E. Dummit's Math 1341, Fall 2019 \sim Midterm 1 Review Problems

1. Find the following limits or explain why they do not exist (note ∞ and $-\infty$ are possible values):

(a)
$$\lim_{x \to 1} \frac{\sin(\pi x) + e^x}{4 \tan^{-1}(x)}.$$
 (c)
$$\lim_{x \to 2^-} \frac{\sqrt{x+7}-3}{x-2}.$$
 (e)
$$\lim_{x \to 2^-} \frac{x}{(x+1)(x-2)}.$$
 (g)
$$\lim_{x \to \infty} \frac{3x^5 + x^3}{2x^6 - 11}.$$
 (b)
$$\lim_{x \to 3^+} \frac{x^2 - 9}{x^2 + 2x - 15}.$$
 (d)
$$\lim_{x \to 1} \frac{1}{(x-1)^6}.$$
 (f)
$$\lim_{x \to \infty} \frac{x^3 + 2x^2 + 5}{2x^2 - x + 1}.$$
 (h)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - x + 2}}{x^2 + 1}.$$

- 2. Use the Intermediate Value Theorem to show that if $f(x) = x^{20} + 3x^{19} + 1$, then there must exist a real number c with f(c) = 2.
- 3. If $f(x) = 2x^2 + 2$, find the average rate of change of f on the intervals (a) [1,3], (b) [1,2], and (c) [1,1.1].
- 4. Use the limit definition of the derivative to find (a) f'(x) for $f(x) = x^2 + 1$, and (b) s'(1) for $s(t) = \sqrt{3t+1}$.
- 5. Find the following derivatives:

(a)
$$\frac{d}{dx} \left[2x^3 + \sqrt{x} + \frac{4}{x\sqrt[3]{x}} + 5 \right]$$
. (d) $\frac{dg}{dy}$ if $g(y) = \frac{y \sin^{-1}(y)}{\cos(4y) - \ln(y)}$. (g) $f^{(2019)}(x)$ for $f(x) = \cos(4x)$.
(b) $\frac{dy}{dx}$ if $y = x^{56} \cos(x)\sqrt{1-x^2}$. (e) $\frac{d}{dt} \left[\sqrt{\ln(\sin(t))} \right]$. (h) $x'(y)$ if $x = \frac{4 + \sqrt{3 - \tan^{-1}(y)}}{e^{2y} \sin(5y)}$
(c) $\frac{d^2f}{dx^2}$ if $f(x) = x^3 2^x$. (f) $f''(x)$ if $f(x) = \tan^{-1}(x)$. (i) $\triangle'(\star)$ where $\triangle(\star) = \square^{\star}$.

6. Use logarithmic differentiation to find the derivative of each function:

(a)
$$f(x) = \sqrt{(\sin x)^{\cos x}}$$
.
(b) $g(x) = \frac{e^{-\cos(x)} \cdot [\ln(x)]^{3x}}{(\tan^{-1}(x))^2}$.
(c) $h(x) = \frac{x^4}{(x^2 - 2x + 5)^8 \cdot \sqrt[3]{5x + 1}}$

7. Find an equation for the tangent line to the graph of $y = 2\sin(3x)$ at $x = \pi/4$.

8. Consider the implicit curve $x^2y + x^5y^6 = 1$, which defines y implicitly as a function of x.

(a) Find dy/dx.

(b) Find an equation for the line tangent to the curve at the point (x, y) = (1, 1).

9. If x and y are related by $20x^5 - xy^4 + e^{2x-y} = 5$, find dy/dx when x = 1 and y = 2.

10. A particle moves through the plane so that at time t seconds, its position is $(x, y) = (3e^{2t}, e^{6t})$ meters.

- (a) Find the particle's velocity, speed, and acceleration at time t.
- (b) Find dy/dx at time t.
- (c) Find an equation for the tangent line to the particle's path at time t = 0.

11. Let $f(x) = 7x^4 + 2x + 1$ and $g(x) = \arctan(x^2)$. Find the linearizations of f(x) and g(x) at x = 1.

12. Using appropriate linear approximations, estimate the values of $e^{0.04}$ and $\sqrt[5]{32.08}$.

13. The function
$$f(x) = 4x + \sin(3x)$$
 is one-to-one, so it has an inverse function $g(x)$. Find $g(4\pi)$ and $g'(4\pi)$.

14. Suppose that f(1) = 5, f'(1) = 6, f(5) = 5, f'(5) = 2, g(1) = 5, and g'(1) = 8. Find the following:

- (a) The derivative of $f(x) \cdot g(x)$ at x = 1. (c) The derivative of f(g(x)) at x = 1.
 - (b) The derivative of f(x)/g(x) at x = 1. (d) The derivative of f(f(x)) at x = 1.

15. Suppose that $f(x) = \begin{cases} 3x + c & \text{for } x \leq 0 \\ dx^2 - 1 & \text{for } x > 0 \end{cases}$. Determine all possible values of c and d so that (a) f is continuous for all real numbers x, and (b) f is differentiable for all real numbers x.