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The Kakeya Needle Problem, I

Definition (S. Kakeya; 1917)

A Kakeya needle set is a subset of the plane inside which it is
possible to rotate a needle of length 1 completely around.

An example: a circle of diameter 1 (area π/4):
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The Kakeya Needle Problem, II

Another example: a deltoid (area π/8):
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The Kakeya Needle Problem, III

Question

What is the minimum area of a Kakeya needle set?

It was originally believed that the deltoid example (of area π/8)
was the smallest possible Kakeya set. But....

Theorem (A. Besicovitch; 1919)

There exists a Kakeya needle set in the plane having arbitrarily
small area.
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The Kakeya Needle Problem, IV

Basic idea for constructing a Kakeya set of small area:

Start with a simple Kakeya set.

Slice up the set into pieces.

Slide the the pieces together so that they overlap a lot.

Repeat steps 2-3 until the set is arbitrarily small.
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The Kakeya Needle Problem, V

What about higher dimensions? The key idea is that we can orient
the needle in any direction:

Definition

For n ≥ 2, a Kakeya set is a set in Rn inside which it is possible
to rotate a needle of length 1 to point in any direction.

We can get Kakeya sets having arbitrarily small volume in Rn

simply by taking a Cartesian product of [0, 1]n−2 ×K , where K is a
Kakeya set in the plane.
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Besicovitch and Kakeya Sets

The needle moves continuously, so we can’t ever expect to get a
Kakeya set of area zero (though this isn’t quite so trivial to
prove!). So, let’s modify the definition slightly.

Definition

A Besicovitch set is a set of points in Euclidean space which
contains a unit line segment in every direction.

Any Kakeya set is certainly a Besicovitch set, but....

Theorem

There exists a Besicovitch set in the plane of area 0.

To justify this requires a more careful definition of “area”, but the
idea is simply to take a limit in the construction described earlier.
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Dimension, I

Besicovitch sets can be very small in area. But there are other
notions of size!

Definition

The Minkowski dimension of a set K is defined to be

dim(K ) = lim
ε→0

log N(ε)

log(1/ε)

where N(ε) is the number of boxes of side ε needed to cover K .

Motivation: how many ε-scale boxes do we need to cover the set?
For a line, ε−1; for a square, ε−2, for a cube, ε−3, and so forth.
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Dimension, II

We can compute dimensions of other sets, like the famous “Cantor
set”: starting with the interval [0, 1], remove the middle third, and
then repeatedly remove the middle third of each remaining piece:



Points, Lines, and Dimensions: A Tour of The Kakeya Problem

Dimension, III

We can find the Minkowski dimension of the Cantor set by
counting how many “boxes” (in this case, segments) of various
lengths we need to cover it:

ε N(ε) log(N(ε))/ log(1/ε)

1/10 8 0.903

1/100 32 0.753

1/1000 128 0.702

1/10000 512 0.677

1/106 213 0.652

1/109 219 0.636

If the length is ε = 1/3n, then we require N(ε) = 2n segments.
The Minkowski dimension is log(2n)/ log(3n) = log3 2 ≈ 0.631.
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Dimension, IV

The Cantor set has dimension between 0 and 1: it has “fractional
dimension” = a “fractal”. We can perform similar calculations for
other famous fractals: here is one called the “Sierpinski carpet”:

By using boxes of side length 1/3n, try to show that this fractal
has Minkowski dimension log3 8 ≈ 1.893.
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Dimension, V

Here is another fractal, the “Koch snowflake”:
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Dimension, VI

Explicit counts are as follows:

ε N(ε) log(N(ε))/ log(1/ε)

1/5 21 1.89

1/10 54 1.732

1/20 129 1.622

1/100 922 1.482

1/1000 10765 1.344

1/10000 154046 1.297

The actual dimension of the Koch snowflake turns out to be
log3(4) ≈ 1.261.
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Dimension and Kakeya, I

Now, back to Besicovitch sets: what can we say about the
Minkowski dimension of a Besicovitch set?

Theorem (R. Davies; 1971)

Any Besicovitch or Kakeya set in R2 has Minkowski dimension 2.

What about in higher dimensions?

Conjecture (Kakeya Conjecture)

Any Kakeya set in Rn is of Minkowski dimension n.

Unfortunately, we only have lower bounds when n > 2.
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Dimension and Kakeya, II

At this point, you might wonder: who is interested in this problem?

Pictured: Terence Tao, IMO gold medalist (age 13), Princeton
PhD (age 21), UCLA Professor (age 24), Fields Medalist (age 31),
coauthor of over 300 papers and 17 books.
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Dimension and Kakeya, III

Here is what we know about Besicovitch sets in higher dimensions:

Theorem (T. Wolff; 1995)

Any Besicovitch or Kakeya set in Rn has Minkowski dimension at
least (n + 2)/2.

This was improved for n > 4:

Theorem (N.H. Katz, T. Tao; 1995)

Any Besicovitch or Kakeya set in Rn has Minkowski dimension at
least (1/α)n + (1− α)/α ≈ 0.596n + 0.403, where
α3 − 4α + 2 = 0.
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Kakeya Sets Modulo p, I

The proofs of the theorems about dimensions of Besicovitch sets
are very hard. So instead of talking about that, let’s change the
problem!

Specifically, let’s try to pose the Kakeya problem “modulo p”, by
replacing the real numbers R with the integers modulo p (which
we write as Fp), so we are now in the space Fn

p.
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Kakeya Sets Modulo p, II

For example, if n = 2, then we are simply looking at a p × p grid
of points, where things “wrap around”:
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Kakeya Sets Modulo p, III

Kakeya sets are defined using points, lines, and distances. So what
is a “line modulo p”?

Definition

The line in Fn
p through the point a with direction vector v consists

of the points of the form P = a + tv for t = 0, 1, . . . , p − 1.

Each line contains p points. In the plane, there are p + 1 possible
directions (corresponding to the possible slopes of a line, including
∞ for vertical lines).
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Kakeya Sets Modulo p, IV

What about distances? It turns out that distances are hard to work
with modulo p. Fortunately, we can simply discard them!

Definition

A Kakeya set is a set of points in Fn
p that contains a line in every

possible direction.

By “contains a line” we mean “contains the p points on the line”.
We dispense with the “length 1” part because everything is finite.
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Kakeya Sets Modulo p, V

Here are some examples of Kakeya sets, in F2
3 and F2

5:



Points, Lines, and Dimensions: A Tour of The Kakeya Problem

Kakeya Sets Modulo p, VI

So how small can a Kakeya set in Fn
p be?

Proposition

Any Kakeya set in F2
p contains at least

1

2
p2 points.

Proof: The first line has p points, the second adds at least p − 1
new points, the third adds at least p − 2 more, ... , yielding at

least p + (p − 1) + · · ·+ 1 =
p(p + 1)

2
>

1

2
p2 points in total.

Reframing: a Kakeya set in F2
p contains a positive proportion

(namely, at least half) of the points in F2
p. We can think of this as

being like “Minkowski dimension 2”.
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Kakeya Sets Modulo p, VII

What do we expect for larger n?

Conjecture (Mod-p Kakeya Conjecture, T. Wolff; 1999)

Any Kakeya set in Fn
p contains at least cnpn points, for some

constant cn > 0.

This problem seemed as hard as Kakeya in Rn:

Theorem (G. Mockenhaupt, T. Tao; 2004)

Any Kakeya set in Fn
p contains at least cnp(4n+3)/7 points, for a

constant cn > 0.

Their proof is quite intricate and seemed difficult to improve upon.
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Kakeya Sets Modulo p, VIII: The Last Jedi

Theorem (Z. Dvir; 2008)

Any Kakeya set in Fn
p contains at least

(n+p−1
n

)
≥ pn

n!
points.

In other words, a Kakeya set in Fn
p always has Minkowski dimension

n, and contains a positive proportion of the points in Fn
p, even as p

grows arbitrarily large. Thus, the mod-p Kakeya conjecture is true.

It might seem that Dvir’s proof must be very complicated, but in
fact, we will go through it!
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Kakeya Sets Modulo p, VIII: The Last Jedi
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Dvir’s Proof, I

Dvir’s proof goes as follows:

Suppose K is a Kakeya set in Fn
p having <

(n+p−1
n

)
points.

Consider the collection of polynomials in n variables x1, . . . , xn
of degree at most p − 1, whose coefficients are considered
“modulo p”.

By the famous “stars and bars” counting argument1, there are(n+p−1
n

)
possible monomial terms in such a polynomial.

Since each monomial term is “independent”, there must be
some nonzero polynomial P that vanishes at each point in K .

1See problem 36 of the 2016 UVM High School Math Exam, or problem 2
from the January 2018 Vermont Math Talent Search.
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Dvir’s Proof, II

Let P = P0 + P1 + · · ·+ Pp−1 where Pi is homogeneous of
degree i .

For any nonzero v, because P vanishes on a line in the
direction v, there exists some a such that P(a + tv) = 0 for
t = 0, 1, 2, . . . , p − 1.

Then P(a + tv) is a polynomial of degree at most p− 1 in the
variable t having p distinct roots modulo p, so it must be the
zero polynomial.

By multiplying out, one can verify that the coefficient of tp−1

in P(a + tv) is Pp−1(v).

Therefore, Pp−1(v) = 0 for all v in Fn
p, hence Pp−1 = 0.

Repeat for the other terms, to conclude that all terms of P
are zero. This is a contradiction!
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The Polynomial Method

Dvir’s proof is a stunning example of the “polynomial method”:
consider a polynomial vanishing on the set, and then prove
something about it. Other applications of the polynomial method:

Sizes of cap sets (sets avoiding 3-term arithmetic
progressions, made famous in the card game “Set”).

Erdős distinct distances problem: given n points in the plane,
what is the smallest number of distinct distances between the
points in terms of n? (Answer: ≥ cn/ log(n) for some c > 0.)

Finite-field Nikodym problem, joints problem, and other
variations on point-line configurations.



Points, Lines, and Dimensions: A Tour of The Kakeya Problem

Sizes of Kakeya Sets Mod p

Distressing caveat: Dvir’s proof gives no real information about
what Kakeya sets actually look like!

Some improvement in the bound is available, using a slightly more
complicated version of the technique:

Theorem (Z. Dvir, S. Kopparty, S. Saraf, M. Sudan; 2009)

For large enough n, a Kakeya set in Fn
p contains at least

(0.4999)npn points.

The 0.4999 in the theorem can be replaced with any number less
than 1/2. (It is also believed that this is the best possible
constant.)
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Open Questions

Kakeya sets have several applications in other mathematical
problems (too complicated to describe here).

Here are a few broad questions to think about:

Can we study Kakeya sets in other settings? (One possibility:
modulo m where m is not a prime.)

Can we find analogies between the results about Kakeya sets
in these different settings?

What if we use shapes other than lines to create Kakeya sets?
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End of Talk

Thank you!

(And congratulations again to all of the Math Day winners!)
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