Signatures of (Circular) Units in Cyclotomic Fields

Evan P. Dummit Arizona State University

> CNTA XV July 9, 2018

Outline

Outline of talk:

- O Signatures of units
- **②** Circular units in real cyclotomic fields and their signatures
- **③** Unit signature ranks in families of real cyclotomic fields

This is joint work with D. Dummit and H. Kisilevsky.

Signatures, I

Let *F* be a finite Galois extension of \mathbb{Q} having *n* real embeddings.

If we fix an order of these embeddings, we obtain a "signature map" sending a nonzero $\alpha \in F$ to its associated "signature" representing the pattern of signs (positive or negative) of α in each of the *n* real embeddings of *F*.

Example

For $F = \mathbb{Q}(\sqrt{2})$ and $\alpha = 1 + \sqrt{2}$, the two real embeddings of α are $(1 + \sqrt{2}, 1 - \sqrt{2})$ with respective signs (+1, -1).

Signatures, II

The signature map is a homomorphism into the signature space $\{\pm 1\}^n \cong \mathbb{F}_2^n$. We will be interested in the image of the units of F:

Definition

The (archimedean) unit signature rank of F is the rank (as a 2-group) of the group of unit signatures of F.

For real quadratic fields, the unit signature rank is 1 if the fundamental unit is totally positive (i.e., if it has norm 1) and 2 otherwise (i.e., if it has norm -1).

Circular Units and Signatures, I

We now focus on the case of real cyclotomic fields:

- Let *m* be a positive integer (either odd or divisible by 4) and ζ_m be a primitive *m*th root of unity
- Let $K_m^+ = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$ be the associated real cyclotomic field.
- For *m* an odd prime power, we consider the "circular units" in K_m^+ , generated by -1 and the elements $U_a = \frac{\zeta_m^a \zeta_m^{-a}}{\zeta_m \zeta_m^{-1}}$, for 1 < a < m/2 and *a* relatively prime to *m*.
- These circular units are multiplicatively independent and generate a finite-index subgroup of the full unit group isomorphic to (Z/2Z) × Z^{φ(m)/2−1}.

Circular Units and Signatures, II

The signature rank of the circular units is a lower bound for the signature rank of the full group of units, so we next analyze signatures of circular units:

- We can enumerate the embeddings using the elements σ_b of Gal(K⁺_m/Q), where σ_b(ζ_m) = ζ^b_m, for each b relatively prime to m with 1 ≤ b < m/2.
- Explicitly, the *b*th embedding of U_a is given by $\sigma_b(U_a) = \frac{\zeta_m^{ab} - \zeta_m^{-ab}}{\zeta_m^b - \zeta_m^{-b}} = \frac{\sin(2\pi ab/m)}{\sin(2\pi b/m)}.$
- Since 1 ≤ b < m/2, the denominator is positive, so the sign of the bth embedding is positive precisely when sin(2πab/m) is positive, which occurs when the least positive residue of ab modulo m lies in (0, m/2).

Circular Units and Signatures, III

We can organize the circular unit signature data using a matrix:

Definition

The (modified) circular unit signature matrix M is the $\varphi(m)/2 \times \varphi(m)/2$ matrix whose rows and columns are indexed by integers a, b with $1 \le a, b < m/2$ relatively prime to m, and

$$m_{a,b} = \begin{cases} 1 & \text{when ab } (mod \ m) \in (0, m/2) \\ 0 & \text{when ab } (mod \ m) \in (m/2, m) \end{cases}$$

The rank of this matrix (over \mathbb{F}_2) is then equal to the rank of the group of circular unit signatures.

Circular Units and Signatures, IV

Example				
For $m = 7$, the signature matrix is	$\left[\begin{array}{c}1\\1\\1\end{array}\right]$	1 0 0	1 0 1	, which has rank 3.

Example						
	Γ1	. 1 1 1 1 1			1 -	
	1	1	0	0	0	
For $m = 11$, the signature matrix is	1	0	0	1	1	, of rank 5.
	1	0	1	1	0	
	[1	0	1	0	1 _	

Computations of Signature Ranks, I

Some circular unit signature ranks for various $K_m^+ = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$:

т	3	5	7	11	13	17	19)	23	29	31	37	41	. 43
Rank	1	2	3	5	6	8	9		11	11	15	18	20) 21
m	43	4	7	53	59	61	67	7	1	73	79	83	89	97
Rank	21	2	3	26	29	30	33	3	5	36	39	41	44	48
m	32	5	2	7 ²	11^{2}	132	2 1	7 ²	19) ²	23 ²	29 ²	31	2
Rank	3	1	0	21	55	78	1	36	17	71	253	403	46	5

Computations of Signature Ranks, II

A few observations about the data on the previous slide:

- The maximum circular unit signature rank for K_m^+ is $\varphi(m)/2$. This value is the signature rank in almost all cases shown, and is very close in all cases.
- The rank is less than the maximum only for m = 29 and $m = 29^2$, each of which has a "signature rank deficiency" of 3.

т	29	113	163	197	239	277	311	337	349
Deficiency	3	3	2	3	3	4	10	6	4

Here are the next few values of m for which there is a rank deficiency:

(See any patterns?)

Lower Bounds on Unit Signature Ranks, I

Our first main result is that the (circular) unit signature rank goes to ∞ in *p*-power extensions:

Theorem 1 (D. Dummit, E.D., H. Kisilevsky)

Suppose p is an odd prime and $m = p^n$. Then the (circular) unit signature rank of K_m^+ is at least $\lfloor \log_2(p^n) \rfloor - 2$.

The idea of the proof is to isolate $\lfloor \log_2(p^n) \rfloor - 2$ rows of the unit signature matrix (namely, those indexed by powers of 2) that can be shown to be linearly independent. (Argument also works when p = 2, but it was already shown by Weber in 1899 that the circular unit signature rank is maximal for 2-power cyclotomic fields.)

Lower Bounds on Unit Signature Ranks, II

Proposition (D. Dummit, E.D., H. Kisilevsky)

Suppose F and F' are totally real Galois extensions of \mathbb{Q} with $F \cap F' = \mathbb{Q}$. If $\{\alpha_1, \ldots, \alpha_r\}$ are elements of F with independent signatures, and $\{\beta_1, \ldots, \beta_s\}$ are elements of F' with independent signatures, then $\{\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_s\}$ has at least r + s - 1 independent signatures.

The Proposition allows us to glue results together for different *p*:

Theorem 2 (D. Dummit, E.D., H. Kisilevsky)

If m is a positive integer, then the (circular) unit signature rank of K_m^+ is at least $\log_2(m) - 4\omega(m) + 1$, where $\omega(m)$ is the number of distinct prime factors of m. In particular, the signature rank tends to ∞ with m.

Signature Ranks in Towers, I

We can also analyze the unit signature rank as we move up certain towers of real cyclotomic fields:

Theorem 3 (D. Dummit, E.D., H. Kisilevsky)

Let $p_1, p_2, ..., p_s$ be distinct odd primes and m be a positive integer relatively prime to each of the p_i . If $\delta(m; n_1, n_2, ..., n_s)$ denotes the unit signature rank deficiency of the field $K_{mp_1^{n_1}p_2^{n_2}...p_s^{n_s}}$, then

- $\delta(m; n_1, n_2, \dots, n_s) \leq \delta(m; n'_1, n'_2, \dots, n'_s)$ if $n_i \leq n'_i$ for each i
- δ(m; n₁, n₂,..., n_s) is bounded above, independent of n₁,..., n_s, and
- δ(m; n₁, n₂,..., n_s) is constant (depending only on m) if the n_i are all sufficiently large.

Signature Ranks in Towers, II

Here are some of the ideas involved in the proof of Theorem 3:

- The first step is to convert the discussion of the unit rank deficiency to one about Hilbert class fields, using the fact that $2^{\delta(F)}$ is equal to the extension degree $|H_F^{\text{st}} : H_F|$ of the strict Hilbert class field of F over the Hilbert class field of F.
- The fact that δ(m; n₁, n₂,..., n_s) ≤ δ(m; n'₁, n'₂,..., n'_s) if n_i ≤ n'_i follows from the more general observation that if F and F' are totally real number fields with F ⊆ F', then δ(F) ≤ δ(F').
- The other statements can then be obtained using a theorem of Friedman that the 2-primary part of the class number of K⁺_{mp_1ⁿp_2ⁿ...p_s^{ns}} is bounded for all *s*-tuples (n₁,..., n_s) and is constant when all the n_i are sufficiently large.

How Large Can Rank Deficiencies Be?

Theorem 3 implies that rank deficiencies are bounded in certain "vertical" families. A natural question is whether rank deficiencies can be arbitrarily large in general.

Under the assumption (heuristically expected to be true) that there are infinitely many cyclic cubic fields having a totally positive system of fundamental units, we can show that the rank deficiency can be arbitrarily large:

Theorem 4 (D. Dummit, E.D., H. Kisilevsky)

If there exist infinitely many cyclic cubic fields having a totally positive system of fundamental units, then the unit signature rank deficiency of the real cyclotomic field K_m^+ can be arbitrarily large.

How Large Can Rank Deficiencies Be: Almost ∞

A sketch that unit signature rank deficiencies can be large:

- Suppose we have *n* linearly disjoint cyclic cubic fields each with a totally positive system of fundamental units (i.e., with rank deficiency 2): we claim the rank deficiency of the composite *F* of these fields is at least 2*n*.
- If these cubic fields have fundamental units ε₁, ε₂,..., ε_{2n}, it is enough to show that these totally positive units are multiplicatively independent modulo squares in *F*.
- If there were some dependence in *F*, then by using the Galois action, it would yield a dependence in one of the subfields.
- Finally, to obtain a cyclotomic field with rank deficiency at least 2*n*, simply choose one that contains *F*.

Open Questions

Here are a few things that are still unresolved:

- Is it possible to establish a tighter lower bound on the circular unit signature rank of K⁺_m?
- Is there a nice characterization of the primes p for which the field K⁺_p has a circular unit rank deficiency? Are there infinitely many such primes, and if so, how common are they?
- Can the rank deficiency of K_p^+ for p prime be arbitrarily large?
- Some (modest) calculations for prime-power cyclotomic fields suggests that the rank deficiency of K_p is the same as the rank deficiency of K_{pⁿ} for n ≥ 2. Can this be proven?

An Application of Rank Deficiency

Since there is an element in the kernel of the signature map for p = 29, the corresponding product of circular units is totally positive but not a square.

Writing this element explicitly, and discarding the denominators, yields the odd fact that the trigonometric polynomial

$$p(x) = \sin\left(\frac{4\pi x}{29}\right) \sin\left(\frac{8\pi x}{29}\right) \sin\left(\frac{10\pi x}{29}\right) \sin\left(\frac{12\pi x}{29}\right)$$
$$\cdot \sin\left(\frac{16\pi x}{29}\right) \sin\left(\frac{18\pi x}{29}\right) \sin\left(\frac{20\pi x}{29}\right) \sin\left(\frac{28\pi x}{29}\right)$$

is nonnegative for each integer value of x but takes negative values as a function.

End

Here is a plot of this trigonometric polynomial:

Thank you for attending my talk!