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Counting Number Fields

Some Notation

Let:

n be a positive integer

,

K be a number field of absolute discriminant DK ,

G be a transitive subgroup of the symmetric group Sn,

DL/K be the relative discriminant ideal of the extension L/K ,

NmK/Q be the absolute norm on ideals,

The Galois closure of L/K be L̂/K .
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Counting Number Fields

Counting Functions

Define NK ,n(X ; G ) to be the number of number fields L (up to
K -isomorphism) such that

[L : K ] = n,

The discriminant norm NmK/Q(DL/K ) is less than X , and

The Galois group Gal(L̂/K ) is permutation-isomorphic to G .

Also define NK ,n(X ) to be the number of extensions satisfying the
first two conditions above (i.e., with no condition on the Galois
group).
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Counting Number Fields

Counting Problems

Question 1

For a given K and n, how fast does NK ,n(X ) grow as X grows?

Conjecture 2 (Linnik?)

For all n and all base fields K ,

NK ,n(X ) ∼ X .

This result is known to hold for n ≤ 3 for general base fields, and
for n ≤ 5 over Q: these results are due to Davenport-Heilbronn,
Datskovsky-Wright, Kable-Yukie, and Bhargava.
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Counting Number Fields

General Upper Bounds

We do have some upper bounds for larger n:

Theorem 3 (Schmidt)

For all n and all base fields K ,

NK ,n(X )� X (n+2)/4.

Theorem 4 (Ellenberg, Venkatesh)

For all n > 2 and all base fields K ,

NK ,n(X )� (X Dn
K/Q A

[K :Q]
n )exp(C

√
log n),

where An is a constant depending only on n and C is an absolute
constant.
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Counting Number Fields

More Conjectures

Question 5

For a given G , K, and n, how fast does NK ,n(X ; G ) grow as X
grows?

Conjecture 6 (Malle, weak form)

For any ε > 0,
NK ,n(X ; G )� X a(G)+ε

where 0 < a(G ) ≤ 1 is a computable constant depending on G
contained in

{
1, 12 ,

1
3 ,

1
4 , . . .

}
.

This conjecture (or a stronger version) is known in a number of
cases: for example, if n ≤ 4, or if G is a nilpotent group.
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Counting Number Fields

Counting by Discriminant

Theorem 7 (D.)

Let n ≥ 2, let K be any number field, and let G be a proper
transitive subgroup of Sn. Also, let t be such that if G ′ is the
intersection of a point stabilizer in Sn with G , then any subgroup of
G properly containing G ′ has index at least t. Then for any ε > 0,

NK ,n(X ; G )� X
1

2(n−t)
[∑n−1

i=1 deg(fi+1)−
1

[K :Q]

]
+ε
,

where the fi for 1 ≤ i ≤ n are a set of “primary invariants” for G ,
whose degrees (in particular) satisfy deg(fi ) ≤ i .



Counting Number Fields

Primary Invariants?

Here is a quick recap of some invariant theory:

If ρ : G → GLn(C) is a (faithful) complex representation of G ,
let G act on C[x1, · · · , xn] via ρ.

Let R = C[x1, · · · , xn]G be the G -invariant polynomials.

There exist elements f1, · · · , fn ∈ R such that R is a
finitely-generated module over A := C[f1, · · · , fn]. These
polynomials are called “primary invariants” of ρ.

Moreover, there exist polynomials g1, g2, · · · , gk ∈ R such
that R = A · g1 + · · ·+ A · gk ; these polynomials are called
“secondary invariants” of ρ.
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Counting Number Fields

Primary Invariants, II

Example

Let G = Sn and ρ be the regular representation of G (which simply
acts on C[x1, · · · , xn] by index permutation). Then the elementary
symmetric polynomials are a set of primary invariants for G .

In fact, the elementary symmetric polynomials are a set of primary
invariants for any permutation representation... but not necessarily
of minimal degree!
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Counting Number Fields

Primary Invariants, III

Example

Let G = 〈(1 2 3 4 5 6 7), (1 2)(3 6)〉 ∼= PSL2(F7), with ρ the natural
permutation representation. The following polynomials are a set of
primary invariants for ρ:

f1 = x1 + x2 + x3 + x4 + x5 + x6 + x7

f2 = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7

f3 = x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + x3

6 + x3
7

f4 = x1x2x3 + [26 more terms] + x5x6x7

f5 = x4
1 + x4

2 + x4
3 + x4

4 + x4
5 + x4

6 + x4
7

f6 = x2
1x2x3 + [82 more terms] + x5x6x2

7

f7 = x7
1 + x7

2 + x7
3 + x7

4 + x7
5 + x7

6 + x7
7



Counting Number Fields

Primary Invariants, IV: A New Hope

By the previous slide, we know that if G is the simple group of
order 168 and ρ is its permutation embedding in S7, then ρ has a
set of primary invariants of degrees 1, 2, 3, 3, 4, 4, and 7. For this
group, one can also check that the t-parameter is equal to 1.
Therefore, Theorem 7 yields the following:

Corollary 8

If G is the simple group of order 168, embedded in S7, then
NQ,7(X ; G )� X 11/6+ε.

For comparison, Schmidt’s bound gives the weaker upper bound of
� X 9/4, whereas Malle’s conjecture posits that the actual count is
� X 1/2+ε.
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Counting Number Fields

Outline of Proof

Here is a rough outline of the steps involved in the proof of
Theorem 7:

Use the geometry of numbers and Minkowski’s lattice
theorems to construct an element α ∈ OL generating L/K
whose archimedean norms are small.

Use the invariant theory of G to construct a finite scheme
map to affine space.

Count integral scheme points whose images lie in an
appropriate box, to obtain an upper bound on the number of
possible α and hence the number of possible extensions L/K .
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Counting Number Fields

Transitive Subgroups of S7

Here are the results of Theorem 7 for transitive subgroups of S7:
# Ord Isom to Invariant Degs. Result Malle Schmidt

7T1 7 C7 1,2,2,2,3,4,7 X 19/12 X 1/6 X 9/4

7T2 14 D7 1,2,2,2,3,4,7 X 19/12 X 1/3 X 9/4

7T3 21 F21 1,2,3,3,3,4,7 X 7/4 X 1/4 X 9/4

7T4 42 F42 1,2,3,3,4,6,7 X 2 X 1/3 X 9/4

7T5 168 PSL2(F7) 1,2,3,3,4,4,7 X 11/6 X 1/2 X 9/4

7T6 2520 A7 1,2,3,4,5,6,7 X 13/6 X 1/2 X 9/4

For horizontal brevity, the results appear without the +ε term in
the exponent, and are also stated for the base field K = Q. A
superior bound is available for the cyclic and dihedral groups (the
former is abelian, while dihedral extensions can be bounded using
class field theory).
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Counting Number Fields

Towards a Generalization

We now turn to generalizing Theorem 7 into a setting with
arbitrary representations ρ, rather than merely permutation
representations: so let ρ be a faithful d-dimensional representation
of G that is defined over OK , and L̂/K be a Galois extension.

Many of the ingredients (invariant theory, point-counting) carry
through to the general setting... but it turns out that we will need
to define a new counting function first.
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Counting Number Fields

Compatible Actions and the Tuning Submodule

There are two natural actions of G on the space

OL̂ ⊗OK
O⊕dK

∼= O⊕d
L̂

namely, the action δ arising from the Galois action of G on OL̂,
and the action τ arising from the representation ρ.

Definition

We define the tuning submodule Ξρ to be the subset of elements of
the space O⊕d

L̂
on which the two actions δ and τ coincide; namely,

Ξρ =
{

x ∈ O⊕d
L̂

: ∀g ∈ G , δ(g)(x) = τ(g)(x)
}
.

The tuning submodule Ξρ is a torsion-free OK -module of rank d .
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Counting Number Fields

The ρ-Discriminant

In our new setting, we will use the tuning submodule to obtain a
lattice. To do this, we tensor with R to embed Ξρ inside an
ambient real space. The covolume of the resulting lattice yields a
natural analogue of the discriminant:

Definition

If Ξρ is the tuning submodule attached to (ρ, L̂,K ), and

ψ : Ξρ → Ξρ ⊗Z R

is the natural embedding, we define the ρ-discriminant D
(ρ)
L/K to be

D
(ρ)

L̂/K
= covol(ψ(Ξρ))2.
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Counting Number Fields

An Example

Example

Let K = Q, L̂ = Q(
√

D), and ρ be the nontrivial 1-dimensional
representation of G = Z/2Z.

For g the nonidentity element of G
and x = a + b

√
D ∈ OL̂, we have

δ(g)(x) = a− b
√

D

and
τ(g)(x) = −x = −a− b

√
D.

Therefore,
Ξρ = Z

√
D,

and
D

(ρ)

L̂/Q
= D.
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Counting Number Fields

A New Counting Function

Define NK ,n(X ; ρ) to be the number of number fields L̂ (up to
K -isomorphism) such that

[L : K ] = n,

The Galois group Gal(L̂/K ) = G and ρ : G → GLd(OK ) is a
faithful representation of G , and

The ρ-discriminant D
(ρ)

L̂/K
is less than X .



Counting Number Fields

Counting by ρ-Discriminant

We can now state our generalization of Theorem 7:

Theorem 9 (D.)

Let K be any number field, G be a finite group of order n, and
ρ : G → GLd(OK ) be a faithful d-dimensional representation of G
on OK . Also define t(ρ) to be the smallest positive integer such
that for any nontrivial subgroup H of G, (Od

K )ρ(H) has rank ≤ t(ρ)
as an OK -module. Then

NK ,n(X ; ρ)� X
1

2(d−t(ρ)) [
∑d

i=1 deg(fi )],

where the fi for 1 ≤ i ≤ d are a set of primary invariants for ρ.
Furthermore, if ρ has a nontrivial secondary invariant, then we can

replace the upper bound by X
1

2(d−t(ρ))

[∑d
i=1 deg(fi )−

deg(f1)
2[K :Q]

]
+ε

.



Counting Number Fields

A Simple Example

Let G be the simple group of order 168 (which has irreducible
representations of degrees 1, 3, 3, 6, 7, and 8) and let ρ be one of
the 3-dimensional representations.

The representation ρ is defined over Q(θ) for θ = 1
2(ζ7 + ζ27 + ζ47 ).

A (rather involved) computation will show that ρ has a set of
primary invariants of degrees 4, 6, and 14. Theorem 9 then implies

Corollary 10

For G , ρ, and θ as above,

NQ(θ),168(X ; ρ)� X 47/4+ε

.
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fields).

Relate ρ-discriminant to other invariants (Artin conductors,
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