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Outline of Talk

© The Kakeya problem in analysis
@ The Kakeya problem over finite fields
© The Kakeya problem over local rings

@ Open questions
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The Kakeya Needle Problem, |

Definition (S. Kakeya, 1917)

A Kakeya needle set is a subset of the plane inside which it is
possible to rotate a needle of length 1 completely around.

An example: a circle of diameter 1 (area 7/4):

Circle as a Kakeya Set

(=)bM+]
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The Kakeya Needle Problem, Il

Another example: a deltoid (area 7/8):

Deltoid as a Kakeya Set

(=)bM+]
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The Kakeya Needle Problem, IlI

What is the minimum area of a Kakeya needle set? \

It was originally believed that the deltoid example (of area 7/8)
was the smallest possible Kakeya set. But....
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The Kakeya Needle Problem, Il

What is the minimum area of a Kakeya needle set?

It was originally believed that the deltoid example (of area 7/8)
was the smallest possible Kakeya set. But....

Theorem (A. Besicovitch, 1919)

There exists a Kakeya needle set in the plane having arbitrarily
small area.
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The Kakeya Needle Problem, IV

Basic idea for constructing a Kakeya set of small area:
@ Start with a simple Kakeya set.
@ Slice up the set into pieces.
@ Slide the the pieces together so that they overlap a lot.

@ Repeat steps 2-3 until the set is arbitrarily small.

(=)be(+)
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The Kakeya Needle Problem, V

What about higher dimensions? The key idea is that we can orient
the needle in any direction:

Definition

For n > 2, a Kakeya set is a set in R"” inside which it is possible
to rotate a needle of length 1 to point in any direction.




Lines, Points, and Dimensions: A Tour of the Kakeya Problem in Algebra and Analysis

The Kakeya Needle Problem, V

What about higher dimensions? The key idea is that we can orient
the needle in any direction:

Definition

For n > 2, a Kakeya set is a set in R"” inside which it is possible
to rotate a needle of length 1 to point in any direction.

We can get Kakeya sets having arbitrarily small measure in R”
simply by taking a Cartesian product of [0,1]"72 x K, where K is a
Kakeya set in the plane.
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Besicovitch and Kakeya Sets

The needle moves continuously, so we can't ever expect to get a
Kakeya set of measure zero (though this isn't quite so trivial to
prove as it may seem!). So, let's modify the definition slightly.

Definition

A Besicovitch set is a set of points in Euclidean space which
contains a unit line segment in every direction.

Any Kakeya set is certainly a Besicovitch set, but we can have
Besicovitch sets of area zero! (Take an appropriate limit in the
construction described earlier.)
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Dimension, |

Besicovitch sets can be very small in measure. But there are other
notions of size!

The Minkowski dimension of a set K is defined to be
log N(e)

dim(K) = i fog(1/e)

where N(e) is the number of boxes of side € needed to cover K.
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Dimension, |

Besicovitch sets can be very small in measure. But there are other
notions of size!

The Minkowski dimension of a set K is defined to be
log N(e)

dim{K) = iy fog(a/e)

where N(e) is the number of boxes of side € needed to cover K.

Motivation: how many e-scale copies of an object do we need to
cover that object? For a line, e 1 fora square, e 2 for a cube,
¢=3, and so forth.
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Dimension, I

Examples of such counts for the Koch snowflake:

Koch snowflake box-counting with box size 0.2 Koch snowfiake box-counting with box size 0.1 —counting with box size 0.05
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Dimension, |l

Explicit counts are as follows:

Frame | € | N(e) | log(N(e))/log(1/e)
#1 0.2 21 1.89
#2 | 01 | 54 1.732
#3 | 0.05| 129 1.622

The actual dimension of the snowflake turns out to be

logz(4) ~ 1.261. (It has “fractional dimension” = a "fractal”.)

Other notions of dimension exist also (e.g., Hausdorff dimension)

but they are often harder to use.
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Dimensions of Besicovitch Sets, |

What can we say about the dimension of a Besicovitch set?
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Dimensions of Besicovitch Sets, |

What can we say about the dimension of a Besicovitch set?

Theorem (R. Davies, 1971)

Any Besicovitch or Kakeya set in R?> has Minkowski dimension 2.

What about in higher dimensions?
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Dimensions of Besicovitch Sets, |

What can we say about the dimension of a Besicovitch set?

Theorem (R. Davies, 1971)

Any Besicovitch or Kakeya set in R?> has Minkowski dimension 2.

What about in higher dimensions?

Conjecture (Kakeya Conjecture)

Any Kakeya set in R" is of Minkowski dimension n.

Unfortunately, we only have lower bounds when n > 2. There are
various trivial bounds (on the order of things like v/n).
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Dimensions of Besicovitch Sets, Il

More substantial:

Theorem (T. Wolff, 1995)
Any Besicovitch or Kakeya set in R" has Minkowski dimension at
least (n+2)/2.
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Dimensions of Besicovitch Sets, Il

More substantial:

Theorem (T. Wolff, 1995)

Any Besicovitch or Kakeya set in R" has Minkowski dimension at
least (n+2)/2.

This was improved for n > 4:

Theorem (N.H. Katz, T. Tao, 1995)

Any Besicovitch or Kakeya set in R" has Minkowski dimension at
least (1/a)n+ (1 — o)/ =~ 0.596n + 0.403, where
a®—4a+2=0.

The proofs of these theorems are very hard.
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Kakeya Sets in Finite Fields, |

Let's now look at the Kakeya problem in a finite field. Definitions:
o Let IFy be a finite field, and n a fixed positive integer.
@ Space of interest: S = FFg.
@ Lines in S are of the form {x+ sy : s€ Fq, x,y € S,y # 0}.

@ A direction in S is a class of y giving the same line.

Definition

A Kakeya set is a set of points in g which contains a line in
every direction.

By “contains a line” we mean ‘“contains the g points on the line”.
We dispense with the “length 1" part because everything is finite.
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Kakeya Sets in Finite Fields, Il

For example, if n =2 and g = p is prime, then we are simply
looking at a p X p grid of points, where lines “wrap around”.

, N
\,
o o & o o o o o o
/7 . |
’ N |
’ N
’ N !
([ j J ([ [ 3 [ ] [ ] [ ] [ J ([
, N !
14 N !
, N |
, N |
, \
o e o o o o e o o
|

Each line contains p points and there are p 4+ 1 possible directions.
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Kakeya Sets in Finite Fields, Il

Here are some examples of Kakeya sets, in F% and Fg:
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Sizes of Kakeya Sets, |

So how small can a Kakeya set in Fg be?

Proposition

. 1 .
Any Kakeya set in IF‘%, contains at least §q2 points.
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Sizes of Kakeya Sets, Il

So how small can a Kakeya set in Fg be?

Proposition

. . 1 .
Any Kakeya set in IE‘?, contains at least §q2 points.

Proof. The first line has g points, the second adds at least g — 1
new points, the third adds at least g — 2 more, ... , yielding at

1 1
q(q2+) > qu points in total. O

Reframing: a Kakeya set in IF% contains a positive proportion of
the points in F2. and has Minkowski dimension 2.

least
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Sizes of Kakeya Sets, IlI

Conjecture (Finite-Field Kakeya Conjecture)

Any Kakeya set in ¥y contains at least c,q" points, for some
constant ¢, > 0.

Originally posed by Wolff in 1999. This problem seemed as hard as
Kakeya in R":

Theorem (G. Mockenhaupt, T.Tao, 2004)

Any Kakeya set in F? contains at least c,q""+3)/7 points, for a
constant ¢, > 0.

Their proof is quite intricate and analytically-flavored, and any
substantial improvement would seem to require very different ideas.
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Sizes of Kakeya Sets, IV: A New Hope

Theorem (Dvir; 2008)

n
Any Kakeya set in Fj) contains at least (”+Z_1) > % points.

In other words, a Kakeya set in g always has Minkowski
dimension n, and contains a positive proportion of the points in Fg
as g — 0o. (Thus, the Kakeya conjecture over Fy is true.)
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Dvir's Proof of the Finite-Field Kakeya Conjecture

Dvir's proof is very simple: suppose K has < (""97") points.

By nullity-rank, there is a nonzero polynomial P in
Fq[xi,...,xn] of degree at most ¢ — 1 vanishing on K.

Let P = Py + Py +---+4 Py_1 where P; is homog. of degree i.

Because P vanishes on a line in the direction y, there exists b
such that P(b+ ty) =0 for all t in F4.

Then P(b + ty) is a polynomial of degree at most ¢ — 1 in ¢t
having q roots in [F, so it is the zero polynomial.

Coefficient of t9=1 in P(b+ ty) is Py_1(y).
But then Py_1(y) =0 for all y in F], meaning that P,_; = 0.

Repeat for the other terms, to conclude P is zero.
Contradiction.
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Sizes of Kakeya Sets, V

Dvir's proof is a stunning example of the polynomial method: to
understand a set, consider a polynomial vanishing on the set, and
try to prove something about it. But the proof is unsatisfying: it
gives no real information about what Kakeya sets actually look like!
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Sizes of Kakeya Sets, V

Dvir's proof is a stunning example of the polynomial method: to
understand a set, consider a polynomial vanishing on the set, and
try to prove something about it. But the proof is unsatisfying: it
gives no real information about what Kakeya sets actually look like!

Theorem (Z. Dvir, S. Kopparty, S. Saraf, M. Sudan; 2009)

Any Kakeya set in g contains at least (% +0(1))"q" points.

The constant is believed to be essentially sharp, up to possible
refinement of the o(1).
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Between R and I,

In R there exist Kakeya sets of measure zero, but over IFZ, there
exists a hard lower bound on measure (independent of g). So
perhaps [F is not the best analogy for R.

@ One possible reason: F, has no notion of “distance”.

@ Points in Iy are either the same or they're not, unlike R
which has many different distances.
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Between R and I,

In R there exist Kakeya sets of measure zero, but over IFZ, there
exists a hard lower bound on measure (independent of g). So
perhaps [F is not the best analogy for R.

One possible reason: Fg has no notion of “distance”.

Points in IF; are either the same or they're not, unlike R
which has many different distances.

Also, notice that as n — oo, the constant (3 + o(1))",
representing the density of a Kakeya set in [F7, goes to zero.

Perhaps this may be because there is a Kakeya set in some
limit space that “looks like" lim, s Fg.
Some possible candidates: Fg[[t]], the formal power series ring
over Fg, or Zp, the p-adic integer ring.
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Kakeya in Non-Archimedean Local Rings, |

Question (J. Ellenberg, R. Oberlin, T. Tao, 2009)

Are there Besicovitch phenomena in F4[[t]]" or in Z;?

In other words, do there exist Besicovitch sets of measure 0 in
these spaces?
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Kakeya in Non-Archimedean Local Rings, |

Question (J. Ellenberg, R. Oberlin, T. Tao, 2009)

Are there Besicovitch phenomena in F4[[t]]" or in Z;?

In other words, do there exist Besicovitch sets of measure 0 in
these spaces?

Theorem (E.D., Hablicek, 2011)

There exists a Besicovitch set of measure 0 in Fg[[t]]" for each
n>2.

Proof: Explicit construction.
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Kakeya in Non-Archimedean Local Rings, Il

Theorem (R. Fraser, 2015)

For n > 2, there exists a Besicovitch set of measure zero over R"
for any discrete valuation ring R with finite residue field.

Fraser's construction is more analytic, involving various classes of
differentiable functions.
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Kakeya in Non-Archimedean Local Rings, Il

Theorem (R. Fraser, 2015)

For n > 2, there exists a Besicovitch set of measure zero over R"
for any discrete valuation ring R with finite residue field.

Fraser's construction is more analytic, involving various classes of
differentiable functions.

Theorem (X. Caruso, 2016)

For n > 2, almost all Kakeya sets in R" have Haar measure zero
for any discrete valuation ring R with finite residue field.

The difference between Kakeya sets and Besicovitch sets (in
Caruso’s formulation) is that Kakeya sets also possess a continuity
condition.
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Kakeya in Non-Archimedean Local Rings, Il

We can also pose the Kakeya conjecture in the local ring setting.
Here is the appropriate notion of dimension:

Definition

If R is a discrete valuation ring with maximal ideal m and
Fq = R/m finite, the Minkowski dimension of a subset E of R" is

log N(k)
k—oo log gk

where N(k) is the size of the image of E under the map
R — R/mk.

In this case, we are “covering” the set with boxes of size l/qk.
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Kakeya in Non-Archimedean Local Rings, IV

Conjecture (Kakeya Conjecture)

For n > 2, the Minkowski dimension of a Besicovitch set in R"
where R =7, or Fq[[t]] is n.
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Kakeya in Non-Archimedean Local Rings, IV

Conjecture (Kakeya Conjecture)

For n > 2, the Minkowski dimension of a Besicovitch set in R"
where R =7, or Fq[[t]] is n.

We have some partial progress toward this result.

Theorem (E.D., M. Hablicek, 2011)

The Minkowski dimension of a Kakeya set in Fq[[t]]* or Z3 is 2.

In dimensions n > 3 over these rings, the Kakeya conjecture
remains open, just like over R....
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Applications of Kakeya Sets

Kakeya sets have a number of applications in wide-ranging areas:

e Harmonic analysis (Fefferman): counterexamples to some
Fourier convergence results in LP norm rely on Kakeya sets.

@ Solutions to the wave equation (Wolff): certain kinds of
bounds fail, with Kakeya sets giving counterexamples.

@ Error-correcting codes and cryptography (Bourgain): Kakeya
sets are related to certain kinds of error-correcting codes.

@ Analytic number theory and additive combinatorics (Tao,
Bourgain, N. H. Katz, many others): Kakeya sets are related
to various sum-product problems.
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Open Questions

Here are a few broad questions that are still open:
@ What kinds of interactions are there between the Kakeya
problems in R, Fg, Fq[[t]], and Z,?
e Can we use Kakeya sets in Fy[[t]] and Z, in harmonic analysis
over these rings, in a similar way to how they are used for
harmonic analysis on R?

@ Can we use methods for studying the algebraic Kakeya
problems on the analytic side (or vice versa)?
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End of Talk

Thank you!
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