Signatures of (Circular) Units in Cyclotomic Fields

Evan P. Dummit Arizona State University

> CNTA XV July 9, 2018

Outline

Outline of talk:

- **1** Signatures of units
- ² Circular units in real cyclotomic fields and their signatures
- ³ Unit signature ranks in families of real cyclotomic fields
- This is joint work with D. Dummit and H. Kisilevsky.

Signatures, I

Let F be a finite Galois extension of $\mathbb Q$ having *n* real embeddings.

If we fix an order of these embeddings, we obtain a "signature map" sending a nonzero $\alpha \in F$ to its associated "signature" representing the pattern of signs (positive or negative) of α in each of the *n* real embeddings of F .

Example

For $F = \mathbb{Q}(\sqrt{2})$ and $\alpha = 1 + \sqrt{2}$, the two real embeddings of α For $\mathcal{F} = \mathbb{Q}(\sqrt{2})$ and $\alpha = 1 + \sqrt{2}$, the two real embed
are $(1 + \sqrt{2}, 1 - \sqrt{2})$ with respective signs $(+1, -1)$.

Signatures, II

The signature map is a homomorphism into the signature space $\{\pm 1\}^n \cong \mathbb{F}_2^n$. We will be interested in the image of the units of F:

Definition

The (archimedean) unit signature rank of F is the rank (as a 2-group) of the group of unit signatures of F.

For real quadratic fields, the unit signature rank is 1 if the fundamental unit is totally positive (i.e., if it has norm 1) and 2 otherwise (i.e., if it has norm -1).

Circular Units and Signatures, I

We now focus on the case of real cyclotomic fields:

- Let m be a positive integer (either odd or divisible by 4) and ζ_m be a primitive *m*th root of unity
- Let $K_m^+ = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$ be the associated real cyclotomic field.
- For *m* an odd prime power, we consider the "circular units" in K_m^+ , generated by -1 and the elements $U_a = \frac{\zeta_m^a - \zeta_m^{-a}}{z-1}$ $\zeta_m-\zeta_m^{-1}$, for $1 < a < m/2$ and a relatively prime to m.
- These circular units are multiplicatively independent and generate a finite-index subgroup of the full unit group isomorphic to $(\mathbb{Z}/2\mathbb{Z})\times \mathbb{Z}^{\varphi(m)/2-1}.$

Circular Units and Signatures, II

The signature rank of the circular units is a lower bound for the signature rank of the full group of units, so we next analyze signatures of circular units:

- We can enumerate the embeddings using the elements σ_b of $\mathrm{Gal}(K_{m}^{+}/\mathbb{Q})$, where $\sigma_{b}(\zeta_{m})=\zeta_{m}^{b}$, for each b relatively prime to *m* with $1 \leq b \leq m/2$.
- Explicitly, the *b*th embedding of U_a is given by $\sigma_b(U_a) = \frac{\zeta_m^{ab} - \zeta_m^{-ab}}{\zeta_b^{ab} - \zeta_b^{-ab}}$ $\zeta_m^b - \zeta_m^{-b}$ $=\frac{\sin(2\pi ab/m)}{\sin(2\pi ab/m)}$ $\frac{\sin(2\pi b/m)}{\sin(2\pi b/m)}$.
- Since $1 \le b \le m/2$, the denominator is positive, so the sign of the bth embedding is positive precisely when $sin(2\pi ab/m)$ is positive, which occurs when the least positive residue of ab modulo *m* lies in $(0, m/2)$.

Circular Units and Signatures, III

We can organize the circular unit signature data using a matrix:

Definition

The (modified) circular unit signature matrix M is the $\varphi(m)/2 \times \varphi(m)/2$ matrix whose rows and columns are indexed by integers a, b with $1 \le a, b \le m/2$ relatively prime to m, and

$$
m_{a,b} = \begin{cases} 1 & \text{when ab } (\text{mod } m) \in (0, m/2) \\ 0 & \text{when ab } (\text{mod } m) \in (m/2, m) \end{cases}
$$

The rank of this matrix (over \mathbb{F}_2) is then equal to the rank of the group of circular unit signatures.

Circular Units and Signatures, IV

Computations of Signature Ranks, I

Some circular unit signature ranks for various $\mathcal{K}_m^+=\mathbb{Q}(\zeta_m+\zeta_m^{-1})$:

Computations of Signature Ranks, II

A few observations about the data on the previous slide:

- The maximum circular unit signature rank for \mathcal{K}_m^+ is $\varphi(m)/2$. This value is the signature rank in almost all cases shown, and is very close in all cases.
- The rank is less than the maximum only for $m = 29$ and $m = 29^2$, each of which has a "signature rank deficiency" of 3.

- ,,,	رے	\sim ∸∽	--	--		
JATIL $-$						

Here are the next few values of m for which there is a rank deficiency:

(See any patterns?)

Lower Bounds on Unit Signature Ranks, I

Our first main result is that the (circular) unit signature rank goes to ∞ in *p*-power extensions:

Theorem 1 (D. Dummit, E.D., H. Kisilevsky)

Suppose p is an odd prime and $m = p^n$. Then the (circular) unit signature rank of \mathcal{K}_m^+ is at least $\lfloor \log_2(p^n) \rfloor - 2.$

The idea of the proof is to isolate $\lfloor \log_2(p^n) \rfloor - 2$ rows of the unit signature matrix (namely, those indexed by powers of 2) that can be shown to be linearly independent. (Argument also works when $p = 2$, but it was already shown by Weber in 1899 that the circular unit signature rank is maximal for 2-power cyclotomic fields.)

Lower Bounds on Unit Signature Ranks, II

Proposition (D. Dummit, E.D., H. Kisilevsky)

Suppose F and F' are totally real Galois extensions of $\mathbb Q$ with $F \cap F' = \mathbb{Q}$. If $\{\alpha_1, \ldots, \alpha_r\}$ are elements of F with independent signatures, and $\{\beta_1,\ldots,\beta_s\}$ are elements of F' with independent signatures, then $\{\alpha_1,\ldots,\alpha_r,\beta_1,\ldots,\beta_s\}$ has at least $r+s-1$ independent signatures.

The Proposition allows us to glue results together for different p :

Theorem 2 (D. Dummit, E.D., H. Kisilevsky)

If m is a positive integer, then the (circular) unit signature rank of \mathcal{K}_m^+ is at least $\log_2(m)-4\omega(m)+1$, where $\omega(m)$ is the number of distinct prime factors of m. In particular, the signature rank tends to ∞ with m.

Signature Ranks in Towers, I

We can also analyze the unit signature rank as we move up certain towers of real cyclotomic fields:

Theorem 3 (D. Dummit, E.D., H. Kisilevsky)

Let p_1, p_2, \ldots, p_s be distinct odd primes and m be a positive integer relatively prime to each of the p_i . If $\delta(m; n_1, n_2, \ldots, n_s)$ denotes the unit signature rank deficiency of the field $\kappa_{mp_1^{n_1}p_2^{n_2} \cdots p_s^{n_s}, \text{ then}}$

- $\Im(\delta(m; n_1, n_2, \ldots, n_s) \leq \delta(m; n_1', n_2', \ldots, n_s')$ if $n_i \leq n_i'$ for each i
- Θ $\delta(m; n_1, n_2, \ldots, n_s)$ is bounded above, independent of n_1, \ldots, n_s , and
- Θ $\delta(m; n_1, n_2, \ldots, n_s)$ is constant (depending only on m) if the n_i are all sufficiently large.

Signature Ranks in Towers, II

Here are some of the ideas involved in the proof of Theorem 3:

- The first step is to convert the discussion of the unit rank deficiency to one about Hilbert class fields, using the fact that $2^{\delta(\mathcal{F})}$ is equal to the extension degree $|H^{\mathrm{st}}_{\mathcal{F}}:H_{\mathcal{F}}|$ of the strict Hilbert class field of F over the Hilbert class field of F .
- The fact that $\delta(m; n_1, n_2, \ldots, n_s) \leq \delta(m; n'_1, n'_2, \ldots, n'_s)$ if $n_i \leq n'_i$ follows from the more general observation that if F and F' are totally real number fields with $F \subseteq F'$, then $\delta(F) \leq \delta(F')$.
- The other statements can then be obtained using a theorem of Friedman that the 2-primary part of the class number of K_{-}^{+} $\mu_{mp_1}^{\tau_1}$ $\mu_{p_2}^{\tau_2}$ \ldots $\mu_{s}^{\tau_s}$ is bounded for all *s*-tuples (n_1,\ldots,n_s) and is constant when all the n_i are sufficiently large.

How Large Can Rank Deficiencies Be?

Theorem 3 implies that rank deficiencies are bounded in certain "vertical" families. A natural question is whether rank deficiencies can be arbitrarily large in general.

Under the assumption (heuristically expected to be true) that there are infinitely many cyclic cubic fields having a totally positive system of fundamental units, we can show that the rank deficiency can be arbitrarily large:

Theorem 4 (D. Dummit, E.D., H. Kisilevsky)

If there exist infinitely many cyclic cubic fields having a totally positive system of fundamental units, then the unit signature rank deficiency of the real cyclotomic field \mathcal{K}_m^+ can be arbitrarily large.

How Large Can Rank Deficiencies Be: Almost ∞

A sketch that unit signature rank deficiencies can be large:

- \bullet Suppose we have *n* linearly disjoint cyclic cubic fields each with a totally positive system of fundamental units (i.e., with rank deficiency 2): we claim the rank deficiency of the composite F of these fields is at least $2n$.
- **If these cubic fields have fundamental units** $\epsilon_1, \epsilon_2, \ldots, \epsilon_{2n}$ **, it is** enough to show that these totally positive units are multiplicatively independent modulo squares in F.
- \bullet If there were some dependence in F, then by using the Galois action, it would yield a dependence in one of the subfields.
- Finally, to obtain a cyclotomic field with rank deficiency at least $2n$, simply choose one that contains F .

Open Questions

Here are a few things that are still unresolved:

- Is it possible to establish a tighter lower bound on the circular unit signature rank of \mathcal{K}_m^+ ?
- \bullet Is there a nice characterization of the primes p for which the field κ^{+}_{ρ} has a circular unit rank deficiency? Are there infinitely many such primes, and if so, how common are they?
- Can the rank deficiency of K_p^+ for p prime be arbitrarily large?
- Some (modest) calculations for prime-power cyclotomic fields suggests that the rank deficiency of K_p is the same as the rank deficiency of K_{p^n} for $n \geq 2$. Can this be proven?

An Application of Rank Deficiency

Since there is an element in the kernel of the signature map for $p = 29$, the corresponding product of circular units is totally positive but not a square.

Writing this element explicitly, and discarding the denominators, yields the odd fact that the trigonometric polynomial

$$
p(x) = \sin\left(\frac{4\pi x}{29}\right) \sin\left(\frac{8\pi x}{29}\right) \sin\left(\frac{10\pi x}{29}\right) \sin\left(\frac{12\pi x}{29}\right)
$$

$$
\sin\left(\frac{16\pi x}{29}\right) \sin\left(\frac{18\pi x}{29}\right) \sin\left(\frac{20\pi x}{29}\right) \sin\left(\frac{28\pi x}{29}\right)
$$

is nonnegative for each integer value of x but takes negative values as a function.

End

Here is a plot of this trigonometric polynomial:

Thank you for attending my talk!