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Outline

Outline of talk:

1 Discuss an unusual bias in prime-counting observed by D.
Dummit, Granville, Kisilevsky.

2 Motivate the construction of “quadratic residue matrices” and
state a simple characterization of such matrices.

3 Generalize construction and characterization results to cubic
and quartic residue matrices.

This is joint work with D. Dummit and Kisilevsky.
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Prime Biases, I

Consider the set of all odd integers n < x that are the product of
two primes n = pq.

Natural expectation: Approximately equally many n have
n ≡ 1 mod 4 and n ≡ 3 mod 4.

This is true: assuming the appropriate version of GRH,
difference is x1/2+o(1).

Equally reasonable expectation: also get an even split among
the 4 possible pairs (p, q) ≡ (1, 1), (1, 3), (3, 1), (3, 3) mod 4.

This is “less true”! There is a big bias towards pairs with
(p, q) ≡ (3, 3) mod 4.
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Prime Biases, II

Specifically, define r2(x) =
#{pq ≤ x : p ≡ q ≡ 3(mod 4)}

1
4#{pq ≤ x}

.

Some values:

x 103 104 105 106 107

r2(x) 1.347 1.258 1.212 1.183 1.162

These values are converging to 1 extremely slowly! (But why?)
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Prime Biases, III

Theorem 1 (D. Dummit, Granville, Kisilevsky)

Let χ be a quadratic character of conductor d. For η = −1 or 1,

#{pq ≤ x : χ(p) = χ(q) = η}
1
4#{pq ≤ x : gcd(pq, d) = 1}

= 1 + η
(Lχ + o(1))

log log x

where Lχ =
∑
p

χ(p)

p
.
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Prime Biases, IV

When χ is the quadratic character modulo 4, can compute

Lχ ≈ −0.334, yielding an approximation s(x) = 1 +
1

3 log log x − 1
which is fairly good:

x 103 104 105 106 107

r2(x) 1.347 1.258 1.212 1.183 1.162

s(x) 1.357 1.273 1.230 1.205 1.187

Natural question: when else does this kind of bias appear?
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Splitting Configurations, I

Observation: The four possible pairs of (p, q) mod 4 correspond to
different splitting behaviors of p and q in the biquadratic extension
Q(
√

p∗,
√

q∗), where r∗ = (−1)(r−1)/2r .

New problem: Study “splitting configurations” in extensions of the
form K = Q(

√
p∗
1 , . . . ,

√
p∗
k), where p∗ denotes (−1)(p−1)/2p.

In other words: what are the possible ways in which the
primes pi could split in K ?

For 3 primes, one possibility would be to have each pi split
into a product of 4 primes in K .
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Splitting Configurations, II

Let’s rephrase this question more sensibly:

Splitting behavior of the pi in K is completely determined by
splitting in each quadratic subextensions of K .

Behavior in quadratic extensions in turn completely

characterized by Legendre symbols

(
pi

pj

)
.

So, question is equivalent to asking what sets of Legendre

symbols

(
pi

pj

)
for 1 ≤ i , j ≤ k can occur if the pi are primes.

Natural way to organize this information: put it into a matrix!
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Sign Matrices and Quadratic Residue Matrices

Definition

A sign matrix is a matrix with entries of 0 on the diagonal and ±1
off the diagonal.

Note that there are 2n(n−1) sign matrices that are n × n.

Definition

The quadratic residue matrix associated to the primes p1, p2, . . . ,
pn is the n × n matrix Mi ,j whose (i , j)-entry is the Legendre

symbol

(
pi

pj

)
.

Studying splitting configurations is then equivalent to studying
quadratic residue matrices.
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Quadratic Residue Matrices, I

Example

For the primes p1 = 3, p2 = 7, and p3 = 13, the associated
quadratic residue matrix is

M =

 0 −1 1
1 0 −1
1 −1 0

 .

Natural questions:

Is there a nice way to tell if a given sign matrix is a quadratic
residue matrix for some set of primes?

How many quadratic residue matrices are there? Are they
common or uncommon among all sign matrices?
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Quadratic Residue Matrices, II

Can make a few simple observations:

Classes of sign matrices and quadratic residue matrices are
invariant under conjugation by permutation matrices.

Quadratic reciprocity clearly imposes some conditions. Can
neatly deal with them if we rearrange the primes first.

So: order p1, . . . , pn so that the first s are 3 mod 4 and the
remaining n − s are 1 mod 4.

Then the associated quadratic residue matrix has the form(
A B
Bt S

)
where A is an s × s skew-symmetric sign matrix,

S is an (n − s)× (n − s) symmetric sign matrix, and B is an
s × (n − s) matrix of entries ±1.
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Characterization of Quadratic Residue Matrices

Theorem 2 (D. Dummit, E.D., Kisilevsky)

If M is an n × n sign matrix, the following are equivalent:

1 There exists an integer 1 ≤ s ≤ n such that M can be
conjugated by a permutation matrix into the form(

A B
Bt S

)
where A is an s × s skew-symmetric sign matrix,

S is an (n − s)× (n − s) symmetric sign matrix, and B is an
s × (n − s) matrix of entries ±1.

2 The matrix M is a quadratic residue matrix for some set of
primes.

3 There exists an integer s with 1 ≤ s ≤ n such that the
diagonal entries of M2 consist of s occurrences of n + 1− 2s
and n − s occurrences of n − 1.
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Identifying Quadratic Residue Matrices

The Theorem allows us to easily determine whether particular
matrices are quadratic residue matrices:

Example

The matrix M =

 0 −1 −1
−1 0 −1
1 1 0

 has the diagonal entries of

M2 equal to 0, 0, −2, so this matrix is not a quadratic residue
matrix as it fails condition (3).

Can also use the Theorem to count n × n quadratic residue
matrices for small n (as well as equivalence classes under the
permutation action), though condition (1) turns out to be better
for computation.
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Counting Quadratic Residue Matrices

Here are some counts:

n QR classes QR matrices Sign matrices (= 2n(n−1))

2 3 4 4

3 10 40 64

4 47 768 4096

5 314 27648 1048576

6 3360 1900544 1073741824

7 59744 253755392 4398046511104

Corollary 1

The proportion of n × n sign matrices that are quadratic residue
matrices tends to zero (very fast) as n→∞.
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QR Matrices VII: The Prime Bias Awakens

Can use quadratic residue matrices to find more examples of
prime-counting biases. Here is one example:

As seen in the table, there are 10 splitting configurations for
three odd primes p, q, r in the extension Q(

√
p∗,
√

q∗,
√

r∗).

Using the 3× 3 quadratic residue matrices, can compute the
expected frequencies with which each splitting configuration
occurs (essentially the size of the permutation orbit).

Computing all 306386 examples with pqr < 2457615 yields
the frequencies {0.037, 0.043, 0.062, 0.090, 0.108, 0.108,
0.123, 0.127, 0.138, 0.163}.
Actual values are {0.031, 0.063, 0.063, 0.094, 0.094,
0.094, 0.094, 0.094, 0.188, 0.188}.
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Generalizations to Higher Degree

Natural generalization: use mth power residue symbols over a
ground field containing the mth roots of unity.

Definition

A cyclotomic sign matrix of mth roots of unity is a matrix with
entries of 0 on the diagonal and mth roots of unity off the diagonal.

We will consider the cases m = 3 and m = 4, of cubic and quartic
sign matrices respectively. For m > 4, things appear to become
more difficult (primarily, though not exclusively, because the ideals
in Z(ζm) are no longer always principal).
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Cubic Extensions

Here is the setup in the cubic case:

For m = 3, most natural base field is K = Q(
√
−3).

Splitting question then concerns splitting of prime ideals
p1, . . . , pn not dividing 3 of K in composites of cyclic cubic
extensions of K .

Any prime ideal of K not dividing 3 is principal and has a
unique “3-primary” generator π with π ≡ 1 mod 3 in K .

The minimally ramified cyclic cubic extensions of K are then
the Kummer extensions K ( 3

√
π).

The natural matrices then involve the cubic residue symbols
on ideals pi , which can be equivalently computed using the
3-primary generators πi .
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Cubic Residue Matrices

Definition

The cubic residue matrix associated to the distinct prime ideals
p1, . . . , pn not dividing 3 of Q(

√
−3) is the n × n matrix Mi ,j

whose (i , j)-entry is the cubic residue symbol

(
πi
πj

)
3

, where πk is

the unique 3-primary generator for pk for 1 ≤ k ≤ n.

Cubic reciprocity is symmetric, so the analogue of our theorem
ends up being much simpler in this case:

Theorem 2 (D. Dummit, E.D., Kisilevsky)

A cubic sign matrix is a cubic residue matrix if and only if it is
symmetric.
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Quartic Residue Matrices

The quartic residue matrices have essentially the same construction
as the cubic residue matrices, except we work with prime ideals of
the ground field K = Q(i) not dividing 2, and each such ideal has
a “2-primary” generator π ≡ 1 mod 2(1 + i).

Definition

The quartic residue matrix associated to the distinct prime ideals
p1, . . . , pn not dividing 2 of Q(i) is the n × n matrix Mi ,j whose

(i , j)-entry is the quartic residue symbol

(
πi
πj

)
4

, where πk is the

unique 2-primary generator for pk for 1 ≤ k ≤ n.

Quartic reciprocity has a similar flavor to quadratic reciprocity, and
the analogue of our theorem has a similar statement.
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Characterization of Quartic Residue Matrices

Theorem 3 (D. Dummit, E.D., Kisilevsky)

If M is an n × n quartic sign matrix, the following are equivalent:

1 There exists an integer 1 ≤ s ≤ n such that M can be
conjugated by a permutation matrix into the form(

A B
Bt S

)
where A is an s × s skew-symmetric quartic sign

matrix, S is an (n − s)× (n − s) symmetric quartic sign
matrix, and B is an s × (n − s) matrix of entries ±1, ±i .

2 The matrix M is a quartic residue matrix.

3 If M = (mj ,k), then mj ,k = ±mk,j for all j , k with
1 ≤ j , k ≤ n, and there exists an integer s with 1 ≤ s ≤ n
such that the diagonal entries of MM consist of s occurrences
of n + 1− 2s and n − s occurrences of n − 1.
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Further Avenues

Here are a few things that remain unresolved:

What happens if we allow non-primary generators of ideals?
(This would expand the class of possible matrices when
m > 2: for example we can get non-symmetric matrices in the
m = 3 case.)

Can the results be extended in a pleasant way for m > 4, or
over larger ground fields?

What if we try using composites of other types of minimally
tamely ramified extensions? Are there natural matrices
attached to these extensions that capture number-theoretic
information?

Are there any combinatorial applications of the quadratic
residue matrices?
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End

Thank you for attending my talk!


