
1 Intro

• In this talk I will discuss the main results of a paper of Faifman and Rudnick, �Statistics of the Zeros
of Zeta Functions in Families of Hyperelliptic Curves over a Finite Field� � speci�cally, that in the
limit of large genus g over a �xed �nite �eld, a particular parameter associated to a randomly-chosen
hyperelliptic curve of genus g will be uniformly distributed.

• In this talk, q will always be odd.

• To explain in more detail I �rst need some de�nitions.

• If C is a projective variety of genus g de�ned over Fq, the zeta function of C is de�ned as ZC(u) =

exp(
∑∞
n=1Nn ·

un

n
) for |u| < 1/q, where Nn is the number of points on C in the extension �eld Fqn/Fq

of degree n.

• It is known that the zeta function for arbitrary projective curves has the form ZC(u) =
PC(u)

(1− u)(1− qu)

for some polynomial PC(u) ∈ Z[u] of degree 2g, with P (0) = 1 and satisfying PC(u) = (qu2)g ·PC(
1
qu

).

Furthermore, the Riemann hypothesis for curves states that all of the zeros of PC(u) lie on the circle
|u| = q−1/2. (Indeed all this is true more generally for arbitrary projective varieties � not just curves
� by the Weil Conjectures.)

• Moreover, in the case of curves, there exists a unitary symplectic matrix ΘC ∈ USp(2g) de�ned up to
conjugacy, with PC(u) = det(I − u√q ·ΘC). Recall that the elements of USp(2g) are complex-valued,

are 2g × 2g, unitary, and satisfy ΘT
C · Ω · ΘC = Ω where Ω =

[
0 −Ig
Ig 0

]
where Ig is the identity

matrix. (Instead of Ω one can choose some other invertible skew-symmetric matrix which will then be
conjugate to Ω.) Symplectic matrices have determinant 1 and have characteristic polynomials which
are reciprocal; the given condition on PC(u) is essentially the statement that PC is the characteristic
polynomial of ΘC , modi�ed to account for the fact that PC(u) itself is not quite a reciprocal polynomial.

• The fact that ΘC is actually unitary implies that its 2g eigenvalues all have absolute value 1 � write
them as e2iπθC,j for j = 1, 2, · · · , 2g, for some �angles� θC,j , 1 ≤ j ≤ 2g.

• The goal of this talk is to study the distribution of these angles as we draw the curve C at random
from the family of hyperelliptic curves of genus g de�ned over Fq for q odd. We denote this family
as H2g+2,q and observe that it is the set of curves having an a�ne equation of the form y2 = Q(x)
where Q ∈ Fq[x] is monic, squarefree, and of degree 2g + 2. (Its function �eld is Fq(x,

√
Q(x)) and is

called a real quadratic function �eld, in analogy to a real quadratic extension of a number �eld. For
completeness, the analogue to an imaginary quadratic extension occurs when the degree of Q is odd
and this can only occur under particular conditions.)

• The measure we will take on H2g+2,q is just the uniform probability measure, since the set is �nite.

The statistic we will analyze is the counting function of the angles: for an interval I = [−β2 ,
β
2 ] which

can vary with g and with q, let
NI(C) = # {j : θj,C ∈ I}

(We may assume the interval I to be symmetric about 0 because of the functional equation for PC .)
The main theorem of this paper is that for �xed I, as g →∞ we have that

NI(C) ∼ 2g |I|

and moreover, it turns out that the variations in NI(C) are Gaussian, with variance
2

π2 ln(ln(2g |I|))
.
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• This is a similar sort of analysis to that of Selberg, who analyzed the behavior of the number of
zeros N(t) of the Riemann zeta function ζ(s) up to a given height t on the critical line Re(z) = 1

2 .

By the Riemann-von Mangoldt formula it was known that N(t) =
t

2π
· ln(

t

2πe
) + O(ln(t)), and this

was subsequently improved to N(t) =
t

2π
· ln(

t

2πe
) +

7
8

+ S(t) +O(
1
t
) where S(t) =

1
π

arg(ζ(
1
2

+ it)).

Selberg analyzed the behavior of S(t), for t chosen uniformly in [0, T ], and showed that its variance was
1

2π2
ln(ln(t)) and that the moments of

S(t)√
1

2π2 ln(ln(t))
were those of a standard Gaussian distribution.

• Katz and Sarnak showed that for �xed genus, the conjugacy classes of ΘC become uniformly distributed
in USp(2g) in the limit of q →∞, so in particular the statistics of NI will be the same as those for the
corresponding angle-counting function N̂I for a randomly-chosen matrix of USp(2g). In the limit of
large matrix size, the statistics of N̂I (along with many other statistics) are known to have a Gaussian
distribution; in particular, when averaged over USp(2g), the expected value of N̂I is 2g |I|, with variance

2
π2 ln(ln(2g |I|))

, and such that the normalized value has a normal Gaussian distribution. In fact this

result still holds even if the size of the interval shrinks, provided that the expected number of angles
2g |I| still goes to in�nity. To summarize, Katz and Sarnak showed that

lim
g→∞

 lim
q→∞

ProbH2g+2,j

a < NI(C)− 2g |I|√
2
π2 ln(ln(2g |I|))

< b

 =
1√
2π

∫ b

a

e−x
2/2dx.

• This paper shows the result still holds even if we �x the size of the �eld � i.e., if we remove the limit
as q →∞ � which was central to Katz and Sarnak's proof.

• For the remainder of this talk I will focus on proving the statement that the angles are uniformly
distributed, as the evaluation of the asymptotics on the higher moments uses essentially the same
method albeit with more involved computations. We prove the result in two main steps: First, we
show that the polynomial PC(u), the numerator of the zeta function for C, is the L-function for
the quadratic character associated to Fq[x] and use this to derive an explicit formula for the sum
of the values of an arbitrary trigonometric polynomial at the points θC,j , 1 ≤ j ≤ 2g. Second, we
approximate our counting function NI(x) with Beurling-Selberg trigonometric polynomials, and then
apply the explicit formula to deduce the results.

2 Dirichlet Characters on Function Fields

2.1 General Theory

• We �rst need some background on Dirichlet characters and L-functions on function �elds. (If you
are interested in learning more about this, you might want to read Rosen's book �Number Theory in
Function Fields�, which starts from elementary principles.)

• For f ∈ Fq[x] we de�ne the norm of f as ||f || = qdeg(f). The zeta function of the rational function �eld is

ζq(s) =
∑

f monic

||f ||−s for Re(s) > 1; its Euler product expansion is ζq(s) =
∏

P monic irred

(1− ||P ||−s)−1 =
∏
P

(1− udeg(P ))−1 = Z(u)

where the product is over irreducible monic polynomials P (�primes�) in Fq[x]; the second form is in

terms of the variable u = q−s. Directly from the sum we see that Z(u) =
1

1− qu
.

• Given a monic polynomial Q ∈ Fq[x], we de�ne a Dirichlet character modulo Q as a group homo-
morphism χ : (Fq[x]/(Q))× → C×. Such a character is primitive if it is not induced by any proper

divisor of Q � i.e., if there is no Q̃|Q and character χ̃ mod Q̃ for which χ(n) = χ̃(n) for all n with
gcd(n,Q) = 1.
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• To a Dirichlet character mod Q we form the L-function

L(u, χ) =
∏
P

(1− χ(P ) · udeg(P ))−1 =
∑
f

χ(f) · udeg(f)

which converges for |u| < 1/q, where P runs over all monic irreducibles and f runs over all monics. If
χ is nontrivial then it is not hard to see that

∑
deg(f)=n χ(f) = 0 for n ≥ deg(Q), and therefore the

L-function is actually a polynomial, of degree at most deg(Q)− 1.

• We say a character is �even� if χ(c) = 1 for all c ∈ F×q (this is analogous to the condition χ(−1) = 1
for ordinary Dirichlet characters). For even characters the L-function will have a trivial zero at u = 1
and so (for primitive characters of positive degree) we de�ne the �completed� L-function

L∗(u, χ) = (1− λ∞(χ)u)−1 · L(u, χ)

where λ∞(χ) is 1 if χis even and 0 if χ is not. The completed L-function is a polynomial of degree

D = deg(Q)− 1− λ∞(x) and satis�es the functional equation L∗(u, χ) = ε(χ) · (q1/2u)D ·L∗( 1
qu
, χ−1)

where ε(χ) is some complex number of absolute value 1.

• We can factor L∗(u, χ) =
D∏
j=1

(1− αj,χu) in terms of its inverse zeros αj,χ; the Riemann hypothesis

(proved by Weil) in this setting states that all αj,χ have absolute value q1/2, so we can write αj,χ =
q1/2 · e2πiθj,χ for some phases θj,χ ∈ R/Z.

2.2 Quadratic Dirichlet Characters

• Let P (x) ∈ Fq[x] be monic and irreducible, and f ∈ Fq[x] relatively prime to P . We de�ne the

quadratic residue symbol

(
f

P

)
∈ {±1}via

(
f

P

)
≡ f
||P || − 1

2 mod P

(Recall ||P || = qdeg(P ).)

• We generalize to the Jacobi symbol in the usual way � namely, for arbitrary monic Q we de�ne the

Jacobi symbol

(
f

Q

)
by writing Q =

∏
i Pi as a product of monic irreducibles and setting

(
f

Q

)
=∏

i

(
f

Pi

)
if f and P are coprime, and 0 otherwise. If f = c is a scalar (i.e., element of F∗q) then we set(

c

Q

)
= c

q − 1
2

deg(Q)
.

• We recover quadratic reciprocity for these Jacobi symbols � if A,B are monic and relatively prime then(
A

B

)
=
(
B

A

)
· (−1)

q − 1
2

deg(A)·deg(B)
=
(
B

A

)
· (−1)

||A|| − 1
2

·
||B|| − 1

2 . (If they are not relatively

prime then it's still true as both sides are zero.)

• If Q ∈ Fq[x] is squarefree then we de�ne the quadratic character χQ(f) =
(
Q

f

)
. If deg(Q) is even then

this character is primitive mod Q. Also observe that χQ is an even character (i.e., trivial on scalars)
if and only if deg(Q) is even.

• The reason we need all of this background is because the polynomial PC(u) in the numerator of the zeta
function of the hyperelliptic curve y2 = Q(x) is equal to the completed Dirichlet L-function L∗(u, χQ)
associated with the quadratic character χQ.
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3 The Explicit Formula

• Now we will return closer to our original problem. For the approximation theory later we will need to
evaluate trigonometric polynomials at the points θj,χQ , the phases of the normalized inverse-zeros of
the L-function of the character χQ, the quadratic character associated to Q. Conveniently, there is a
general, explicit formula for evaluation at the phases θj,χ for any character χ.

• Lemma 2.2: Let h(θ) =
∑
|k|≤K ĥ(k) ·e(kθ) be an arbitrary real-valued, even trigonometric polynomial

� i.e., with h(−θ) = h(θ) = h(θ). Then for any primitive character χ we have

D∑
j=1

h(θj,χ) = D·
∫ 1

0

h(θ)dθ+λ∞(χ)
1
πi

∫ 1

0

h(θ)
d

dθ

[
ln(1− e2iπθ

√
q

]
dθ−

∑
f

ĥ(deg(f))· Λ(f)

||f ||1/2
(χ(f)+χ(f))

where Λ(f) = deg(P ) if f = P k is a prime power and is 0 otherwise.

� Proof: By computing the logarithmic derivative u · L
′

L
in two di�erent ways, one via the Euler

product and the other by the product in terms of the inverse zeroes, we get an identity

−
D∑
j=1

αnj,χ =
∑

deg(f)=n

Λ(f)χ(f) + λ∞(χ)

which we can write in terms of the phases as

−
D∑
j=1

e2πinθj,χ =
λ∞(χ)
q|n|/2

+
∑

deg(f)=|n|

Λ(f)

||f ||1/2
·
{
χ(f), n < 0
χ(f), n > 0

Now if h(θ) is real and even then so are its Fourier coe�cients so writing out the Fourier expansion
and then applying the result above gives

D∑
j=1

h(θj) = D · ĥ(0) +
∑
j

K∑
k=1

ĥ(k) · [e(kθj) + e(−kθj)]

= D

∫ 1

0

h(θ)dθ − 2λ∞
K∑
k=1

ĥ(k)
qk/2

−
∑
f

ĥ(deg(f))
Λ(f)

||f ||1/2
(χ(f) + χ(f))

and �nally since h is real-valued we can rewrite the middle term as

K∑
k=1

ĥ(k)
qk/2

=
∫ 1

0

h(θ) · q−1/2e2πiθ

1− q−1/2e2πiθ
=

1
2πi

∫ 1

0

h(θ) · d
dθ

[
ln(1− 1

1− e2πiθq−1/2
)
]
dθ

which gives the result.

• In the particular case where χ = χQ is the quadratic character corresponding to a squarefree polynomial
Q of degree 2g + 2 we get λ∞ = 1, D = 2g, and so the formula is

2g∑
j=1

h(θj,Q) = 2g
∫ 1

0

h(θ)dθ +
1
πi

∫ 1

0

h(θ) · d
dθ

[
ln(1− e2iπθ

√
q

]
dθ − 2

∑
f

ĥ(deg(f)) · Λ(f)

||f ||1/2
χQ(f)
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4 Beurling-Selberg Functions + Approximation

• Let I =
[
−β2 ,

β
2

]
be an interval of length 0 < β < 1, and let K ≥ 1 be an integer. The Beurling-Selberg

polynomials I±K are trigonometric polynomials approximating the indicator function 1I on the interval
I with the following properties:

� The I±K have degree ≤ K.

� They satisfy I−K ≤ 1I ≤ I+
K .

� The integral is close to the length of the interval:
∫ 1

0
I±K(x)dx =

∫ 1

0
1Idx±

1
K + 1

� The I±K are even. (Follows because the interval is symmetric about 0.)

� In particular, the nonzero Fourier coe�cients satisfy
∣∣∣Î±K(k)− 1̂I(k)

∣∣∣ ≤ 1
K + 1

and so in particular∣∣∣Î±K(k)
∣∣∣ ≤ 1

K + 1
+ min(β,

π

|k|
), for 0 < |k| ≤ K.

5 Counting Functions

• Now we will apply the results we have obtained about these Beurling-Selberg polynomials to our
advantage by using the �explicit formula� expansion.

• So for χQ the quadratic Dirichlet character associated to the polynomial Q, recall that NI(χ) denotes

the number of angles θj,χQ of the L-function L∗(u, χQ) in the interval I =
[
−β2 ,

β
2

]
.

• Now de�ne N±K(χQ) =
D∑
j=1

I±K(θj,χQ), where here K is allowed to depend on deg(Q). This will be our

smooth approximation to the counting function NI(χQ).

• In particular we note that N−K(χQ) ≤ NI(χQ) ≤ N+
K(χQ).

• The idea is to show that we can pick a K that makes the two smooth counting functions behave
asymptotically well, hence allowing us to show something about the discrete function NI(χQ). To do
this we will use the Beurling-Selberg polynomials to approximate the characteristic function on the
interval I as inputs into the �explicit formula�.

• Prop 5.1: For any �xed symmetric interval I, we have that NI(Q) = 2g |I| + O(
g

ln(g)
). In particular

the angles θj,χQ become asymptotically uniformly-distributed.

� Proof: Since N−K(χQ) ≤ NI(χQ) ≤ N+
K(χQ) it su�ces to show that the two smooth counting

functions satisfy N±K(Q) = 2g |I|+O(
g

ln(g)
) for judicious K.

� Using the explicit formula on the trigonometric polynomials I±K(θ) we obtain

N±K(χQ) = D(β ± 1
K + 1

) +
1
πi

∫ 1

0

I±K(θ)
d

dθ

[
ln(1− e2πiθ

√
q

)
]
dθ + S±K(χ)

where S±K(χQ) = −2
∑

deg(f)≤K

Î±K(deg(f))
Λ(f)

||f ||1/2
χQ(f), the sum taken over prime powers f ∈ Fq[x]

of degree at most K.
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� Now, because
∣∣∣Î±K(k)− 1̂I(k)

∣∣∣ ≤ 1
K + 1

we can use this to approximate the middle term (the

integral) and see that

1
πi

∫ 1

0

I±K(θ)
d

dθ

[
ln(1− e2πiθ

√
q

]
dθ =

1
πi

∫ β/2

−β/2

d

dθ

[
ln(1− e2πiθ

√
q

)
]
dθ +O(

1
K

)

=
2
π

arg(1− e2πiθ
√
q

) +O(
1
K

)

� We can also bound the S±K(χQ) term by observing that ÎK
±

(deg(f)) ·Λ(f) = O(1) since
∣∣∣Î±K(k)

∣∣∣ ≤
1

K + 1
+ min(β,

π

|k|
), for 0 < |k| ≤ K. Therefore we get S±K(χQ) = O(1) ·

∑
deg(f)≤K ||f ||

−1/2 =

O(qK/2).

� Combining all of the estimates yields N±K(χQ) = 2g |I|+O(
g

K
) +O(1) +O(qK/2). Finally, taking

K ≈ logq(g/ ln(g)) gives the desired asymptotic estimate.

6 Higher Moments (sketch)

• I will brie�y sketch the results needed to establish that the higher moments of the counting function
are Gaussian.

• Step 1: De�ne the auxiliary function T±K (χQ) = −2
∑

P prime

Î±K(deg(P )) · deg(P )

||P ||1/2
·χQ(P ), which approx-

imates the terms S±K(χQ) = −2
∑

deg(f)≤K

Î±K(deg(f))
Λ(f)

||f ||1/2
χQ(f). (The di�erence being that T is a

sum over all primes, while S is only a sum over primes of bounded degree.)

• Step 2: Show that
〈∣∣T±K ∣∣2〉 ∼ 2

π2
ln(βg), and that

〈∣∣T+
K − T

−
K

∣∣2〉 =
〈∣∣S+

K − T
+
K

∣∣2〉 =
〈∣∣S−K − T−K ∣∣2〉 =

O(1) provided that K ≈ g/ ln(ln(gβ)) with g → ∞ and βg → ∞. The proofs of these statements are
mostly an application of some straightforward bounds along with some diagonal/o�-diagonal counting
arguments.

• Step 3: Show that the higher moments of T±K are Gaussian: speci�cally, that
∣∣〈(T±K )2r−1

〉∣∣ = o(1) and

that
∣∣〈(T±K )2r

〉∣∣ =
(2r)!
r! · π2r

lnr(βK)+O(lnr−1(βK)). (The proofs here again involve similar diagonal/o�-

diagonal analysis.) Conclude that T±K/

√
2
π2

ln(gβ) has a standard Gaussian limiting distribution.

• Step 4: Show that

〈∣∣∣∣∣∣∣∣
SI − T±K√
2
π2

log(gβ)

∣∣∣∣∣∣∣∣
2〉
→ 0 as g → ∞ and gβ → ∞ with K ≈ g/ ln(ln(gβ)), where

SI = NI − 2g |I|− 2
π

arg(1− e
iπ|I|
√
q

). Apply step 2, the triangle inequality, and the fact that S±K closely

approximates SI � this follows from what we did much earlier � to see that SI/

√
2
π2

log(βg) has a

standard Gaussian distribution as claimed. (Finally note that the arg term is irrelevant.)
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7 Other Stu� I Cut Out For Being Irrelevant

• Lemma 2.1: If χ is a nontrivial Dirichlet character modulo f , then for n < deg(f),∣∣∣∣∣∣
∑

deg(B)=n

χ(B)

∣∣∣∣∣∣ ≤
(

deg(f)− 1
n

)
· qn/2

[Note that for n ≥ deg(f) the character sum vanishes.]

� Proof: Compare coe�cients of the series expansion of the L-function L(u, χ) to the coe�cients of
the expansion of the product in terms of its inverse zeroes to see that∑

deg(B)=n

χ(B) = (−1)n ·
∑

S ⊂ {1, · · · ,deg(f)− 1}
#(S) = n

∏
j∈S

αj = σn(α1, · · · , αdeg(f)−1)

and then observe that each of the
(
deg(f)−1

n

)
terms in the sum on the RHS is bounded by (

√
q)n.

• Lemma 3.1: If f ∈ Fq[x] is not a square then 〈χQ(f)〉 ≤ 2deg(f)−1

(1− q−1)qg+1
.

� Proof: We use the Mobius function to kill the non-squarefree polynomials, so we can write∣∣∣∣∣∣
∑

Q∈H2g+2,q

χQ(f)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

deg(Q)=2g+2

∑
A2|Q

µ(A) ·
(
Q

f

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

deg(A)≤g+1

µ(A) ·
(
A

f

)2

·
∑

deg(B)=2g+2−2 deg(A)

(
B

f

)∣∣∣∣∣∣
≤

∑
g+q−

deg(f)
2

≤deg(A)≤g+1

∣∣∣∣( deg(f)− 1
2g + 2− 2 deg(A)

)
qg+1−deg(A)

∣∣∣∣
≤ qg+1 · 2deg(f)−1

where we applied the triangle inequality and the bound (2.1) on the sum over the nontrivial

character

(
B

f

)
in the third step along with noting that the inner sum was zero of the degree of B

was larger than the degree of f , and summed the binomial coe�cients in the last step. Dividing
by #(H2g+2,q) = q2g+2(1− q−1) gives the result.

• The previous lemma gives a bound for when f is not a square; we now need the case when f is a
square.

• Lemma 3.2: If P1, · · · , Pk are prime polynomials, then
〈
χQ(

∏
j P

2
j

〉
= 1 +O

(∑
j ||Pj ||

−1
)
.

� Proof: Clearly we have χQ(
∏
j P

2
j ) = 1 except when one of the Pj divides Q, in which case it is

0. So we need to count how many squarefree Q of degree 2g + 2 are divisible by at least one Pj .
Clearly this will be bounded by the number of arbitrary monic Q of degree 2g + 2 divisible by at

least one Pj , and this is clearly at most
∑
j

q2g+2

||Pj ||
. Since H2g+2,q = q2g+2(1 − q−1) we see that

1− (1− q−1)−1 ·
(∑

j ||Pj ||
−1
)
≤
〈
χq(
∏
j P

2
j )
〉
≤ 1 whence the result.
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• For a polynomial Q ∈ Fq[x] of positive degree, de�ne η(Q) =
∑
P |Q ||P ||

−1
, where the sum is over

primes P dividing Q.

• Lemma 3.3: The mean values of η and η2 are uniformly bounded � explicitly, they satisfy 〈η〉 ≤
(1− q−1)−2 and

〈
η2
〉
≤ (1− q−1)−3 + (1− q−1)−1(1− q−2)−1.

� Proof: For the sum of η(Q) we need equivalently count, for each prime P , how many Q are
divisible by P � this gives∑

η(Q) =
∑

Q∈H2g+2,q

∑
P |Q

||P ||−1

=
∑

deg(P )≤2g+2

||P ||−1 ·#(Q ∈ H2g+2,q : P |Q)

≤
∑

deg(P )≤2g+2

||P ||−1 · q
2g+2

||P ||

≤ q2g+2 ·
∞∑
k=0

q−k

= q2g+2(1− q−1)−1

and hence the average value is bounded by (1− q−1)−2.
[Remark: There was an error in the paper here; it incorrectly gave the bound obtained this way
as 1.]

For the second moment, expand out the square in
∑
Q

(∑
P |Q ||P ||

−1
)2

as
∑
Q

∑
P1

∑
P2
||P1||−1 ·

||P2||−1
and split into diagonal and o�-diagonal terms. For the o�-diagonal, observe that if P1

and P2 both divide Q then if Q is squarefree then Q is divisible by P1P2. Then we are reduced to

a count essentially the same as before:
∑
n2(Q) ≤

∑
P1

∑
P2

q2g+2

||P1||2 ||P2||2
≤ q2g+2(1− q−1)−2.

For the diagonal, we have
∑
Q

∑
P |Q ||P ||

−2 ≤
∑

deg(P )≤2g+2 ||P ||
−2 · q

2g+2

||P ||
≤ q2g+2(1 − q−2)−1

and therefore after combining the two we get the bound
〈
η2
〉
≤ (1−q−1)−3+(1+q−1)−1(1−q2)−1.

[Remark: There was another error here; the authors mistakenly omitted the diagonal terms.]

• Prop 4.1: Let K ≥ 1 be an integer for which Kβ > 1. Then∑
n≥1

Î±K(2n) = O(1)

∑
n≥1

nÎ±K(2n)2 =
1

2π2
ln(Kβ) +O(1)

where the implied constants are independent of K and β.

� Proof: By the inequality on the Fourier coe�cients we have Î±K(2n) =
sin(2πnβ)

2πn
+ O(

1
K

). Now

it is a simple matter to sum over n; for n < 1/β one can use sin(2πnβ) < 2πnβ to obtain a bound
of 2π on that piece of the sum. For 1/β < n < K one can use summation by parts; each partial

sum
∑

sin(2πnβ) is O(
1
β

), so

∑
1/β<n<K/2

sin(2πnβ)
2πn

<<
1
βK

+ 1 +
1
β

∫ K

1/β

1
t2
dt = O(1)

yielding the �rst result.
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� For the second part, use again the inequality on the Fourier coe�cients to write∑
n≥1

nÎ±K(n)2 =
1
π2

∑
n≤K

sin(πnβ)2

n
+O(1)

and again split the sum into the two parts [1, 1/β] and [1/β,K]. The �rst interval is easy with
sin(πnβ) ≤ πnβ again, giving O(1), while on the second interval we can use sin2(y) = 1

2 (1 −
cos(2y)) and summation by parts once again. The cosine portion of the sum gives a bounded

contribution, while the constant piece is trivial to evaluate as giving
1

2π2
· ln(Kβ) +O(1), hence

result again.

8 Now What?

• The general form of the argument could fairly easily be generalized to broader families of curves, if
there were a similar connection to be made through Dirichlet L-functions on function �elds. The fact
that χQ was quadratic was not particularly central to the proof. I believe this is the topic of Thursday's
lecture.
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