1. Evaluate the following integrals:

2. Calculate:

(a)
$$\frac{d}{dx} \left[\int_0^x e^{t^3} dt \right]$$
. (b) $\frac{d}{dx} \left[\int_{\sin(x)}^{\tan(x)} e^{t^3} dt \right]$. (c) $\frac{d}{dx} \left[\int_{2x}^{3x} \frac{\sin(t)}{t+2} dt \right]$

3. Find the average value of $f(x) = \sqrt{x}$ on the interval [4, 9] and the average value of $\sin(2x)$ on the interval $[0, \pi/4]$.

4. Find the following areas:

- (a) The area of the region under $y = x^2 5$ and above the x-axis, for $3 \le x \le 4$.
- (b) The area of the region lying under the curve $y = 2x x^2$ and above the x-axis.
- (c) The area of the region lying above the curve $y = x^2 1$ and below the x-axis.
- (d) The area of the finite region enclosed between the curves y = 5x and $y = x^2 + 4$.
- (e) The area of the finite region enclosed between the curves $y = 3 x^2$ and $y = x^2 1$.
- (f) The area of the region bounded by the x-axis, positive y-axis, and the graph of $x = 4 y^2$.
- (g) The area of the region bounded by the positive y-axis, the line y = 1, and the curve $x = y^6$.
- (h) The area of the region above the x-axis and below both y = x + 2 and $y = 4 x^2$.
- (i) The area of the region above y = -2, below y = 1, to the right of $x = y^2 2$, and to the left of $x = y^2 + 1$.
- 5. The area under the graph y = f(x) of the positive function f(x) between x = 0 and x = a is equal to $a^3 + e^a 1$. Find the function f(x).