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Counting Number Fields

Some Notation

Let:

n be a positive integer

,

K be a number field of absolute discriminant DK ,

G be a transitive subgroup of the symmetric group Sn,

DL/K be the relative discriminant ideal of the extension L/K ,

NmK/Q be the absolute norm on ideals,

The Galois closure of L/K be L̂/K .
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Counting Number Fields

Counting Functions

Define NK ,n(X ;G ) to be the number of number fields L (up to
K -isomorphism) such that

[L : K ] = n,

The discriminant norm NmK/Q(DL/K ) is less than X , and

The Galois group Gal(L̂/K ) is permutation-isomorphic to G .

Also define NK ,n(X ) to be the number of extensions satisfying the
first two conditions above (i.e., with no condition on the Galois
group).
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Counting Number Fields

Counting Problems

Question 1

For a given K and n, how fast does NK ,n(X ) grow as X grows?

Conjecture 2 (Linnik?)

For all n and all base fields K,

NK ,n(X ) ∼ X .

This result is known to hold for n ≤ 3 for general base fields, and
for n ≤ 5 over Q: these results are due to Davenport-Heilbronn,
Datskovsky-Wright, Kable-Yukie, and Bhargava.
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Counting Number Fields

General Upper Bounds

We do have some upper bounds for larger n:

Theorem 3 (Schmidt (1995))

For all n and all base fields K,

NK ,n(X )� X (n+2)/4.

Theorem 4 (Ellenberg, Venkatesh (2006))

For all n > 2 and all base fields K,

NK ,n(X )� (X Dn
K/Q A

[K :Q]
n )exp(C

√
log n),

where An is a constant depending only on n and C is an absolute
constant.
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More Conjectures

Question 5

For a given G, K, and n, how fast does NK ,n(X ;G ) grow as X
grows?

Conjecture 6 (Malle, weak form (2002))

For any ε > 0,
NK ,n(X ;G )� X a(G)+ε

where 0 < a(G ) ≤ 1 is a computable constant depending on G,
contained in

{
1, 12 ,

1
3 ,

1
4 , . . .

}
.

This conjecture (or a stronger version) is known in a number of
cases: for example, if n ≤ 4, or if G is a nilpotent group.



Counting Number Fields

More Conjectures

Question 5

For a given G, K, and n, how fast does NK ,n(X ;G ) grow as X
grows?

Conjecture 6 (Malle, weak form (2002))

For any ε > 0,
NK ,n(X ;G )� X a(G)+ε

where 0 < a(G ) ≤ 1 is a computable constant depending on G,
contained in

{
1, 12 ,

1
3 ,

1
4 , . . .

}
.

This conjecture (or a stronger version) is known in a number of
cases: for example, if n ≤ 4, or if G is a nilpotent group.



Counting Number Fields

More Conjectures

Question 5

For a given G, K, and n, how fast does NK ,n(X ;G ) grow as X
grows?

Conjecture 6 (Malle, weak form (2002))

For any ε > 0,
NK ,n(X ;G )� X a(G)+ε

where 0 < a(G ) ≤ 1 is a computable constant depending on G,
contained in

{
1, 12 ,

1
3 ,

1
4 , . . .

}
.

This conjecture (or a stronger version) is known in a number of
cases: for example, if n ≤ 4, or if G is a nilpotent group.



Counting Number Fields

Counting by Discriminant

Theorem 7 (D. (2014))

Let n ≥ 2, let K be any number field, and let G be a proper
transitive subgroup of Sn. Also, let t be such that if G ′ is the
intersection of a point stabilizer in Sn with G, then any subgroup of
G properly containing G ′ has index at least t. Then for any ε > 0,

NK ,n(X ;G )� X
1

2(n−t)
[∑n−1

i=1 deg(fi+1)−
1

[K :Q]

]
+ε
,

where the fi for 1 ≤ i ≤ n are a set of “primary invariants” for G,
whose degrees (in particular) satisfy deg(fi ) ≤ i .
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Primary Invariants?

Here is a quick recap of some invariant theory:

If ρ : G → GLn(C) is a (faithful) complex representation of G ,
let G act on C[x1, · · · , xn] via ρ.

Let R = C[x1, · · · , xn]G be the G -invariant polynomials.

There exist elements f1, · · · , fn ∈ R such that R is a
finitely-generated module over A := C[f1, · · · , fn]. These
polynomials are called “primary invariants” of ρ.

Moreover, there exist polynomials g1, g2, · · · , gk ∈ R such
that R = A · g1 + · · ·+ A · gk ; these polynomials are called
“secondary invariants” of ρ.



Counting Number Fields

Primary Invariants?

Here is a quick recap of some invariant theory:

If ρ : G → GLn(C) is a (faithful) complex representation of G ,
let G act on C[x1, · · · , xn] via ρ.

Let R = C[x1, · · · , xn]G be the G -invariant polynomials.

There exist elements f1, · · · , fn ∈ R such that R is a
finitely-generated module over A := C[f1, · · · , fn]. These
polynomials are called “primary invariants” of ρ.

Moreover, there exist polynomials g1, g2, · · · , gk ∈ R such
that R = A · g1 + · · ·+ A · gk ; these polynomials are called
“secondary invariants” of ρ.



Counting Number Fields

Primary Invariants?

Here is a quick recap of some invariant theory:

If ρ : G → GLn(C) is a (faithful) complex representation of G ,
let G act on C[x1, · · · , xn] via ρ.

Let R = C[x1, · · · , xn]G be the G -invariant polynomials.

There exist elements f1, · · · , fn ∈ R such that R is a
finitely-generated module over A := C[f1, · · · , fn]. These
polynomials are called “primary invariants” of ρ.

Moreover, there exist polynomials g1, g2, · · · , gk ∈ R such
that R = A · g1 + · · ·+ A · gk ; these polynomials are called
“secondary invariants” of ρ.



Counting Number Fields

Primary Invariants?

Here is a quick recap of some invariant theory:

If ρ : G → GLn(C) is a (faithful) complex representation of G ,
let G act on C[x1, · · · , xn] via ρ.

Let R = C[x1, · · · , xn]G be the G -invariant polynomials.

There exist elements f1, · · · , fn ∈ R such that R is a
finitely-generated module over A := C[f1, · · · , fn]. These
polynomials are called “primary invariants” of ρ.

Moreover, there exist polynomials g1, g2, · · · , gk ∈ R such
that R = A · g1 + · · ·+ A · gk ; these polynomials are called
“secondary invariants” of ρ.



Counting Number Fields

Primary Invariants?

Here is a quick recap of some invariant theory:

If ρ : G → GLn(C) is a (faithful) complex representation of G ,
let G act on C[x1, · · · , xn] via ρ.

Let R = C[x1, · · · , xn]G be the G -invariant polynomials.

There exist elements f1, · · · , fn ∈ R such that R is a
finitely-generated module over A := C[f1, · · · , fn]. These
polynomials are called “primary invariants” of ρ.

Moreover, there exist polynomials g1, g2, · · · , gk ∈ R such
that R = A · g1 + · · ·+ A · gk ; these polynomials are called
“secondary invariants” of ρ.



Counting Number Fields

Primary Invariants, II

Example

Let G = Sn and ρ be the representation of G that acts on
C[x1, · · · , xn] by index permutation. Then the elementary
symmetric polynomials are a set of primary invariants for G.

In fact, the elementary symmetric polynomials are a set of primary
invariants for any permutation representation... but not necessarily
of minimal degree!
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Primary Invariants, III

Example

Let G = 〈(1 2 3 4 5 6 7), (1 2)(3 6)〉 ∼= PSL2(F7), with ρ the natural
permutation representation. The following polynomials are a set of
primary invariants for ρ:

f1 = x1 + x2 + x3 + x4 + x5 + x6 + x7

f2 = x21 + x22 + x23 + x24 + x25 + x26 + x27

f3 = x31 + x32 + x33 + x34 + x35 + x36 + x37

f4 = x1x2x3 + [26 more terms] + x5x6x7

f5 = x41 + x42 + x43 + x44 + x45 + x46 + x47

f6 = x21x2x3 + [82 more terms] + x5x6x
2
7

f7 = x71 + x72 + x73 + x74 + x75 + x76 + x77
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Primary Invariants, IV: A New Hope

By the previous slide, we know that if G is the simple group of
order 168 and ρ is its permutation embedding in S7, then ρ has a
set of primary invariants of degrees 1, 2, 3, 3, 4, 4, and 7. For this
group, one can also check that the t-parameter is equal to 1.
Therefore, Theorem 7 yields the following:

Corollary 8

If G is the simple group of order 168, embedded in S7, then
NQ,7(X ;G )� X 11/6+ε.

For comparison, Schmidt’s bound gives the weaker upper bound of
� X 9/4, whereas Malle’s conjecture posits that the actual count is
� X 1/2+ε.
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Counting Number Fields

Outline of Proof

Here is a rough outline of the steps involved in the proof of
Theorem 7:

Use the geometry of numbers and Minkowski’s lattice
theorems to construct an element α ∈ OL generating L/K
whose archimedean norms are small.

Use the invariant theory of G to construct a finite scheme
map to affine space.

Count integral scheme points whose images lie in an
appropriate box, to obtain an upper bound on the number of
possible α and hence the number of possible extensions L/K .
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Transitive Subgroups of S7

Here are the results of Theorem 7 for transitive subgroups of S7:
# Ord Isom to Invar. Degs. Result Malle Schmidt

7T1 7 C7 1,2,2,2,3,4,7 X 19/12 X 1/6 X 9/4

7T2 14 D7 1,2,2,2,3,4,7 X 19/12 X 1/3 X 9/4

7T3 21 F21 1,2,3,3,3,4,7 X 7/4 X 1/4 X 9/4

7T4 42 F42 1,2,3,3,4,6,7 X 2 X 1/3 X 9/4

7T5 168 PSL2(F7) 1,2,3,3,4,4,7 X 11/6 X 1/2 X 9/4

7T6 2520 A7 1,2,3,4,5,6,7 X 13/6 X 1/2 X 9/4

For horizontal brevity, the results appear without the +ε term in
the exponent, and are also stated for the base field K = Q. A
superior bound is available for the cyclic and dihedral groups (the
former is abelian, while dihedral extensions can be bounded using
class field theory).
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Future Directions

Some work I am still pursuing:

Compute (or bound) the invariant degrees for more
representations of groups.

Strengthen point-counting techniques.

Generalize methods to other representations beyond
permutation representations.

Adapt results to other types of extensions (e.g., of function
fields).
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End

Thank you for attending my talk!


