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Signatures of (Circular) Units in Cyclotomic Fields

Outline

Outline of talk:

1 Signatures of units

2 Circular units in real cyclotomic fields and their signatures

3 Unit signature ranks in families of real cyclotomic fields

This is joint work with D. Dummit and H. Kisilevsky.
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Signatures, I

Let F be a finite Galois extension of Q having n real embeddings.

If we fix an order of these embeddings, we obtain a “signature
map” sending a nonzero α ∈ F to its associated “signature”
representing the pattern of signs (positive or negative) of α in each
of the n real embeddings of F .

Example

For F = Q(
√

2) and α = 1 +
√

2, the two real embeddings of α
are (1 +

√
2, 1−

√
2) with respective signs (+1,−1).
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Signatures, II

The signature map is a homomorphism into the signature space
{±1}n ∼= Fn

2. We will be interested in the image of the units of F :

Definition

The (archimedean) unit signature rank of F is the rank (as a
2-group) of the group of unit signatures of F .

For real quadratic fields, the unit signature rank is 1 if the
fundamental unit is totally positive (i.e., if it has norm 1) and 2
otherwise (i.e., if it has norm −1).
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Circular Units and Signatures, I

We now focus on the case of real cyclotomic fields:

Let m be a positive integer (either odd or divisible by 4) and
ζm be a primitive mth root of unity

Let K+
m = Q(ζm + ζ−1m ) be the associated real cyclotomic field.

For m an odd prime power, we consider the “circular units” in

K+
m , generated by −1 and the elements Ua =

ζam − ζ−am

ζm − ζ−1m

, for

1 < a < m/2 and a relatively prime to m.

These circular units are multiplicatively independent and
generate a finite-index subgroup of the full unit group
isomorphic to (Z/2Z)× Zϕ(m)/2−1.
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Circular Units and Signatures, II

The signature rank of the circular units is a lower bound for the
signature rank of the full group of units, so we next analyze
signatures of circular units:

We can enumerate the embeddings using the elements σb of
Gal(K+

m /Q), where σb(ζm) = ζbm, for each b relatively prime
to m with 1 ≤ b < m/2.

Explicitly, the bth embedding of Ua is given by

σb(Ua) =
ζabm − ζ−abm

ζbm − ζ−bm

=
sin(2πab/m)

sin(2πb/m)
.

Since 1 ≤ b < m/2, the denominator is positive, so the sign
of the bth embedding is positive precisely when sin(2πab/m)
is positive, which occurs when the least positive residue of ab
modulo m lies in (0,m/2).
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Circular Units and Signatures, III

We can organize the circular unit signature data using a matrix:

Definition

The (modified) circular unit signature matrix M is the
ϕ(m)/2× ϕ(m)/2 matrix whose rows and columns are indexed by
integers a, b with 1 ≤ a, b < m/2 relatively prime to m, and

ma,b =

{
1 when ab (mod m) ∈ (0,m/2)

0 when ab (mod m) ∈ (m/2,m)

The rank of this matrix (over F2) is then equal to the rank of the
group of circular unit signatures.
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Circular Units and Signatures, IV

Example

For m = 7, the signature matrix is

 1 1 1
1 0 0
1 0 1

, which has rank 3.

Example

For m = 11, the signature matrix is


1 1 1 1 1
1 1 0 0 0
1 0 0 1 1
1 0 1 1 0
1 0 1 0 1

, of rank 5.
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Computations of Signature Ranks, I

Some circular unit signature ranks for various K+
m = Q(ζm + ζ−1m ):

m 3 5 7 11 13 17 19 23 29 31 37 41 43

Rank 1 2 3 5 6 8 9 11 11 15 18 20 21

m 43 47 53 59 61 67 71 73 79 83 89 97

Rank 21 23 26 29 30 33 35 36 39 41 44 48

m 32 52 72 112 132 172 192 232 292 312

Rank 3 10 21 55 78 136 171 253 403 465
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Computations of Signature Ranks, II

A few observations about the data on the previous slide:

The maximum circular unit signature rank for K+
m is ϕ(m)/2.

This value is the signature rank in almost all cases shown, and
is very close in all cases.

The rank is less than the maximum only for m = 29 and
m = 292, each of which has a “signature rank deficiency” of 3.

Here are the next few values of m for which there is a rank deficiency:
m 29 113 163 197 239 277 311 337 349

Deficiency 3 3 2 3 3 4 10 6 4

(See any patterns?)
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Lower Bounds on Unit Signature Ranks, I

Our first main result is that the (circular) unit signature rank goes
to ∞ in p-power extensions:

Theorem 1 (D. Dummit, E.D., H. Kisilevsky)

Suppose p is an odd prime and m = pn. Then the (circular) unit
signature rank of K+

m is at least blog2(pn)c − 2.

The idea of the proof is to isolate blog2(pn)c − 2 rows of the unit
signature matrix (namely, those indexed by powers of 2) that can
be shown to be linearly independent. (Argument also works when
p = 2, but it was already shown by Weber in 1899 that the circular
unit signature rank is maximal for 2-power cyclotomic fields.)
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Lower Bounds on Unit Signature Ranks, II

Proposition (D. Dummit, E.D., H. Kisilevsky)

Suppose F and F ′ are totally real Galois extensions of Q with
F ∩ F ′ = Q. If {α1, . . . , αr} are elements of F with independent
signatures, and {β1, . . . , βs} are elements of F ′ with independent
signatures, then {α1, . . . , αr , β1, . . . , βs} has at least r + s − 1
independent signatures.

The Proposition allows us to glue results together for different p:

Theorem 2 (D. Dummit, E.D., H. Kisilevsky)

If m is a positive integer, then the (circular) unit signature rank of
K+
m is at least log2(m)− 4ω(m) + 1, where ω(m) is the number of

distinct prime factors of m. In particular, the signature rank tends
to ∞ with m.
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Signature Ranks in Towers, I

We can also analyze the unit signature rank as we move up certain
towers of real cyclotomic fields:

Theorem 3 (D. Dummit, E.D., H. Kisilevsky)

Let p1, p2, . . . , ps be distinct odd primes and m be a positive
integer relatively prime to each of the pi . If δ(m; n1, n2, . . . , ns)
denotes the unit signature rank deficiency of the field
Kmp

n1
1 p

n2
2 ···p

ns
s

, then

1 δ(m; n1, n2, . . . , ns) ≤ δ(m; n′1, n
′
2, . . . , n

′
s) if ni ≤ n′i for each i

2 δ(m; n1, n2, . . . , ns) is bounded above, independent of
n1, . . . , ns , and

3 δ(m; n1, n2, . . . , ns) is constant (depending only on m) if the
ni are all sufficiently large.
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Signature Ranks in Towers, II

Here are some of the ideas involved in the proof of Theorem 3:

The first step is to convert the discussion of the unit rank
deficiency to one about Hilbert class fields, using the fact that
2δ(F ) is equal to the extension degree |Hst

F : HF | of the strict
Hilbert class field of F over the Hilbert class field of F .

The fact that δ(m; n1, n2, . . . , ns) ≤ δ(m; n′1, n
′
2, . . . , n

′
s) if

ni ≤ n′i follows from the more general observation that if F
and F ′ are totally real number fields with F ⊆ F ′, then
δ(F ) ≤ δ(F ′).

The other statements can then be obtained using a theorem
of Friedman that the 2-primary part of the class number of
K+
mp

n1
1 p

n2
2 ···p

ns
s

is bounded for all s-tuples (n1, . . . , ns) and is

constant when all the ni are sufficiently large.
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How Large Can Rank Deficiencies Be?

Theorem 3 implies that rank deficiencies are bounded in certain
“vertical” families. A natural question is whether rank deficiencies
can be arbitrarily large in general.

Under the assumption (heuristically expected to be true) that there
are infinitely many cyclic cubic fields having a totally positive
system of fundamental units, we can show that the rank deficiency
can be arbitrarily large:

Theorem 4 (D. Dummit, E.D., H. Kisilevsky)

If there exist infinitely many cyclic cubic fields having a totally
positive system of fundamental units, then the unit signature rank
deficiency of the real cyclotomic field K+

m can be arbitrarily large.
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How Large Can Rank Deficiencies Be: Almost ∞

A sketch that unit signature rank deficiencies can be large:

Suppose we have n linearly disjoint cyclic cubic fields each
with a totally positive system of fundamental units (i.e., with
rank deficiency 2): we claim the rank deficiency of the
composite F of these fields is at least 2n.

If these cubic fields have fundamental units ε1, ε2, . . . , ε2n, it is
enough to show that these totally positive units are
multiplicatively independent modulo squares in F .

If there were some dependence in F , then by using the Galois
action, it would yield a dependence in one of the subfields.

Finally, to obtain a cyclotomic field with rank deficiency at
least 2n, simply choose one that contains F .
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Open Questions

Here are a few things that are still unresolved:

Is it possible to establish a tighter lower bound on the circular
unit signature rank of K+

m ?

Is there a nice characterization of the primes p for which the
field K+

p has a circular unit rank deficiency? Are there
infinitely many such primes, and if so, how common are they?

Can the rank deficiency of K+
p for p prime be arbitrarily large?

Some (modest) calculations for prime-power cyclotomic fields
suggests that the rank deficiency of Kp is the same as the
rank deficiency of Kpn for n ≥ 2. Can this be proven?
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An Application of Rank Deficiency

Since there is an element in the kernel of the signature map for
p = 29, the corresponding product of circular units is totally
positive but not a square.

Writing this element explicitly, and discarding the denominators,
yields the odd fact that the trigonometric polynomial

p(x) = sin

(
4πx

29

)
sin

(
8πx

29

)
sin

(
10πx

29

)
sin

(
12πx

29

)
· sin

(
16πx

29

)
sin

(
18πx

29

)
sin

(
20πx

29

)
sin

(
28πx

29

)
is nonnegative for each integer value of x but takes negative values
as a function.
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End

Here is a plot of this trigonometric polynomial:

Thank you for attending my talk!


