(5x)) \cdot \cos(5x + \cos(5x)) \cdot [5 - 5\sin(5x)]$.

Use an appropriate linearization to estimate the value of $\sqrt{3.92}.$ (No calculators!)

Use an appropriate linearization to estimate the value of $\sqrt{3.92}$. (No calculators!)

Use an appropriate linearization to estimate the value of $\sqrt{3.92}$. (No calculators!)

Answer: The linearization of
$$\sqrt{x}$$
 near $x = 4$ is
 $L(x) = 2 + \frac{1}{4}(x - 4)$. So $\sqrt{3.92} \approx \boxed{2 + \frac{1}{4} \cdot (3.92 - 4) = 1.98}$

Find
$$\lim_{x\to 1} \frac{x-3}{(x-1)^3}$$
.

Find
$$\lim_{x\to 1} \frac{x-3}{(x-1)^3}$$
.

Find
$$\lim_{x\to 1} \frac{x-3}{(x-1)^3}$$
.

Answer: The left limit is ∞ (numerator is negative, denominator is small negative) while the right limit is $-\infty$ (numerator is negative, denominator is small positive) so the two-sided limit

does not exist .

If
$$f(x) = x^9 + 3x + 2\cos(x)$$
, then f is one-to-one. For $g(x) = f^{-1}(x)$, find $g'(2)$.

If
$$f(x) = x^9 + 3x + 2\cos(x)$$
, then f is one-to-one. For $g(x) = f^{-1}(x)$, find $g'(2)$.

If
$$f(x) = x^9 + 3x + 2\cos(x)$$
, then f is one-to-one. For $g(x) = f^{-1}(x)$, find $g'(2)$.

Answer: This is an "inverse function differentiation formula" problem. First, we observe that f(0) = 2, and $f'(x) = 9x^8 + 3 - 2\sin(x)$. So we have g(2) = 0, and then by the formula, we know that $g'(2) = \frac{1}{f'(g(2))} = \frac{1}{f'(0)} = \boxed{\frac{1}{3}}$.

Math 1341 - Midterm 1 Review

Interlude!

Math 1341 - Midterm 1 Review

Problem 9

Calculate
$$\lim_{x \to \infty} \frac{\sqrt{3x^3 - 2x}}{x^2 + 2x}$$
.

Calculate
$$\lim_{x \to \infty} \frac{\sqrt{3x^3 - 2x}}{x^2 + 2x}$$
.

Calculate
$$\lim_{x \to \infty} \frac{\sqrt{3x^3 - 2x}}{x^2 + 2x}$$
.

Answer: $\lim_{x \to \infty} \frac{\sqrt{3x^3 - 2x}}{x^2 + 2x} = \lim_{x \to \infty} \frac{x^{3/2}\sqrt{3 - 2/x^3}}{x^2(1 + 2/x)} = \lim_{x \to \infty} x^{-1/2} \cdot \frac{\sqrt{3 - 2/x^3}}{1 + 2/x},$ which is equal to $\boxed{0}$.

Calculate the derivative of $f(x) = (4x + 1)^{2\sin(x)}$.

Calculate the derivative of $f(x) = (4x + 1)^{2\sin(x)}$.

Calculate the derivative of $f(x) = (4x + 1)^{2\sin(x)}$.

Answer: Use logarithmic differentiation: $\ln(f) = 2\sin(x) \cdot \ln(4x+1)$, so taking the derivative of both sides yields $\frac{f'}{f} = 2\cos(x) \cdot \ln(4x+1) + 2\sin(x) \cdot \frac{4}{4x+1}$. Therefore,

$$f' = \left[(4x+1)^{2\sin(x)} \cdot \left[2\cos(x) \cdot \ln(4x+1) + 2\sin(x) \cdot \frac{4}{4x+1} \right] \right]$$

Suppose that y is defined as an implicit function of x by the relation $ye^{2x} + y^3 = 2$. What is $\frac{dy}{dx}$ when x = 0 and y = 2?

Suppose that y is defined as an implicit function of x by the relation $ye^{2x} + y^3 = 2$. What is $\frac{dy}{dx}$ when x = 0 and y = 2?

Suppose that y is defined as an implicit function of x by the relation $ye^{2x} + y^3 = 2$. What is $\frac{dy}{dx}$ when x = 0 and y = 2?

Answer: Differentiating implicitly yields

$$\frac{dy}{dx} \cdot e^{2x} + ye^{2x} \cdot 2 + 3y^2 \cdot \frac{dy}{dx} = 0.$$
 Solving yields

$$\frac{dy}{dx} = -\frac{ye^{2x} \cdot 2}{e^{2x} + 3y^2},$$
 which at $(x, y) = (0, 2)$ is equal to $-\boxed{4/13}.$

Math 1341 - Midterm 1 Review

Interlude!

True or False: Because the derivative of a^x is $a^x \ln(a)$, the derivative of x^x is $x^x \ln(x)$.

True or False: Because the derivative of a^x is $a^x \ln(a)$, the derivative of x^x is $x^x \ln(x)$.

True or False: Because the derivative of a^x is $a^x \ln(a)$, the derivative of x^x is $x^x \ln(x)$.

Answer: False!: The formula for the derivative of a^x only holds when a is a constant. If we wanted to find the correct derivative of $f(x) = x^x$, we could observe that $\ln(f(x)) = x \ln(x)$, and then take the derivative of both sides to see that $\frac{f'(x)}{f(x)} = \ln(x) + x \cdot \frac{1}{x}$, so that $f'(x) = x^x(\ln(x) + 1)$.

$\mathsf{Problem}\ \infty$

Find the 2019th derivative of
$$f(x) = \frac{\tan^{-1}(x^3 + 2)}{\sin(\ln(x))}$$
.

$\text{Problem }\infty$

Find the 2019th derivative of
$$f(x) = \frac{\tan^{-1}(x^3 + 2)}{\sin(\ln(x))}$$
.

Answer: Just kidding, that would be horrible. Enjoy the long weekend!