Counting Number Field Extensions

Evan P. Dummit

University of Rochester

April 12, 2015

Let:

• *n* be a positive integer

- *n* be a positive integer,
- K be a number field of absolute discriminant D_K

- *n* be a positive integer,
- K be a number field of absolute discriminant D_K ,
- G be a transitive subgroup of the symmetric group S_n

- *n* be a positive integer,
- K be a number field of absolute discriminant D_K ,
- G be a transitive subgroup of the symmetric group S_n ,
- $\mathcal{D}_{L/K}$ be the relative discriminant ideal of the extension L/K

- *n* be a positive integer,
- K be a number field of absolute discriminant D_K ,
- G be a transitive subgroup of the symmetric group S_n ,
- $\mathcal{D}_{L/K}$ be the relative discriminant ideal of the extension L/K,
- $\bullet~\mathrm{Nm}_{\mathcal{K}/\mathbb{Q}}$ be the absolute norm on ideals

- *n* be a positive integer,
- K be a number field of absolute discriminant D_K ,
- G be a transitive subgroup of the symmetric group S_n ,
- $\mathcal{D}_{L/K}$ be the relative discriminant ideal of the extension L/K,
- $\operatorname{Nm}_{\mathcal{K}/\mathbb{Q}}$ be the absolute norm on ideals,
- The Galois closure of L/K be \hat{L}/K .

Counting Functions

Define $N_{K,n}(X; G)$ to be the number of number fields L (up to K-isomorphism) such that

- [L:K] = n,
- The discriminant norm $\operatorname{Nm}_{K/\mathbb{Q}}(D_{L/K})$ is less than X, and
- The Galois group $\operatorname{Gal}(\hat{L}/K)$ is permutation-isomorphic to G.

Counting Functions

Define $N_{K,n}(X; G)$ to be the number of number fields L (up to K-isomorphism) such that

- [L:K] = n,
- The discriminant norm $\operatorname{Nm}_{K/\mathbb{Q}}(D_{L/K})$ is less than X, and
- The Galois group $\operatorname{Gal}(\hat{L}/K)$ is permutation-isomorphic to G. Also define $N_{K,n}(X)$ to be the number of extensions satisfying the first two conditions above (i.e., with no condition on the Galois group).

Counting Problems

Question 1

For a given K and n, how fast does $N_{K,n}(X)$ grow as X grows?

Counting Problems

Question 1

For a given K and n, how fast does $N_{K,n}(X)$ grow as X grows?

Conjecture 2 (Linnik?)

For all n and all base fields K,

 $N_{K,n}(X) \sim X.$

Counting Problems

Question 1

For a given K and n, how fast does $N_{K,n}(X)$ grow as X grows?

Conjecture 2 (Linnik?)

For all n and all base fields K,

 $N_{K,n}(X) \sim X.$

This result is known to hold for $n \le 3$ for general base fields, and for $n \le 5$ over \mathbb{Q} : these results are due to Davenport-Heilbronn, Datskovsky-Wright, Kable-Yukie, and Bhargava.

General Upper Bounds

We do have some upper bounds for larger *n*:

General Upper Bounds

We do have some upper bounds for larger n:

Theorem 3 (Schmidt (1995))

For all n and all base fields K,

 $N_{K,n}(X) \ll X^{(n+2)/4}.$

General Upper Bounds

We do have some upper bounds for larger n:

Theorem 3 (Schmidt (1995))

For all n and all base fields K,

 $N_{K,n}(X) \ll X^{(n+2)/4}.$

Theorem 4 (Ellenberg, Venkatesh (2006))

For all n > 2 and all base fields K,

$$N_{K,n}(X) \ll (X D_{K/\mathbb{Q}}^n A_n^{[K:\mathbb{Q}]})^{\exp(C\sqrt{\log n})}$$

where A_n is a constant depending only on n and C is an absolute constant.

More Conjectures

Question 5

For a given G, K, and n, how fast does $N_{K,n}(X; G)$ grow as X grows?

More Conjectures

Question 5

For a given G, K, and n, how fast does $N_{K,n}(X; G)$ grow as X grows?

Conjecture 6 (Malle, weak form (2002))

For any $\epsilon > 0$,

 $N_{K,n}(X;G) \ll X^{a(G)+\epsilon}$

where $0 < a(G) \le 1$ is a computable constant depending on G, contained in $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$.

More Conjectures

Question 5

For a given G, K, and n, how fast does $N_{K,n}(X; G)$ grow as X grows?

Conjecture 6 (Malle, weak form (2002))

For any $\epsilon > 0$,

 $N_{K,n}(X;G) \ll X^{a(G)+\epsilon}$

where $0 < a(G) \le 1$ is a computable constant depending on G, contained in $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$.

This conjecture (or a stronger version) is known in a number of cases: for example, if $n \le 4$, or if G is a nilpotent group.

Counting by Discriminant

Theorem 7 (D. (2014))

Let $n \ge 2$, let K be any number field, and let G be a proper transitive subgroup of S_n . Also, let t be such that if G' is the intersection of a point stabilizer in S_n with G, then any subgroup of G properly containing G' has index at least t. Then for any $\epsilon > 0$,

$$N_{K,n}(X;G) \ll X^{\frac{1}{2(n-t)}\left[\sum_{i=1}^{n-1} \deg(f_{i+1}) - \frac{1}{[K:\mathbb{Q}]}\right] + \epsilon},$$

where the f_i for $1 \le i \le n$ are a set of "primary invariants" for G, whose degrees (in particular) satisfy $\deg(f_i) \le i$.

Here is a quick recap of some invariant theory:

 If ρ: G → GL_n(ℂ) is a (faithful) complex representation of G, let G act on ℂ[x₁, · · · , x_n] via ρ.

- If ρ: G → GL_n(ℂ) is a (faithful) complex representation of G, let G act on ℂ[x₁, · · · , x_n] via ρ.
- Let $R = \mathbb{C}[x_1, \cdots, x_n]^G$ be the *G*-invariant polynomials.

- If ρ: G → GL_n(ℂ) is a (faithful) complex representation of G, let G act on ℂ[x₁, · · · , x_n] via ρ.
- Let $R = \mathbb{C}[x_1, \cdots, x_n]^G$ be the *G*-invariant polynomials.
- There exist elements f₁, · · · , f_n ∈ R such that R is a finitely-generated module over A := ℂ[f₁, · · · , f_n]. These polynomials are called "primary invariants" of ρ.

- If ρ: G → GL_n(ℂ) is a (faithful) complex representation of G, let G act on ℂ[x₁, · · · , x_n] via ρ.
- Let $R = \mathbb{C}[x_1, \cdots, x_n]^G$ be the *G*-invariant polynomials.
- There exist elements f₁, · · · , f_n ∈ R such that R is a finitely-generated module over A := ℂ[f₁, · · · , f_n]. These polynomials are called "primary invariants" of ρ.
- Moreover, there exist polynomials g₁, g₂, · · · , g_k ∈ R such that R = A · g₁ + · · · + A · g_k; these polynomials are called "secondary invariants" of ρ.

Primary Invariants, II

Example

Let $G = S_n$ and ρ be the representation of G that acts on $\mathbb{C}[x_1, \dots, x_n]$ by index permutation. Then the elementary symmetric polynomials are a set of primary invariants for G.

Primary Invariants, II

Example

Let $G = S_n$ and ρ be the representation of G that acts on $\mathbb{C}[x_1, \dots, x_n]$ by index permutation. Then the elementary symmetric polynomials are a set of primary invariants for G.

In fact, the elementary symmetric polynomials are a set of primary invariants for any permutation representation...

Primary Invariants, II

Example

Let $G = S_n$ and ρ be the representation of G that acts on $\mathbb{C}[x_1, \dots, x_n]$ by index permutation. Then the elementary symmetric polynomials are a set of primary invariants for G.

In fact, the elementary symmetric polynomials are a set of primary invariants for any permutation representation... but not necessarily of minimal degree!

Primary Invariants, III

Example

Let $G = \langle (1234567), (12)(36) \rangle \cong PSL_2(\mathbb{F}_7)$, with ρ the natural permutation representation. The following polynomials are a set of primary invariants for ρ :

$$\begin{array}{rcl} f_1 &=& x_1+x_2+x_3+x_4+x_5+x_6+x_7\\ f_2 &=& x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2\\ f_3 &=& x_1^3+x_2^3+x_3^3+x_4^3+x_5^3+x_6^3+x_7^3\\ f_4 &=& x_1x_2x_3+[26\ more\ terms]+x_5x_6x_7\\ f_5 &=& x_1^4+x_2^4+x_3^4+x_4^4+x_5^4+x_6^4+x_7^4\\ f_6 &=& x_1^2x_2x_3+[82\ more\ terms]+x_5x_6x_7^2\\ f_7 &=& x_1^7+x_2^7+x_3^7+x_4^7+x_5^7+x_6^7+x_7^7 \end{array}$$

Primary Invariants, IV: A New Hope

By the previous slide, we know that if G is the simple group of order 168 and ρ is its permutation embedding in S_7 , then ρ has a set of primary invariants of degrees 1, 2, 3, 3, 4, 4, and 7. For this group, one can also check that the *t*-parameter is equal to 1. Therefore, Theorem 7 yields the following:

Primary Invariants, IV: A New Hope

By the previous slide, we know that if G is the simple group of order 168 and ρ is its permutation embedding in S_7 , then ρ has a set of primary invariants of degrees 1, 2, 3, 3, 4, 4, and 7. For this group, one can also check that the *t*-parameter is equal to 1. Therefore, Theorem 7 yields the following:

Corollary 8

If G is the simple group of order 168, embedded in S₇, then $N_{\mathbb{Q},7}(X;G) \ll X^{11/6+\epsilon}$.

Primary Invariants, IV: A New Hope

By the previous slide, we know that if G is the simple group of order 168 and ρ is its permutation embedding in S_7 , then ρ has a set of primary invariants of degrees 1, 2, 3, 3, 4, 4, and 7. For this group, one can also check that the *t*-parameter is equal to 1. Therefore, Theorem 7 yields the following:

Corollary 8

If G is the simple group of order 168, embedded in S₇, then $N_{\mathbb{Q},7}(X; G) \ll X^{11/6+\epsilon}$.

For comparison, Schmidt's bound gives the weaker upper bound of $\ll X^{9/4}$, whereas Malle's conjecture posits that the actual count is $\ll X^{1/2+\epsilon}$.

Here is a rough outline of the steps involved in the proof of Theorem 7:

Here is a rough outline of the steps involved in the proof of Theorem 7:

• Use the geometry of numbers and Minkowski's lattice theorems to construct an element $\alpha \in \mathcal{O}_L$ generating L/K whose archimedean norms are small.

Here is a rough outline of the steps involved in the proof of Theorem 7:

- Use the geometry of numbers and Minkowski's lattice theorems to construct an element $\alpha \in \mathcal{O}_L$ generating L/K whose archimedean norms are small.
- Use the invariant theory of *G* to construct a finite scheme map to affine space.

Here is a rough outline of the steps involved in the proof of Theorem 7:

- Use the geometry of numbers and Minkowski's lattice theorems to construct an element $\alpha \in \mathcal{O}_L$ generating L/Kwhose archimedean norms are small.
- Use the invariant theory of *G* to construct a finite scheme map to affine space.
- Count integral scheme points whose images lie in an appropriate box, to obtain an upper bound on the number of possible α and hence the number of possible extensions L/K.

Transitive Subgroups of S_7

#	Ord	lsom to	Invar. Degs.	Result	Malle	Schmidt
7T1	7	C ₇	1,2,2,2,3,4,7	$X^{19/12}$	$X^{1/6}$	X ^{9/4}
7T2	14	D ₇	1,2,2,2,3,4,7	$X^{19/12}$	$X^{1/3}$	X ^{9/4}
7T3	21	F ₂₁	1,2,3,3,3,4,7	X ^{7/4}	$X^{1/4}$	X ^{9/4}
7T4	42	F ₄₂	1,2,3,3,4,6,7	X ²	X ^{1/3}	X ^{9/4}
7T5	168	$PSL_2(\mathbb{F}_7)$	1,2,3,3,4,4,7	$X^{11/6}$	$X^{1/2}$	X ^{9/4}
7T6	2520	A ₇	1,2,3,4,5,6,7	$X^{13/6}$	$X^{1/2}$	X ^{9/4}

Transitive Subgroups of S_7

#	Ord	lsom to	Invar. Degs.	Result	Malle	Schmidt
7T1	7	C ₇	1,2,2,2,3,4,7	X ^{19/12}	X ^{1/6}	X ^{9/4}
7T2	14	D ₇	1,2,2,2,3,4,7	$X^{19/12}$	X ^{1/3}	X ^{9/4}
7T3	21	F ₂₁	1,2,3,3,3,4,7	X ^{7/4}	X ^{1/4}	$X^{9/4}$
7T4	42	F ₄₂	1,2,3,3,4,6,7	X ²	X ^{1/3}	X ^{9/4}
7T5	168	$PSL_2(\mathbb{F}_7)$	1,2,3,3,4,4,7	$X^{11/6}$	X ^{1/2}	$X^{9/4}$
7T6	2520	A ₇	1,2,3,4,5,6,7	$X^{13/6}$	X ^{1/2}	X ^{9/4}

For horizontal brevity, the results appear without the $+\epsilon$ term in the exponent, and are also stated for the base field $K = \mathbb{Q}$. A superior bound is available for the cyclic and dihedral groups (the former is abelian, while dihedral extensions can be bounded using class field theory).

Some work I am still pursuing:

• Compute (or bound) the invariant degrees for more representations of groups.

Some work I am still pursuing:

- Compute (or bound) the invariant degrees for more representations of groups.
- Strengthen point-counting techniques.

Some work I am still pursuing:

- Compute (or bound) the invariant degrees for more representations of groups.
- Strengthen point-counting techniques.
- Generalize methods to other representations beyond permutation representations.

Some work I am still pursuing:

- Compute (or bound) the invariant degrees for more representations of groups.
- Strengthen point-counting techniques.
- Generalize methods to other representations beyond permutation representations.
- Adapt results to other types of extensions (e.g., of function fields).

Thank you for attending my talk!