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• Among the most fundamental objects of study in number theory are algebraic number �elds and extensions
of number �elds. The most basic such question is: how many number �elds (with some particular set of
properties) are there?

• A natural way to order number �elds of a given degree is by absolute discriminant. For a relative extension
L/K, there is an analogous object known as the relative discriminant DL/K , which (although it is no longer
an integer but rather an ideal in the ring of integers OK of K) has essentially the same properties as the
absolute discriminant DL. One reason this might be a good idea is that the number of number �elds of a
given degree whose (absolute) discriminant is less than X is �nite, as originally shown by Minkowski.

• The goal of this talk is to discuss upper bounds on the number of extensions of a �xed degree, bounded
(relative) discriminant, and speci�ed Galois closure. (The main theorems in this talk appeared in my Ph.D.
thesis, but a lot of followup work is still ongoing.)

1 Notation and Background

• To introduce some notation, let K be a number �eld and L/K be an extension of degree n. We will let OL
and OK be the rings of integers, and DL and DK be the absolute discriminants of L and K respectively, and
DL/K be the relative discriminant ideal in OK . We also take NmK/Q to be the absolute norm on ideals or
elements (as appropriate).

◦ Essentially none of the �avor is lost by assuming K = Q, so feel free to make this assumption at any
time.

• We will employ the standard notations f(X) ∼ g(X) to mean lim
X→∞

g(X)

f(X)
= 1, and f(X) � g(X) to mean

that f(x) < c g(X) for some constant c > 0 and X su�ciently large (where c may depend on other parameters
such as n and ε that will be clear from the context). The group G will also always be a �nite, transitive
subgroup of Sn (and is to be interpreted as a Galois group equipped with an embedding).

1.1 Counting extensions of �xed degree

• De�nition: For a �xedK and n, we de�neNK,n(X) to be the number of number �elds L (up toK-isomorphism)
with extension degree [L : K] = n and absolute discriminant norm NmK/Q(DL/K) < X.

• A folk conjecture, sometimes attributed to Linnik, says that

NK,n(X) ∼ CK,nX

for �xed n and as X →∞, for some positive constant CK,n depending on K and n.

◦ Even for K = Q, the best known results for large n are far away from this conjectured result. Only in
some low-degree cases (n ≤ 5) is this conjecture proven. (I will give a list of known results in a moment.)

• The �rst upper bound for general n was proven by Schmidt in the 1980s:

• Theorem ([Schmidt]) For all n and all base �elds K,

NK,n(X)� X(n+2)/4.
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• The best upper bound for general n was established by Ellenberg and Venkatesh in 2006:

• Theorem ([Ellenberg, Venkatesh]) For all n > 2 and all base �elds K,

NK,n(X)� (XDn
K/QA

[K:Q]
n )exp(C

√
log n),

where An is a constant depending only on n and C is an absolute constant.

• For su�ciently large n (roughly on the order of n = 20), the result of Ellenberg-Venkatesh improves that of
Schmidt.

◦ The approach of Schmidt is as follows: �rst, construct a lattice attached to the ring of integers OL of L,
and use Minkowski's lattice theorem to obtain an element α ∈ OL whose archimedean norms are small
(in terms of X). This gives bounds on the coe�cients of the minimal polynomial of α; counting the
number of possibilities for α yields the upper bound on the number of possible extensions L/K.

◦ The approach of Ellenberg-Venkatesh, in brief, modi�es this technique to instead count linearly-independent
r-tuples of elements of OL, using properties of the invariant theory of products of symmetric groups and
by rephrasing the problem into one about counting integral points on a scheme which is a generically-�nite
cover of a�ne space.

1.2 Counting extensions with �xed degree and particular Galois group

• We may re�ne the basic counting problem by restricting our attention to extensions L/K whose Galois closure
L̂/K has Galois group isomorphic to a particular �nite permutation group G.

• For �xed K and n, and a transitive permutation group G ↪→ Sn with a given embedding into Sn, we de�ne
NK,n(X;G) to be the number of number �elds L (up to K-isomorphism) such that

1. The degree [L : K] = n,

2. The absolute norm of the relative discriminant NmK/Q(DL/K) is less than X, and

3. The action of the Galois group of the Galois closure of L/K on the complex embeddings of L is
permutation-isomorphic to G.

• For shorthand, we refer to extensions satisfying these conditions as G-extensions. We will also abuse termi-
nology and refer to G as the �Galois group� of the extension L/K, despite the fact that this extension is not
typically Galois.

• A series of conjectures of Malle give expected growth rates for NK,n(X;G) depending on the group G.

◦ Explicitly, for G a transitive subgroup acting on Ω = {1, 2, . . . , n}, and for g in G, de�ne the index of an
element

ind(g) = n− [number of orbits of g on Ω] ,

which is also equal to the sum of the lengths of all the cycles, minus the number of cycles, in the cycle
decomposition of g in Sn.

◦ Next de�ne the index of G to be

ind(G) = min {ind(g) : 1 6= g ∈ G} .

◦ We also set
a(G) = 1/ind(G).

Note that the index of a transposition is equal to 1, and (since an element with index 1 has n− 1 orbits)
the transpositions are the only elements of index 1.

◦ The absolute Galois group of K acts on the conjugacy classes of G via the action on Q̄-characters of
G. We de�ne the orbits (of that action) to be the �K-conjugacy classes� of G. Since all elements in a
K-conjugacy class have the same index, we de�ne the index of a conjugacy class to be the index of any
element in that class.
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• With the terminology de�ned above, the strong form of Malle's conjecture is as follows:

• Conjecture (Malle, strong form) There exists a constant c(k,G) > 0 such that

NK,n(X;G) ∼ c(K,G) ·Xa(G) · log(X)b(K,G)−1,

where a(G) =
1

ind(G)
and b(K,G) = # {C : C a K-conjugacy class of minimal index ind(G)}.

◦ We would expect by Linnik's conjecture that for any group G, the asymptotics should not exceed X1,
and indeed if a(G) = 1 then b(K,G) is also 1.

◦ The strong form of Malle's conjecture holds for all abelian groups; this is a result of Wright.

◦ However, Klüners has constructed a counterexample to the log(X) part of the conjecture for the non-
abelian group G = C3 o C2 of order 18 embedded in S6. (Klüners also notes that this is not a unique
example, and that all groups of the form Cp oC2 yield counterexamples to Malle's conjecture as formulated
above.)

◦ The ultimate di�culty is the potential existence of an intermediate cyclotomic sub�eld inside the exten-
sion: in this case, Q(ζ3) (or Q(ζp) in the general family).

◦ There is a recent re�nement of the exponent of the log-term in Malle's conjecture over function �elds, due
to Turkelli, which appears to avoid all of the known counterexamples. Turkelli's re�nement is motivated
by counting points on components of non-connected Hurwitz schemes.

◦ The question of counting points on connected Hurwitz schemes was related to counting extensions of
function �elds in a paper of Ellenberg-Venkatesh, and their heuristics (subject to some assumptions)
aligned with Malle's. Turkelli extended their arguments to cover non-connected Hurwitz schemes, and
the di�erence in the results compared to those of Ellenberg-Venkatesh suggested a modi�cation to Malle's
conjecture.

• It is generally believed that the power of X in Malle's conjecture is essentially correct. Explicitly:

• Conjecture: (Malle, weak form) For any ε > 0 and any number �eld K, Xa(G) � NK,n(X;G) � Xa(G)+ε,

where a(G) =
1

ind(G)
.

◦ If true, Malle's conjecture, even when we restrict to the �weak form� that only considers the power of X,
and only for extensions of Q, would for example imply that every �nite group is a Galois group over Q.
As such, even this weak version (let alone the full version) is naturally considered to be entirely out of
reach of current methods.

• An upper bound at least as strong as the weak form of Malle's conjecture is known to hold in the following
cases:

1. For any abelian group (Wright), with the asymptotic constants (in principle).

2. For any nilpotent group (Kluners-Malle). For a nilpotent group in its regular representation, the lower
bound is also known.

3. For S3 (Davenport-Heilbronn, Datskovsky-Wright), and the asymptotic constants are also known. In
fact, in this case there is a second main term, and its asymptotic constant is also known (Bhargava-
Shankar-Tsimerman, Taniguchi-Thorne).

4. For D2·4 and S4 (in principle over general K) (Baily, Bhargava, Cohen-Diaz y Diaz-Olivier). The
asymptotic constants are also known.

5. For S5 (in principle over general K) (Kable-Yukie, Bhargava), as well as the asymptotic constant.

6. For degree-6 S3 extensions (Bhargava-Wood), as well as the asymptotic constant.

7. Under mild restrictions, for wreath products of the form C2 oH where H is nilpotent (Kluners).

• Also of signi�cant interest is the inverse question (though I won't talk much about it), about giving estimates
on lower bounds.

3



◦ For the �rst question, for certain n one can use known results to get easy lower bounds of the correct
exponent in X; e.g., if n is even one can count quadratic extensions of any �eld E with [E : K] = n/2,
and this already gives the correct exponent of X.

◦ In order to avoid such trivial cases we would want to impose conditions on the Galois group, but then the
lower bounds (for general G) are quite hard: after all, if one could merely show a positive lower bound
for NQ,n(X;G) for all G, one would have solved the inverse Galois problem!

• We will remark here that it is very important that the �elds are ordered by discriminant; using other orderings
can produce very di�erent results.

◦ For example, consider the case of degree-4 extensions and suppose instead we wanted to count polynomials
by the maximum height of their coe�cients.

◦ If we let ai for 1 ≤ i ≤ n be indeterminates, then the polynomial p(x) = xn + an−1x
n−1 + · · · + a0 ∈

K(a1, · · · , an) has Galois group Sn overK(a1, . . . , an). Hilbert's Irreducibility Theorem then implies that
almost all specializations (when ordered by the coe�cient height) of this polynomial still have Galois
group Sn.

◦ However, the results of Cohen et al. collectively show that, when ordered by discriminant, a positive
proportion (roughly 17%) of extensions of degree 4 have an associated Galois group isomorphic to the
dihedral group D2·4: the di�erence is entirely caused by ordering the �elds by discriminant.

◦ Malle's conjectures, moreover, indicate that the non-Sn extensions should have a positive density for
any composite n, but should have zero density for prime n, though this is not known to be true for any
n > 5. In general (again per Malle), the Galois groups which are expected to occur with positive density
are precisely those Galois groups containing a transposition.

2 Counting G-Extensions by Discriminant

• My �rst goal is to discuss a sharpening of the upper-bound results of Ellenberg-Venkatesh for arbitrary G-
extensions. Let me give the statement of my theorem now, and then talk about the ingredients:

• Theorem ([D.]): Let n ≥ 2, let K be any number �eld, and let G be a proper transitive subgroup of Sn.
Also, let t be such that if G′ is the intersection of any point stabilizer in Sn with G, then any subgroup of G
properly containing G′ has index at least t. Then for any ε > 0,

NK,n(X;G)� X
1

2(n−t)
[∑n−1

i=1 deg(fi+1)−
1

[K:Q]

]
+ε
,

where the fi for 1 ≤ i ≤ n are a set of primary invariants for G, whose degrees (in particular) satisfy
deg(fi) ≤ i.

◦ The parameter t is necessary because there could potentially be proper sub�elds between L and K. In
the event that there are no such sub�elds (i.e., if G is a primitive permutation group, e.g., if G is simple)
then the result is strictly stronger than Schmidt's bound.

◦ If G = Sn, then the result still holds without the −1/[K : Q] + ε part, and the result becomes exactly

Schmidt's bound � the exponent is
1

2(n− 1)
·
∑n−1
i=1 deg(fi+1) =

(2 + 3 + · · ·+ n)

2(n− 1)
=
n(n+ 1)/2− 1

2(n− 1)
=

n+ 2

4
.

• Let me also give an example using my favorite group, the simple group of order 168:

• Corollary: Let G = PSL2(F7) ∼= GL3(F2), appearing in its 7-dimensional (primitive) permutation represen-
tation. (An explicit embedding is G = 〈(1 2 3 4 5 6 7), (1 2)(3 6)〉.) Then for any ε > 0,

NQ,7(X;G)� X11/6+ε.

For comparison, Schmidt's bound (for general septic extensions) gives an upper bound of X9/4, and the
Ellenberg-Venkatesh bound is weaker.
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2.1 Primary Invariants

• Let G be a �nite group and ρ : G → GLn(C) be a (faithful) complex representation, and let G act on
C[x1, · · · , xn] via ρ.

• If f1, · · · , fn are algebraically independent, homogeneous G-invariant elements of C[x1, · · · , xn] with the prop-
erty that C[x1, · · · , xn]G, the ring of G-invariant polynomials, is a �nitely-generated module over C[f1, · · · , fn],
we say these polynomials fi are a set of primary invariants for G.

◦ The Noether normalization lemma implies that such polynomials exist; that there are n of them follows
from comparing transcendence degrees.

◦ The primary invariants are not unique: one can (for example) take linear combinations or powers of the
fi and still retain the �nite-generation property.

◦ When we speak of primary invariants, we generally mean a set of primary invariants which are homoge-
neous and of minimal degree, and we will arrange them in nondecreasing order of degree.

• Denote A = C[f1, · · · , fn], and R = C[x1, · · · , xn]G.

• The theorem of Hochster-Roberts implies that R is a Cohen-Macaulay ring and, moreover, that there exist
homogeneous G-invariant polynomials g1, g2, · · · , gk with g1 = 1 such that R = A · g1 + · · ·+A · gk.

◦ These polynomials gi are called secondary invariants of G and will depend intrinsically on the choice of
primary invariants, and are not uniquely determined even for a �xed set of primary invariants.

• Example: Let G = Sn and ρ be the natural representation of G acting by index permutation on C[x1, · · · , xn].
It is easy to see that the elementary symmetric polynomials are invariants under the action ofG on C[x1, · · · , xn],
and that they are algebraically independent: thus, they form a set of primary invariants for G.

◦ In fact, for any subgroup of Sn, the elementary symmetric polynomials form a set of (possibly non-
minimal-degree) primary invariants.

◦ Hence, by a simple replacement argument, for any permutation representation ρ of degree n, there exists
a set of primary invariants of ρ such that deg(fi) ≤ i for each 1 ≤ i ≤ n.

• Of course, the elementary symmetric polynomials do not necessarily have minimal degree.

• Example: Let G be the simple group of order 168, appearing in its 7-dimensional (primitive) permutation
representation. A computation with MAGMA shows that primary invariants can be chosen as
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f1 = x1 + x2 + x3 + x4 + x5 + x6 + x7

f2 = x21 + x22 + x23 + x24 + x25 + x26 + x27

f3 = x31 + x32 + x33 + x34 + x35 + x36 + x37

f4 = x1x2x3 + x1x2x5 + x1x2x6 + x1x2x7 + x1x3x4 + x1x3x6 + x1x3x7 + x1x4x5

+x1x4x6 + x1x4x7 + x1x5x6 + x1x5x7 + x2x3x4 + x2x3x5 + x2x3x7 + x2x4x5

+x2x4x6 + x2x4x7 + x2x5x6 + x2x6x7 + x3x4x5 + x3x4x6 + x3x5x6 + x3x5x7

+x3x6x7 + x4x5x7 + x4x6x7 + x5x6x7

f5 = x41 + x42 + x43 + x44 + x45 + x46 + x47

f6 = x21x2x3 + x21x2x5 + x21x2x6 + x21x2x7 + x21x3x4 + x21x3x6 + x21x3x7 + x21x4x5

+x21x4x6 + x21x4x7 + x21x5x6 + x21x5x7 + x1x
2
2x3 + x1x

2
2x5 + x1x

2
2x6 + x1x

2
2x7

+x1x2x
2
3 + x1x2x

2
5 + x1x2x

2
6 + x1x2x

2
7 + x1x

2
3x4 + x1x

2
3x6 + x1x

2
3x7 + x1x3x

2
4

+x1x3x
2
6 + x1x3x

2
7 + x1x

2
4x5 + x1x

2
4x6 + x1x

2
4x7 + x1x4x

2
5 + x1x4x

2
6 + x1x4x

2
7

+x1x
2
5x6 + x1x

2
5x7 + x1x5x

2
6 + x1x5x

2
7 + x22x3x4 + x22x3x5 + x22x3x7 + x22x4x5

+x22x4x6 + x22x4x7 + x22x5x6 + x22x6x7 + x2x
2
3x4 + x2x

2
3x5 + x2x

2
3x7 + x2x3x

2
4

+x2x3x
2
5 + x2x3x

2
7 + x2x

2
4x5 + x2x

2
4x6 + x2x

2
4x7 + x2x4x

2
5 + x2x4x

2
6 + x2x4x

2
7

+x2x
2
5x6 + x2x5x

2
6 + x2x

2
6x7 + x2x6x

2
7 + x23x4x5 + x23x4x6 + x23x5x6 + x23x5x7

+x23x6x7 + x3x
2
4x5 + x3x

2
4x6 + x3x4x

2
5 + x3x4x

2
6 + x3x

2
5x6 + x3x

2
5x7 + x3x5x

2
6

+x3x5x
2
7 + x3x

2
6x7 + x3x6x

2
7 + x24x5x7 + x24x6x7 + x4x

2
5x7 + x4x5x

2
7 + x4x

2
6x7

+x4x6x
2
7 + x25x6x7 + x5x

2
6x7 + x5x6x

2
7

f7 = x71 + x72 + x73 + x74 + x75 + x76 + x77

of degrees 1, 2, 3, 3, 4, 4, 7 respectively.

2.2 Outline of Proof, Remarks

• The proof of my theorem is in roughly three steps. (I will describe it for K = Q since it is slightly easier, but
the general version is the same):

1. Given an extension L/Q, use Minkowski's theorems and the geometry of numbers to construct an alge-
braic integer α generating the extension whose archimedean norms are small (in terms of the discriminant
bound X).

◦ This is a fairly standard technique: construct the Minkowski lattice by embedding the ring of integers
OL in R# by sending

α 7→
(
ρ1(α), . . . , ρr(α),

√
2 Reσ1(α),

√
2 Imσ1(α), . . . ,

√
2 Reσs(α),

√
2 Imσs(α)

)
where the ρi are the r real embeddings and the σi are the s nonconjugate complex embeddings.

◦ Use Minkowski's theorems to show the existence of an element α ∈ OL which generates L/Q and
all of whose archimedean embeddings satisfy |α|i � X1/2(n−t), where t is the maximal degree of an
intermediate sub�eld.

2. Use the invariant theory of the group G to construct a �nite scheme map to a�ne space, under which
the image of a point corresponding to α has integral image.

◦ The map is only a slightly more complicated version of the ring map that evaluates the primary
invariant polynomials on the archimedean embeddings of α.

3. Count the number of possible images of α (�points in a box�). Since α generates L/Q, this will give an
upper bound on the number of possible L.

◦ By the construction of the primary invariant polynomials, the scheme map from step 2 is �nite.
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◦ Since α is integral, and we know that each archimedean embedding satis�es |α|i � X1/2l(n−t) from
step 1, we are then essentially reduced to counting the number of points in a box whose dimensions
are � Xdeg(fi)/2(n−t).

◦ The laziest possible method would just be to count the number of points in this box, and apply
�niteness. The resulting bound is

NQ,n(X;G)� X
1

2(n−t) [
∑n−1

i=1 deg(fi+1)]
,

◦ We can do slightly better by using some sieving: this is the �nal ingredient in getting the original
statement I gave above.

• We would naturally expect the actual number of integral points to be lower than the bound from the theorem,
per Malle's heuristics. There are (at least) three ways in which we lose accuracy:

1. The map associating an element x to an extension L/K is not injective: any extension has many di�erent
generators. Worse still, there is no uniform way to account for this non-injectivity: an extension of small
discriminant will have many generators of small archimedean norm, and thus it will show up in the count
much more frequently than an extension of larger discriminant.

2. The simple techniques employed above for counting integral points on the scheme Z give weaker bounds
than could be hoped for. Most points in a�ne space are not actually the image of an integral point on
Z, but we do not expect that the sieving we performed is actually sharp: it is likely only extracting a
small amount of the potential savings that should be realizable.

3. If L/K has any intermediate extensions, the bound given in the theorem is weaker than for a primitive
extension. The worst losses occur when L/K has a sub�eld of small index (e.g., index 2), in which case
the exponent obtained is nearly doubled. In principle, a more careful analysis of towers of �elds could
deal with this issue (perhaps not completely, but at least partly).

• We will also note that as n grows, �nding a set of primary invariants becomes very computationally intensive,
and it becomes infeasible (at present) to compute them for nontrivial transitive subgroups of Sn when n is
larger than 9. I have computed the results for all transitive subgroups of Sn for n ≤ 8, and in general they
tend to beat Schmidt's bound by quite a bit when there are no big intermediate sub�elds.

◦ Here is a table for the nontrivial transitive subgroups of S7 (which are all necessarily primitive):
# Ord Isom to Generators Invariant Degrees Result Malle Schmidt

T2 14 D2·7 (1 2 3 4 5 6 7), (1 6)(2 5)(3 4) 1,2,2,2,3,4,7 X19/12 X1/3 X27/12

T3 21 F21 (1 2 3 4 5 6 7), (1 2 4)(3 6 5) 1,2,3,3,3,4,7 X21/12 X1/4 X27/12

T4 42 F42 (1 2 3 4 5 6 7), (1 3 2 6 4 5) 1,2,3,3,4,6,7 X24/12 X1/3 X27/12

T5 168 PSL2(F7) (1 2 3 4 5 6 7), (1 2)(3 6) 1,2,3,3,4,4,7 X22/12 X1/2 X27/12

T6 2520 A7 (3 4 5 6 7), (1 2 3) 1,2,3,4,5,6,7 X26/12 X1/2 X27/12

3 The ρ-Discriminant

• I will now brie�y discuss some ongoing work in generalizing the counting theorem presented above.

• One way of reinterpreting my theorem is to view it as a result about reduced permutation representations of
groups. The invariant theory involved in the proof carries over to general representations ρ, and so one could
ask: is there a way to generalize the result to arbitrary permutations ρ?

• The answer turns out to be yes, however, it is necessary to introduce a new counting metric attached to
the representation ρ, which I have termed the �ρ-discriminant�. (It takes the place of the square root of the
relative discriminant, for counting purposes.)
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3.0.1 Motivation for the ρ-Discriminant

• Let L/K be a degree-n Galois extension of number �elds with Galois group G, and let the respective rings of
integers be OL and OK . Additionally, let ρ : G→ GLd(OK) be a faithful representation of G.

◦ Note, for emphasis: the extension L/K is now assumed to be Galois! (This is not really a restriction, as
I will later explain.)

• The proof of the Theorem can be interpreted as follows:

◦ First, we construct a generator α of the extension L/K that has small archimedean valuations relative
to the discriminant of the extension.

◦ Then we compute the primary invariant polynomials f1, · · · , fn for the permutation representation ρ :
G→ Sn ↪→ GLn(Z), and we observe that fi(x) lies inK, where x is the vector of archimedean embeddings
of α (on which G acts through ρ and through the Galois action).

◦ Next, we use the �niteness of a scheme map originating from invariant theory to conclude that if we �x
the values f1(x), . . . , fn(x), then there are only a bounded number of possibilities for x.

◦ Finally, we count the number of possibilities for these invariant values f1(x), . . . , fn(x), yielding an upper
bound for the number of possible x and in turn the number of possible α, hence (at last) bounding the
number of possible L.

• We would like to adapt this technique to a setting with a general representation: so suppose, now, that ρ is
an arbitrary degree-d representation.

◦ The scheme map originating from invariant theory is still �nite, and everything following that point
in the argument still holds, provided we can construct some vector x ∈ O⊕dL with the property that
fi(x) ∈ K for all of the primary invariants fi.

◦ By Galois theory, fi(x) ∈ K if and only if g · fi(x) = fi(g ·x) is in K, where g ∈ G is acting on x via the
Galois action.

◦ If we demand that g · x = ρ(g)x, where we view ρ(g) as acting on x via the representation action, then
since fi is an invariant polynomial, we would have g · fi(x) = fi(g · x) = fi(ρ(g)x) = fi(x), which is
precisely the outcome we are seeking.

• The correct object to work with is, therefore, the set of tuples of elements of OL which the two natural actions
of G (via the Galois action or via the representation ρ) agree.

3.0.2 The ρ-Discriminant

• We now carry through the details of the construction we just motivated.

• Observe that there are two natural actions of G on the space

OL ⊗OK
O⊕dK ∼= O⊕dL .

◦ First, there is the action δ stemming from the Galois action of G on OL (which acts on the left side in
the tensor product and diagonally on each copy of OL in the direct sum): thus,

δ : G→ AutOK
(OL)⊕d. (1)

◦ There is also the action τ obtained by acting in the right component of the tensor product by ρ (which
in the direct sum is equivalent to extending the representation ρ from its action on OK to an action on
OL): thus,

τ : G→ GLd(OK) ↪→ GLd(OL). (2)

• The object we are interested in, per the argument above, is the subset of elements where these actions agree:
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• De�nition: For a given Galois extension L/K with Galois group G and a faithful representation ρ : G →
GLd(OK), we de�ne the tuning submodule Ξρ to be the subset of elements of the space O⊕dL on which the
two actions δ and τ from 1 and 2 coincide; namely,

Ξρ =
{
x ∈ O⊕dL : ∀g ∈ G, δ(g)(x) = τ(g)(x)

}
. (3)

◦ The tuning submodule Ξρ is a torsion-free OK-module of rank d.

◦ The torsion-free part is obvious, but the rank is not quite as immediate. Here is an easy way to see the
rank is at least d: tensor with K and choose a basis for L/K. Then we obtain a system of nd linear
equations in nd variables, where n = [L : K], and the d equations corresponding to g = 1 are all trivial.
(Hence, the rank of the solution space is at least d.)

• To construct a discriminant-like object using the tuning submodule Ξρ, we follow the analogy with the
construction of the classical relative discriminant DL/K and use determinants of elements in Ξρ.

• De�nition: Let L/K be a Galois extension with Galois group G, ρ : G→ GLd(OK) is a faithful representation

of G and let Ξρ be the tuning submodule attached to (ρ, L,K). We de�ne the ρ-discriminant ideal D
(ρ)
L/K

to be the ideal of OL generated by all d × d determinants of the form det(ξ1, ξ2, . . . , ξd), where each ξi, for
1 ≤ i ≤ d, is an element of Ξρ (thought of as a length-d column vector).

◦ As de�ned above, the ρ-discriminant ideal is only an ideal of OL, since the entries in each determinant
lie in OL.
◦ However, in some cases, the ρ-discriminant descends naturally to an ideal of OK : for any g ∈ G,
δ(g) · det(ξ1, ξ2, . . . , ξd) = det(ρ(g)) · det(ξ1, ξ2, . . . , ξd), so in the event that ρ(g) = 1 for all g ∈ G, we see
that det(ξ1, . . . , ξd) is Galois-invariant and therefore lies in OK .
◦ Also, if ρ is a permutation representation, then det(ρ(g)) = ±1. Then the square of the determinant

det(ξ1, ξ2, . . . , ξd)
2 will be Galois-invariant; ensuring this Galois-invariance is precisely why the de�nition

of the classical discriminant DL/K uses squares of determinants. In general, the ρ-discriminant will
behave analogously to the square root of the classical discriminant.

• Here are a few concrete examples of tuning submodules and ρ-discriminants:

• Example 1: Let K = Q and L = Q(
√
D) for a squarefree D. Then G = Z/2Z, so let ρ be the nontrivial

1-dimensional representation of G.

◦ For g the nonidentity element of G, we see that for x = a+ b
√
D ∈ OL, we have δ(g)(x) = a− b

√
D, and

τ(g)(x) = −x = −a− b
√
D, which are equal precisely when a = 0.

◦ Hence Ξρ = Z
√
D, and then we can readily see that D

(ρ)
L/Q =

√
D.

◦ Since the (classical) discriminant DL of this extension is D or 4D, depending on whether D is or is not
congruent to 1 modulo 4, respectively, we see that the ρ-discriminant and classical discriminant behave
similarly, but not identically, for these extensions.

• Example 2: Let L/K be an arbitrary Galois extension of degree n with Galois group G, and take ρ to be the
regular representation of G as a subgroup of Sn.

◦ Then Ξρ is the set of n-tuples of elements of OL such that the permutation action of G agrees with the
Galois action of G.

◦ Since G is transitive on the n coordinates, we see that the tuning submodule Ξρ is precisely the set of
n-tuples (α(1), · · · , α(n)) of Galois orbits of elements α ∈ OL, where x(j) = σjx represents the image of
x under the jth element σj of G (for some �xed labeling of the elements in G).

◦ The ρ-discriminantD
(ρ)
L/K ideal is then generated by the determinants of all possible matrices {β(j)

i }1≤i,j≤n
for βi ∈ OL, which is precisely the same set of determinants used to de�ne the (classical) relative dis-
criminant ideal DL/K .

◦ In this case, due to our slightly di�erent normalization, we have D
(ρ)
L/K =

√
DL/K .
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• If E/K is a (non-Galois) �eld extension with Galois closure L/K, then I believe (but have not actually done
out all of the necessary calculations to verify) that there is a fairly natural representation ρ attached to L/K
whose ρ-discriminant recovers the classical discriminant of E/K.

◦ Thus, we lose no generality by only working with Galois extensions: by choosing the appropriate repre-
sentation ρ, we can e�ectively study the non-Galois extensions of K having a particular Galois group of
their Galois closure (in exactly the same way we did earlier).

◦ Wood and Varma have a recent result on counting dihedral quartic extensions using a modi�cation of
the discriminant that (they have argued) seems more natural for that setting, and which appears to be
a special case of the ρ-discriminant construction.

3.0.3 Counting by ρ-Discriminant

• We now obtain a new class of counting problems: counting extensions L/K whose ρ-discriminant is bounded.
Explicitly, if we de�ne NK,n(X; ρ) to be the number of number �elds L (up to K-isomorphism) such that

1. The degree [L : K] = n,

2. The Galois group Gal(L/K) = G, and ρ : G→ GLd(OK) is a faithful representation of G, and

3. The ρ-discriminant norm NmL/QD
(ρ)
L/K is less than X.

we then have the following generalization of the previous theorem:

• Theorem ([D.]): Let K be any number �eld, G be a �nite group of order n, and ρ : G → GLd(OK) be a
faithful d-dimensional representation of G on OK . Also de�ne t(ρ) to be the smallest positive integer such
that for any nontrivial subgroup H of G, (OdK)ρ(H) has rank ≤ t(ρ) as an OK-module. Then

NK,n(X; ρ)� X
1

d−t(ρ) [
∑d

i=1 deg(fi)]
,

where the fi for 1 ≤ i ≤ d are a set of primary invariants for ρ. Furthermore, if ρ has a nontrivial secondary

invariant, then we can replace the upper bound by X
1

d−t(ρ)

[∑d
i=1 deg(fi)−

deg(f1)
2[K:Q]

]
+ε
.

• We have reached the end of the results I wanted to talk about, but I'd like to close with a few other things.

◦ Much of this is still very much work in progress: there are a number of properties that the classical
discriminant has, and which any sensible object should be known to possess before we should call it a
discriminant, but which I have not yet established for the ρ-discriminant.

◦ There are many di�erent approaches to �alternate discriminants� (e.g., Varma and Wood's use of an
Artin conductor to count dihedral quartics, Yasuda's �V -discriminant�, and some work of Silas Johnson
on �weighted discriminants�), and it is unclear at the moment how all of these ideas are related. It seems
very likely that there are relations between all of these notions, and some of them may even be the same.

◦ The pipe dream would be to establish relations between all of these discriminants and study what kinds
of arithmetic information they provide. In addition to trying to tackle the kinds of counting questions
I discussed, there are many other di�erent directions this could go, but for example: does knowing all
of the ρ-discriminants for a given extension L/K necessarily characterize L up to isomorphism? Are
there analytic formulas involving the ρ-discriminant? What kind of local data does the ρ-discriminant
provide? (And so forth.)
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