Characterizations of Quadratic, Cubic, and Quartic Residue Matrices

Evan P. Dummit University of Rochester

AMS Contributed Paper Session in Number Theory Joint Mathematics Meetings January 4, 2017

Outline

Goals of talk:

- Describe the construction of "quadratic residue matrices" and give a simple characterization of such matrices.
- Generalize construction and characterization results to "cubic" and "quartic" residue matrices.
- Mention generalization to function-field case.

These results are partly joint work with D. Dummit and H. Kisilevsky.

Quadratic Residue Configurations

Recall: for p is an odd prime, the quadratic residue symbol is
defined as
$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \text{ is divisible by } p \\ +1 & \text{if } a \text{ is a nonzero square mod } p. \\ -1 & \text{if } a \text{ is a nonsquare mod } p \end{cases}$$

Question 1

Suppose that $p_1, p_2, ..., p_n$ are distinct odd primes. What possibilities are there for the collection of n^2 quadratic residue symbols $\left(\frac{p_i}{p_j}\right)$ for $1 \le i, j \le n$?

This question originally arose in the context of studying "splitting configurations" of minimally tamely ramified multiquadratic extensions in algebraic number theory.

Sign Matrices and Quadratic Residue Matrices

We have n^2 pieces of data: let's put them into a matrix!

Definition

The <u>quadratic residue</u> matrix associated to the distinct odd primes p_1, p_2, \ldots, p_n is the $n \times n$ matrix $M_{i,j}$ whose (i,j)-entry is $\left(\frac{p_i}{p_i}\right)$.

These matrices all have a particular form:

Definition

A <u>sign matrix</u> is a matrix with entries of 0 on the diagonal and ± 1 off the diagonal.

By definition, every quadratic residue matrix is a sign matrix.

Quadratic Residue Matrices, I

Example

For the primes $p_1 = 3$, $p_2 = 7$, and $p_3 = 13$, the associated quadratic residue matrix is

$$M=\left(egin{array}{ccc} 0 & -1 & 1 \ 1 & 0 & -1 \ 1 & -1 & 0 \end{array}
ight)$$

Natural questions:

- Is there a nice way to tell if a given sign matrix is a quadratic residue matrix for some set of primes?
- How many quadratic residue matrices are there?

Quadratic Residue Matrices, II

Can make a few simple observations:

- Classes of sign matrices and quadratic residue matrices are invariant under conjugation by permutation matrices.
- Quadratic reciprocity clearly imposes some conditions. Can neatly deal with them if we rearrange the primes first.

Quadratic Residue Matrices, II

Can make a few simple observations:

- Classes of sign matrices and quadratic residue matrices are invariant under conjugation by permutation matrices.
- Quadratic reciprocity clearly imposes some conditions. Can neatly deal with them if we rearrange the primes first.
- So: order p_1, \ldots, p_n so that the first s are 3 mod 4 and the remaining n s are 1 mod 4.
- Then the associated quadratic residue matrix has the form $\begin{pmatrix} A & B \\ B^t & S \end{pmatrix}$ where A is an $s \times s$ skew-symmetric sign matrix, S is an $(n-s) \times (n-s)$ symmetric sign matrix, and B is an $s \times (n-s)$ matrix of entries ± 1 .

Characterization of Quadratic Residue Matrices

Theorem 2 (D. Dummit, E.D., Kisilevsky)

If M is an $n \times n$ sign matrix, the following are equivalent:

- There exists an integer 1 ≤ s ≤ n such that M can be conjugated by a permutation matrix into the form
 (A B B^t S) where A is an s × s skew-symmetric sign matrix,
 S is an (n - s) × (n - s) symmetric sign matrix, and B is an
 s × (n - s) matrix of entries ±1.
- The matrix M is a quadratic residue matrix associated to some set of distinct odd primes.
- So There exists an integer s with 1 ≤ s ≤ n such that the diagonal entries of M² consist of s occurrences of n + 1 − 2s and n − s occurrences of n − 1.

Identifying Quadratic Residue Matrices

Using criterion (c) of Theorem 2, we can easily check whether a given matrix is a QR matrix:

Example

For
$$M = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$
, the diagonal entries of M^2 are 0, 0, -2, so this matrix is not a quadratic residue matrix as it fails condition (3).

What about counting? Results do not seem to give an immediate counting method.

Counting Quadratic Residue Matrices

Here are some numbers:

n	QR classes	QR matrices	Sign matrices $(=2^{n(n-1)})$
2	3	4	4
3	10	40	64
4	47	768	4096
5	314	27648	1048576
6	3360	1900544	1073741824
7	59744	253755392	4398046511104

Counting Quadratic Residue Matrices

Here are some numbers:

n	QR classes	QR matrices	Sign matrices $(=2^{n(n-1)})$
2	3	4	4
3	10	40	64
4	47	768	4096
5	314	27648	1048576
6	3360	1900544	1073741824
7	59744	253755392	4398046511104

Theorem 3 (E.D.)

There are precisely $(2^n - n)2^{n(n-1)/2}$ quadratic residue matrices among the $n \times n$ sign matrices.

Generalizations to Higher Degree

Natural generalization: use *m*th power residue symbols over a ground field containing the *m*th roots of unity.

Definition

A <u>cyclotomic sign matrix of mth roots of unity</u> is a matrix with entries of 0 on the diagonal and mth roots of unity off the diagonal.

We will consider the cases m = 3 and m = 4, of cubic and quartic sign matrices over \mathbb{Q} . For m > 4, things appear to become more difficult (primarily, though not exclusively, because the ideals in $\mathbb{Z}(\zeta_m)$ are no longer always principal).

Cubic Residue Matrices

Definition

The <u>cubic residue matrix</u> associated to the distinct prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ not dividing 3 of $\mathbb{Q}(\sqrt{-3})$ is the $n \times n$ matrix $M_{i,j}$ whose (i,j)-entry is the cubic residue symbol $\left(\frac{\pi_i}{\pi_j}\right)_3$, where π_k is the unique 3-primary generator for \mathfrak{p}_k for $1 \le k \le n$.

Cubic Residue Matrices

Definition

The <u>cubic residue matrix</u> associated to the distinct prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ not dividing 3 of $\mathbb{Q}(\sqrt{-3})$ is the $n \times n$ matrix $M_{i,j}$ whose (i, j)-entry is the cubic residue symbol $\left(\frac{\pi_i}{\pi_j}\right)_3$, where π_k is the unique 3-primary generator for \mathfrak{p}_k for $1 \le k \le n$.

Cubic reciprocity is symmetric, so the analogue of our theorem ends up being much simpler in this case:

Theorem 4 (D. Dummit, E.D., Kisilevsky)

A cubic sign matrix is a cubic residue matrix if and only if it is symmetric.

Quartic Residue Matrices

The quartic residue matrices have a similar construction to the cubic residue matrices:

Definition

The <u>quartic residue matrix</u> associated to the distinct prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ not dividing 2 of $\mathbb{Q}(i)$ is the $n \times n$ matrix $M_{i,j}$ whose (i,j)-entry is the quartic residue symbol $\left(\frac{\pi_i}{\pi_j}\right)_4$, where π_k is the unique 2-primary generator for \mathfrak{p}_k for $1 \le k \le n$.

Quartic reciprocity has a similar flavor to quadratic reciprocity, and the analogue of our theorem has a similar statement.

Characterization of Quartic Residue Matrices

Theorem 5 (D. Dummit, E.D., Kisilevsky)

If M is an $n \times n$ quartic sign matrix, the following are equivalent:

- There exists an integer 1 ≤ s ≤ n such that M can be conjugated by a permutation matrix into the form
 (A B B^t S) where A is an s × s skew-symmetric quartic sign matrix, S is an (n − s) × (n − s) symmetric quartic sign matrix, and B is an s × (n − s) matrix of entries ±1,±i.
- **2** The matrix *M* is a quartic residue matrix.
- If $M = (m_{j,k})$, then $m_{j,k} = \pm m_{k,j}$ for all j, k with $1 \le j, k \le n$, and there exists an integer s with $1 \le s \le n$ such that the diagonal entries of $M\overline{M}$ consist of s occurrences of n + 1 2s and n s occurrences of n 1.

The Function-Field Case

The *d*th power residue symbol also makes sense over function fields, and we can pose similar questions in that setting. Briefly: let *q* be a prime power and *d* be a positive integer with *d* dividing q - 1, let \mathbb{F}_q denote the finite field with *q* elements, and let $\left(\frac{a}{P}\right)_d$ be the *d*th-power residue symbol over $\mathbb{F}_q[t]$.

Definition

The <u>dth-power residue matrix</u> associated to the monic irreducible polynomials P_1, P_2, \ldots, P_n in $\mathbb{F}_q[t]$ is the $n \times n$ matrix whose (i, j)-entry is the dth power residue symbol $\left(\frac{P_i}{P_j}\right)_d$.

Each *d*th-power residue matrix is a "cyclotomic sign matrix of *d*th roots of unity": an $n \times n$ matrix whose diagonal entries are all 0 and whose off-diagonal entries are all complex *d*th roots of unity.

The Function-Field Case, II

We can give a characterization of which $n \times n$ cyclotomic sign matrices are *d*th-power residue matrices:

Theorem 6 (E.D.)

If (q-1)/d is even, then M is a dth-power residue matrix if and only if M is symmetric.

Theorem 7 (E.D.)

If (q-1)/d is odd, then M is a dth-power residue matrix if and only if M can be conjugated by a permutation matrix into the form $\begin{pmatrix} A & B \\ B^t & S \end{pmatrix}$ where A is an $s \times s$ skew-symmetric cyclotomic sign matrix, S is an $(n-s) \times (n-s)$ symmetric cyclotomic sign matrix, and B is an $s \times (n-s)$ matrix of dth roots of unity.

Further Avenues

Here are a few things that remain unresolved:

- What happens if we allow non-primary generators of ideals? (This would expand the class of possible matrices when m > 2: for example we can get non-symmetric matrices in the m = 3 case.)
- Can the results in the number-field case be extended in a pleasant way for m > 4, or over larger ground fields?
- What if we try using composites of other types of minimally tamely ramified extensions? Are there equally simple objects (like the residue matrices) attached to these extensions that capture number-theoretic information?
- Are there any combinatorial applications of the quadratic residue matrices?

Thank you for attending my talk!