Counting Number Field Extensions of Given Degree, Bounded Discriminant, and Specified Galois Closure

Evan P. Dummit

University of Wisconsin-Madison

August 7, 2014

Let:

• n be a positive integer

- n be a positive integer,
- K be a number field of absolute discriminant D_K

- n be a positive integer,
- K be a number field of absolute discriminant D_K ,
- G be a transitive subgroup of the symmetric group S_n

- n be a positive integer,
- K be a number field of absolute discriminant D_K ,
- G be a transitive subgroup of the symmetric group S_n ,
- ullet $\mathcal{D}_{L/K}$ be the relative discriminant ideal of the extension L/K

- n be a positive integer,
- K be a number field of absolute discriminant D_K ,
- G be a transitive subgroup of the symmetric group S_n ,
- ullet $\mathcal{D}_{L/K}$ be the relative discriminant ideal of the extension L/K,
- $\bullet \ \operatorname{Nm}_{K/\mathbb{O}}$ be the absolute norm on ideals

- n be a positive integer,
- K be a number field of absolute discriminant D_K ,
- G be a transitive subgroup of the symmetric group S_n ,
- ullet $\mathcal{D}_{L/K}$ be the relative discriminant ideal of the extension L/K,
- $\bullet \ \operatorname{Nm}_{{\boldsymbol{K}}/{\mathbb Q}}$ be the absolute norm on ideals,
- The Galois closure of L/K be \hat{L}/K .

Counting Functions

Define $N_{K,n}(X;G)$ to be the number of number fields L (up to K-isomorphism) such that

- [L:K] = n,
- The discriminant norm $\operatorname{Nm}_{K/\mathbb{Q}}(D_{L/K})$ is less than X, and
- The Galois group $Gal(\hat{L}/K)$ is permutation-isomorphic to G.

Counting Functions

Define $N_{K,n}(X;G)$ to be the number of number fields L (up to K-isomorphism) such that

- [L:K] = n,
- The discriminant norm $\operatorname{Nm}_{K/\mathbb{Q}}(D_{L/K})$ is less than X, and
- The Galois group $Gal(\hat{L}/K)$ is permutation-isomorphic to G.

Also define $N_{K,n}(X)$ to be the number of extensions satisfying the first two conditions above (i.e., with no condition on the Galois group).

Counting Problems

Question 1

For a given K and n, how fast does $N_{K,n}(X)$ grow as X grows?

Counting Problems

Question 1

For a given K and n, how fast does $N_{K,n}(X)$ grow as X grows?

Conjecture 2 (Linnik?)

For all n and all base fields K,

$$N_{K,n}(X) \sim X$$
.

Counting Problems

Question 1

For a given K and n, how fast does $N_{K,n}(X)$ grow as X grows?

Conjecture 2 (Linnik?)

For all n and all base fields K.

$$N_{K,n}(X) \sim X$$
.

This result is known to hold for $n \le 3$ for general base fields, and for $n \le 5$ over \mathbb{Q} : these results are due to Davenport-Heilbronn, Datskovsky-Wright, Kable-Yukie, and Bhargava.

General Upper Bounds

We do have some upper bounds for larger n:

General Upper Bounds

We do have some upper bounds for larger n:

Theorem 3 (Schmidt)

For all n and all base fields K,

$$N_{K,n}(X) \ll X^{(n+2)/4}$$
.

General Upper Bounds

We do have some upper bounds for larger n:

Theorem 3 (Schmidt)

For all n and all base fields K,

$$N_{K,n}(X) \ll X^{(n+2)/4}$$
.

Theorem 4 (Ellenberg, Venkatesh)

For all n > 2 and all base fields K,

$$N_{K,n}(X) \ll (X D_{K/\mathbb{Q}}^n A_n^{[K:\mathbb{Q}]})^{\exp(C\sqrt{\log n})},$$

where A_n is a constant depending only on n and C is an absolute constant.

More Conjectures

Question 5

For a given G, K, and n, how fast does $N_{K,n}(X;G)$ grow as X grows?

More Conjectures

Question 5

For a given G, K, and n, how fast does $N_{K,n}(X;G)$ grow as X grows?

Conjecture 6 (Malle, weak form)

For any $\epsilon > 0$,

$$N_{K,n}(X;G) \ll X^{a(G)+\epsilon}$$

where $0 < a(G) \le 1$ is a computable constant depending on G contained in $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \}$.

More Conjectures

Question 5

For a given G, K, and n, how fast does $N_{K,n}(X;G)$ grow as X grows?

Conjecture 6 (Malle, weak form)

For any $\epsilon > 0$,

$$N_{K,n}(X;G) \ll X^{a(G)+\epsilon}$$

where $0 < a(G) \le 1$ is a computable constant depending on G contained in $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}$.

This conjecture (or a stronger version) is known in a number of cases: for example, if $n \le 4$, or if G is a nilpotent group.

Counting by Discriminant

Theorem 7 (D.)

Let $n \geq 2$, let K be any number field, and let G be a proper transitive subgroup of S_n . Also, let t be such that if G' is the intersection of a point stabilizer in S_n with G, then any subgroup of G properly containing G' has index at least t. Then for any $\epsilon > 0$,

$$N_{K,n}(X;G) \ll X^{rac{1}{2(n-t)}\left[\sum_{i=1}^{n-1} \deg(f_{i+1}) - rac{1}{[K:\mathbb{Q}]}
ight] + \epsilon},$$

where the f_i for $1 \le i \le n$ are a set of "primary invariants" for G, whose degrees (in particular) satisfy $\deg(f_i) \le i$.

Here is a quick recap of some invariant theory:

• If $\rho: G \to GL_n(\mathbb{C})$ is a (faithful) complex representation of G, let G act on $\mathbb{C}[x_1, \cdots, x_n]$ via ρ .

- If $\rho: G \to GL_n(\mathbb{C})$ is a (faithful) complex representation of G, let G act on $\mathbb{C}[x_1, \cdots, x_n]$ via ρ .
- Let $R = \mathbb{C}[x_1, \dots, x_n]^G$ be the *G*-invariant polynomials.

- If $\rho: G \to GL_n(\mathbb{C})$ is a (faithful) complex representation of G, let G act on $\mathbb{C}[x_1, \cdots, x_n]$ via ρ .
- Let $R = \mathbb{C}[x_1, \dots, x_n]^G$ be the *G*-invariant polynomials.
- There exist elements $f_1, \dots, f_n \in R$ such that R is a finitely-generated module over $A := \mathbb{C}[f_1, \dots, f_n]$. These polynomials are called "primary invariants" of ρ .

- If $\rho: G \to GL_n(\mathbb{C})$ is a (faithful) complex representation of G, let G act on $\mathbb{C}[x_1, \cdots, x_n]$ via ρ .
- Let $R = \mathbb{C}[x_1, \dots, x_n]^G$ be the *G*-invariant polynomials.
- There exist elements $f_1, \dots, f_n \in R$ such that R is a finitely-generated module over $A := \mathbb{C}[f_1, \dots, f_n]$. These polynomials are called "primary invariants" of ρ .
- Moreover, there exist polynomials $g_1, g_2, \dots, g_k \in R$ such that $R = A \cdot g_1 + \dots + A \cdot g_k$; these polynomials are called "secondary invariants" of ρ .

Primary Invariants, II

Example

Let $G = S_n$ and ρ be the regular representation of G (which simply acts on $\mathbb{C}[x_1, \dots, x_n]$ by index permutation). Then the elementary symmetric polynomials are a set of primary invariants for G.

Primary Invariants, II

Example

Let $G = S_n$ and ρ be the regular representation of G (which simply acts on $\mathbb{C}[x_1, \dots, x_n]$ by index permutation). Then the elementary symmetric polynomials are a set of primary invariants for G.

In fact, the elementary symmetric polynomials are a set of primary invariants for any permutation representation...

Primary Invariants, II

Example

Let $G = S_n$ and ρ be the regular representation of G (which simply acts on $\mathbb{C}[x_1, \dots, x_n]$ by index permutation). Then the elementary symmetric polynomials are a set of primary invariants for G.

In fact, the elementary symmetric polynomials are a set of primary invariants for any permutation representation... but not necessarily of minimal degree!

Primary Invariants, III

Example

Let $G = \langle (1\,2\,3\,4\,5\,6\,7), \ (1\,2)(3\,6) \rangle \cong PSL_2(\mathbb{F}_7)$, with ρ the natural permutation representation. The following polynomials are a set of primary invariants for ρ :

$$f_{1} = x_{1} + x_{2} + x_{3} + x_{4} + x_{5} + x_{6} + x_{7}$$

$$f_{2} = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2} + x_{6}^{2} + x_{7}^{2}$$

$$f_{3} = x_{1}^{3} + x_{2}^{3} + x_{3}^{3} + x_{4}^{3} + x_{5}^{3} + x_{6}^{3} + x_{7}^{3}$$

$$f_{4} = x_{1}x_{2}x_{3} + [26 \text{ more terms}] + x_{5}x_{6}x_{7}$$

$$f_{5} = x_{1}^{4} + x_{2}^{4} + x_{3}^{4} + x_{4}^{4} + x_{5}^{4} + x_{6}^{4} + x_{7}^{4}$$

$$f_{6} = x_{1}^{2}x_{2}x_{3} + [82 \text{ more terms}] + x_{5}x_{6}x_{7}^{2}$$

$$f_{7} = x_{1}^{7} + x_{2}^{7} + x_{3}^{7} + x_{4}^{7} + x_{5}^{7} + x_{6}^{7} + x_{7}^{7}$$

Primary Invariants, IV: A New Hope

By the previous slide, we know that if G is the simple group of order 168 and ρ is its permutation embedding in S_7 , then ρ has a set of primary invariants of degrees 1, 2, 3, 3, 4, 4, and 7. For this group, one can also check that the t-parameter is equal to 1. Therefore, Theorem 7 yields the following:

Primary Invariants, IV: A New Hope

By the previous slide, we know that if G is the simple group of order 168 and ρ is its permutation embedding in S_7 , then ρ has a set of primary invariants of degrees 1, 2, 3, 3, 4, 4, and 7. For this group, one can also check that the t-parameter is equal to 1. Therefore, Theorem 7 yields the following:

Corollary 8

If G is the simple group of order 168, embedded in S_7 , then $N_{\mathbb{Q},7}(X;G) \ll X^{11/6+\epsilon}$.

Primary Invariants, IV: A New Hope

By the previous slide, we know that if G is the simple group of order 168 and ρ is its permutation embedding in S_7 , then ρ has a set of primary invariants of degrees 1, 2, 3, 3, 4, 4, and 7. For this group, one can also check that the t-parameter is equal to 1. Therefore, Theorem 7 yields the following:

Corollary 8

If G is the simple group of order 168, embedded in S_7 , then $N_{\mathbb{Q},7}(X;G) \ll X^{11/6+\epsilon}$.

For comparison, Schmidt's bound gives the weaker upper bound of $\ll X^{9/4}$, whereas Malle's conjecture posits that the actual count is $\ll X^{1/2+\epsilon}$.

Here is a rough outline of the steps involved in the proof of Theorem 7:

Here is a rough outline of the steps involved in the proof of Theorem 7:

• Use the geometry of numbers and Minkowski's lattice theorems to construct an element $\alpha \in \mathcal{O}_L$ generating L/K whose archimedean norms are small.

Here is a rough outline of the steps involved in the proof of Theorem 7:

- Use the geometry of numbers and Minkowski's lattice theorems to construct an element $\alpha \in \mathcal{O}_L$ generating L/K whose archimedean norms are small.
- Use the invariant theory of G to construct a finite scheme map to affine space.

Here is a rough outline of the steps involved in the proof of Theorem 7:

- Use the geometry of numbers and Minkowski's lattice theorems to construct an element $\alpha \in \mathcal{O}_L$ generating L/K whose archimedean norms are small.
- Use the invariant theory of G to construct a finite scheme map to affine space.
- Count integral scheme points whose images lie in an appropriate box, to obtain an upper bound on the number of possible α and hence the number of possible extensions L/K.

Transitive Subgroups of S_7

Here are the results of Theorem 7 for transitive subgroups of S_7 :

#	Ord	Isom to	Invariant Degs.	Result	Malle	Schmidt
7T1	7	C ₇	1,2,2,2,3,4,7	$X^{19/12}$	$X^{1/6}$	$X^{9/4}$
7T2	14	D_7	1,2,2,2,3,4,7	$X^{19/12}$	$X^{1/3}$	$X^{9/4}$
7T3	21	F ₂₁	1,2,3,3,3,4,7	$X^{7/4}$	$X^{1/4}$	$X^{9/4}$
7T4	42	F ₄₂	1,2,3,3,4,6,7	X^2	$X^{1/3}$	$X^{9/4}$
7T5	168	$PSL_2(\mathbb{F}_7)$	1,2,3,3,4,4,7	$X^{11/6}$	$X^{1/2}$	$X^{9/4}$
7T6	2520	A_7	1,2,3,4,5,6,7	$X^{13/6}$	$X^{1/2}$	$X^{9/4}$

Transitive Subgroups of S_7

Here are the results of Theorem 7 for transitive subgroups of S_7 :

#	Ord	Isom to	Invariant Degs.	Result	Malle	Schmidt
7T1	7	C ₇	1,2,2,2,3,4,7	$X^{19/12}$	$X^{1/6}$	$X^{9/4}$
7T2	14	D_7	1,2,2,2,3,4,7	$X^{19/12}$	$X^{1/3}$	$X^{9/4}$
7T3	21	F ₂₁	1,2,3,3,3,4,7	$X^{7/4}$	$X^{1/4}$	$X^{9/4}$
7T4	42	F ₄₂	1,2,3,3,4,6,7	X^2	$X^{1/3}$	$X^{9/4}$
7T5	168	$PSL_2(\mathbb{F}_7)$	1,2,3,3,4,4,7	$X^{11/6}$	$X^{1/2}$	$X^{9/4}$
7T6	2520	A_7	1,2,3,4,5,6,7	$X^{13/6}$	$X^{1/2}$	$X^{9/4}$

For horizontal brevity, the results appear without the $+\epsilon$ term in the exponent, and are also stated for the base field $K=\mathbb{Q}$. A superior bound is available for the cyclic and dihedral groups (the former is abelian, while dihedral extensions can be bounded using class field theory).

Towards a Generalization

We now turn to generalizing Theorem 7 into a setting with arbitrary representations ρ , rather than merely permutation representations: so let ρ be a faithful d-dimensional representation of G that is defined over \mathcal{O}_K , and \hat{L}/K be a Galois extension.

Towards a Generalization

We now turn to generalizing Theorem 7 into a setting with arbitrary representations ρ , rather than merely permutation representations: so let ρ be a faithful d-dimensional representation of G that is defined over \mathcal{O}_K , and \hat{L}/K be a Galois extension.

Many of the ingredients (invariant theory, point-counting) carry through to the general setting... but it turns out that we will need to define a new counting function first.

Compatible Actions and the Tuning Submodule

There are two natural actions of G on the space

$$\mathcal{O}_{\hat{\mathcal{L}}} \otimes_{\mathcal{O}_{\mathcal{K}}} \mathcal{O}_{\mathcal{K}}^{\oplus d} \cong \mathcal{O}_{\hat{\mathcal{L}}}^{\oplus d}$$

namely, the action δ arising from the Galois action of G on $\mathcal{O}_{\hat{L}}$, and the action τ arising from the representation ρ .

Compatible Actions and the Tuning Submodule

There are two natural actions of G on the space

$$\mathcal{O}_{\hat{\mathcal{L}}} \otimes_{\mathcal{O}_{\mathcal{K}}} \mathcal{O}_{\mathcal{K}}^{\oplus d} \cong \mathcal{O}_{\hat{\mathcal{L}}}^{\oplus d}$$

namely, the action δ arising from the Galois action of G on $\mathcal{O}_{\hat{L}}$, and the action τ arising from the representation ρ .

Definition

We define the tuning submodule Ξ_{ρ} to be the subset of elements of the space $\mathcal{O}_{\hat{I}}^{\oplus d}$ on which the two actions δ and τ coincide; namely,

$$\Xi_{\rho} = \left\{ x \in \mathcal{O}_{\hat{L}}^{\oplus d} : \forall g \in G, \ \delta(g)(x) = \tau(g)(x) \right\}.$$

The tuning submodule Ξ_{ρ} is a torsion-free $\mathcal{O}_{\mathcal{K}}$ -module of rank d.

The ρ -Discriminant

In our new setting, we will use the tuning submodule to obtain a lattice. To do this, we tensor with $\mathbb R$ to embed Ξ_ρ inside an ambient real space. The covolume of the resulting lattice yields a natural analogue of the discriminant:

The ρ -Discriminant

In our new setting, we will use the tuning submodule to obtain a lattice. To do this, we tensor with $\mathbb R$ to embed Ξ_ρ inside an ambient real space. The covolume of the resulting lattice yields a natural analogue of the discriminant:

Definition

If Ξ_{ρ} is the tuning submodule attached to (ρ, \hat{L}, K) , and

$$\psi: \Xi_{\rho} \to \Xi_{\rho} \otimes_{\mathbb{Z}} \mathbb{R}$$

is the natural embedding, we define the ho-discriminant $D_{{
m L/K}}^{(
ho)}$ to be

$$D_{\hat{I}/K}^{(\rho)} = \operatorname{covol}(\psi(\Xi_{\rho}))^2.$$

An Example

Example

Let $K = \mathbb{Q}$, $\hat{L} = \mathbb{Q}(\sqrt{D})$, and ρ be the nontrivial 1-dimensional representation of $G = \mathbb{Z}/2\mathbb{Z}$.

An Example

Example

Let $K = \mathbb{Q}$, $\hat{L} = \mathbb{Q}(\sqrt{D})$, and ρ be the nontrivial 1-dimensional representation of $G = \mathbb{Z}/2\mathbb{Z}$. For g the nonidentity element of G and $x = a + b\sqrt{D} \in \mathcal{O}_{\hat{L}}$, we have

$$\delta(g)(x) = a - b\sqrt{D}$$

and

$$\tau(g)(x) = -x = -a - b\sqrt{D}.$$

An Example

Example

Let $K = \mathbb{Q}$, $\hat{L} = \mathbb{Q}(\sqrt{D})$, and ρ be the nontrivial 1-dimensional representation of $G = \mathbb{Z}/2\mathbb{Z}$. For g the nonidentity element of G and $x = a + b\sqrt{D} \in \mathcal{O}_{\hat{1}}$, we have

$$\delta(g)(x) = a - b\sqrt{D}$$

and

$$\tau(g)(x) = -x = -a - b\sqrt{D}.$$

Therefore,

$$\Xi_{\rho} = \mathbb{Z}\sqrt{D},$$

and

$$D_{\hat{I}/\mathbb{O}}^{(\rho)}=D.$$

A New Counting Function

Define $N_{K,n}(X;\rho)$ to be the number of number fields \hat{L} (up to K-isomorphism) such that

- [L:K] = n,
- The Galois group $\operatorname{Gal}(\hat{L}/K) = G$ and $\rho: G \to GL_d(\mathcal{O}_K)$ is a faithful representation of G, and
- The ρ -discriminant $D_{\hat{L}/K}^{(\rho)}$ is less than X.

Counting by ρ -Discriminant

We can now state our generalization of Theorem 7:

Theorem 9 (D.)

Let K be any number field, G be a finite group of order n, and $\rho: G \to GL_d(\mathcal{O}_K)$ be a faithful d-dimensional representation of G on \mathcal{O}_K . Also define $t(\rho)$ to be the smallest positive integer such that for any nontrivial subgroup H of G, $(\mathcal{O}_K^d)^{\rho(H)}$ has rank $\leq t(\rho)$ as an \mathcal{O}_K -module. Then

$$N_{K,n}(X;\rho) \ll X^{\frac{1}{2(d-t(\rho))}\left[\sum_{i=1}^{d} \deg(f_i)\right]}$$

where the f_i for $1 \leq i \leq d$ are a set of primary invariants for ρ . Furthermore, if ρ has a nontrivial secondary invariant, then we can replace the upper bound by $X^{\frac{1}{2(d-t(\rho))}\left[\sum_{i=1}^{d} \deg(f_i) - \frac{\deg(f_i)}{2[K:\mathbb{Q}]}\right] + \epsilon}$.

Let G be the simple group of order 168 (which has irreducible representations of degrees 1, 3, 3, 6, 7, and 8) and let ρ be one of the 3-dimensional representations.

Let G be the simple group of order 168 (which has irreducible representations of degrees 1, 3, 3, 6, 7, and 8) and let ρ be one of the 3-dimensional representations.

The representation ρ is defined over $\mathbb{Q}(\theta)$ for $\theta = \frac{1}{2}(\zeta_7 + \zeta_7^2 + \zeta_7^4)$.

Let G be the simple group of order 168 (which has irreducible representations of degrees 1, 3, 3, 6, 7, and 8) and let ρ be one of the 3-dimensional representations.

The representation ρ is defined over $\mathbb{Q}(\theta)$ for $\theta = \frac{1}{2}(\zeta_7 + \zeta_7^2 + \zeta_7^4)$. A (rather involved) computation will show that ρ has a set of primary invariants of degrees 4, 6, and 14. Theorem 9 then implies

Let G be the simple group of order 168 (which has irreducible representations of degrees 1, 3, 3, 6, 7, and 8) and let ρ be one of the 3-dimensional representations.

The representation ρ is defined over $\mathbb{Q}(\theta)$ for $\theta = \frac{1}{2}(\zeta_7 + \zeta_7^2 + \zeta_7^4)$. A (rather involved) computation will show that ρ has a set of primary invariants of degrees 4, 6, and 14. Theorem 9 then implies

Corollary 10

For G, ρ , and θ as above,

$$N_{\mathbb{Q}(\theta),168}(X;\rho) \ll X^{47/4+\epsilon}$$

.

Some avenues for future work:

• Compute (or bound) the invariant degrees for more representations of groups.

- Compute (or bound) the invariant degrees for more representations of groups.
- Strengthen point-counting techniques.

- Compute (or bound) the invariant degrees for more representations of groups.
- Strengthen point-counting techniques.
- Establish lower bounds on $N_{K,n}(X; \rho)$.

- Compute (or bound) the invariant degrees for more representations of groups.
- Strengthen point-counting techniques.
- Establish lower bounds on $N_{K,n}(X; \rho)$.
- Adapt results to other types of extensions (e.g., of function fields).

- Compute (or bound) the invariant degrees for more representations of groups.
- Strengthen point-counting techniques.
- Establish lower bounds on $N_{K,n}(X; \rho)$.
- Adapt results to other types of extensions (e.g., of function fields).
- Relate ρ -discriminant to other invariants (Artin conductors, the classical discriminant, etc.).

Many thanks to

Jordan, my wonderful advisor

- Jordan, my wonderful advisor
- The other esteemed members of my committee

- Jordan, my wonderful advisor
- The other esteemed members of my committee
- All of my colleagues

- Jordan, my wonderful advisor
- The other esteemed members of my committee
- All of my colleagues
- You, for attending this talk!