E. Dummit's Math 1341, Fall 2019 \sim Midterm 2 Review Answers

- 1. $V'(t) = 2\pi rh \cdot r'(t) + \pi r^2 \cdot h'(t) = -320\pi cm^2/min$ using the given information.
- 2. Information gives $r = \frac{2}{5}h$, and so therefore $V = \frac{4}{75}\pi h^3$. Then $V'(t) = \frac{4}{25}\pi h^2 \cdot h'(t)$. Given h = 5 and $V' = \pi^{m^3}/min$, solving gives $h' = \frac{1}{4}m/min$, and then $r' = \frac{2}{5}h' = \frac{1}{10}m/min$.
- 3. If John's distance to the island is j and Aeryn's is a, and distance between them is d, then $j^2 + a^2 = d^2$, so 2jj' + 2aa' = 2dd'. Given j = 120 km, a = 50 km, j' = -10 km/h, a' = 50 km/h, then d = 130 km, so d' = +20 km/h.

4. (a) f' = 3(x-1)(x-3) so crit #s at x = 1, 3. Min of 0 at x = 0, 3 and max of 4 at x = 1, 4. (b) $f' = 1 - \frac{16}{x^2}$ so crit #s at x = -4, 4 (ignore -4). Min of 8 at x = 4, max of 17 at x = 1. (c) $f' = x(x+2)e^x$ so crit #s at x = -2, 0. Min of 0 at x = 0, max of e at x = 1. (d) $f' = 2 + 4\cos(x)$ so crit #s at $x = 2\pi/3$. Min of -2 at $x = \pi$, max of 6 at x = 0. (e) $f' = \frac{5}{2}x^{3/2} - \frac{5}{2}x^{-1/2}$ so crit #s at x = 0, 1. Min of -4 at x = 1, max of $4\sqrt{3}$ at x = 3. (f) $f' = (1 - x^2)/(1 + x^2)^2$ so crit #s at x = -1, 1. Min of -1/2 at x = -1, max of 1/2 at x = 1.

5. Since f is continuous, f(-1) = -1, f(0) = 1, by IVT there is a real root in (-1, 0). Since $f' = 3x^2 + 3$ is never zero, f cannot have 2 roots since by Rolle f' would be zero somewhere between them. So f has exactly 1 root.

	Critical $\#s$	Infl #s	Increasing	Decreasing	$\operatorname{Concave} \uparrow$	$\mathrm{Concave}\downarrow$
	2 (min)	None	$(2,\infty)$	$(-\infty, 2)$	$(-\infty,\infty)$	Never
	-7 (max), 1 (min)	-3	$(-\infty, -7), (1, \infty)$	(-7,1)	$(-3,\infty)$	$(-\infty, -3)$
6.	-4 (max), 0 (min)	(0), -3	$(-\infty, -4), (0, \infty)$	(-4,0)	$(-3,0), (0,\infty)$	$(-\infty, -3)$
	-1,1 (mins), 0 (max)	$\pm \frac{1}{\sqrt{3}}$	$(-1,0), (1,\infty)$	$(-\infty, -1), (0, 1)$	$(-\infty,-\frac{1}{\sqrt{3}}),(\frac{1}{\sqrt{3}},\infty)$	$\left(-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$
	$\frac{2\pi}{3}$ (max), $\frac{4\pi}{3}$ (min)	π	$(0,\frac{2\pi}{3}),(\frac{4\pi}{3},2\pi)$	$\left(\frac{2\pi}{3},\frac{4\pi}{3}\right)$	$(\pi, 2\pi)$	$(0,\pi)$
	-2 (min), 2 (max)	$0, \pm 2\sqrt{3}$	(-2, 2)	$(-\infty,-2),(2,\infty)$	$(-\infty,0)$	$(0,\infty)$

7. (a) L'Hopital once, L = 1/3. (b) Not a L'Hopital limit (denom not 0), plug in for L = 0. (c) L'Hopital twice, L = 2. (d) Common denominator then L'Hopital twice, L = 0.

- (e) L'Hopital twice, $L = \infty$.
- (f) Write as $\ln(x-2)/[1/(x^2-4)]$ then L'Hopital once, L=0.
- (g) Take natural log then write as $3\ln(1+2/x)/(1/x)$ then L'Hopital once and exponentiate, $L = e^6$.
- (h) Take natural log then write as $4\ln(x^2 + 3x)/\ln(x)$ then L'Hopital twice and exponentiate, $L = e^8$.
- 8. Numbers are x, x, y with 2x + y = 12 meaning that y = 12 2x. Then the product is $p(x) = x^2(12 2x)$ where we must have 0 < x < 6. Only critical pt of p in that range is local max x = 4, so max product is p(4) = 64.
- 9. Let triangle sides be 3s, 4s, 5s with $0 \le s \le 1$, then square side is 3-3s. Total area is $A(s) = 6s^2 + (3-3s)^2 =$ $15s^2 - 18s + 9$. Only critical point is s = 3/5. Min area is 18/5 at s = 3/5 and max area is 9 at s = 0.
- 10. Box dimensions are s, 14-2s, 30-2s so V(s) = s(14-2s)(30-2s), with $0 \le s \le 7$. Then V'(s) = 4(s-3)(3s-35)so the only critical point of V in that range is local max s = 3, which must be the absolute max.
- 11. Take antiderivatives and plug in to get $f'(x) = 4x^3 e^x \cos(x) + 3$, $f(x) = x^4 e^x \sin(x) + 3x + 3$.
- 12. Pop. is exponential: $P(t) = Ce^{kt}$, t yrs after 2010. Plug in to get C = 500 and $k = \ln(3)/10$, so P(30) = 4500.
- 13. (a) $RS_{\text{left}} = \sqrt{0} \cdot 2 + \sqrt{2} \cdot 2 \approx 2.828, RS_{\text{mid}} = \sqrt{1} \cdot 2 + \sqrt{3} \cdot 2 \approx 5.464, RS_{\text{right}} = \sqrt{2} \cdot 2 + \sqrt{4} \cdot 2 \approx 6.828.$ (b) $RS_{\text{left}} = 0.16$, $RS_{\text{mid}} = 0.245$, $RS_{\text{right}} = 0.36$.

14.	(a) 232/9	(b) $\sin^{-1}(x) + \tan^{-1}(x) + C$	(c) 3 (d) 0	(e) $\sqrt{2} - 1$	(f) $\frac{1}{2}(e^2 - 2e + 3)$
	(g) $\sqrt{3}$	(h) 2 (i) $\frac{1}{5}x^5 + \frac{2}{3}x^3 + x + C$	(j) $\ln(3)$	(k) $\frac{24}{\ln(3)} - \frac{6}{\ln(2)}$	(l) $x + C$
15.	(a) 9	(b) -3	(c) 12	(d) 12	