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1 History / Background / Goals

• Classical theory dates to early 1800s, connected with elliptic functions.

• Developed in the 1920s by Hecke and others. Classical modular forms live entirely over C.

• Serre, 1970s, developed ad hoc theory of modular forms in a p-adic setting, by p-adically interpolating Eisen-
stein series.

• Theory of more general p-adic modular forms was subsequently developed �more properly� by Katz and Dwork
who did signi�cant work in this area in the mid-1970s.

• Hida expanded more in mid 80s, but still had some limitations. Speci�cally, Hida constructed families (now
called Hida families) of p-adic cuspforms varying with the weight k which were eigenforms for the (p-adic)
Hecke operators. In analogy with classical theory, also got Galois representations.

• Mazur, Wiles, and others worked in late 80s and 90s to remove some limitations on Hida's constructions,
�eigencurves�.

• This talk is following the �rst half of a short expository paper, �p-adic families of modular forms� by M.
Emerton.

• I'll give a crash course in the classical theory, and then basically say everything again in the p-adic setting.
In theory our speaker on Thursday will give you more examples in the p-adic setting than I will � my goal is
mostly to try to help you see how the results look similar to the classical ones.

• Hopefully by the end of this quick talk you'll have a vague idea of what a system of Hecke eigenvalues is and
some idea of how it gives rise to a Galois representation, both in the classical setting and in the p-adic setting.

2 Crash Course in Classical Theory

2.1 Modular Forms

• Holomorphic will always mean holomorphic on the upper half-plane.

• Let Γ = SL2(Z), Γ1(N) =
{
γ ∈ Γ : γ ≡

(
1 ∗
0 1

)
modN

}
, Γ0(N) =

{
γ ∈ Γ : γ ≡

(
∗ ∗
0 ∗

)
modN

}
.

• For γ =
(
a b
c d

)
∈ SL2(Z), f holomorphic, the weight-k slash operator is (f |k γ)(τ) = (cτ + d)−kf(γτ),

where k, N ∈ N. Have a natural de�nition of invariance under this action.

• A modular form (resp. cuspform) of weight k and level N is a holomorphic f invariant under the weight k
action of Γ1(N) and which is �holomorphic at ∞� (resp. vanishes at ∞) � i.e., such that limy→∞(f |k γ) is
�nite (resp. 0) for all γ ∈ SL2(Z).

• Since in particular a modular form of any weight and level is invariant under translation by 1, it has a Fourier

decomposition f(τ) =
∞∑
n=0

cn(f) · qnwhere q = e2πiτ . [Holomorphicity implies that the negative coe�cients

vanish; a cuspform also has zero constant term.]
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• Collection of modular forms of wt. k levelN isMk(N), and of cuspforms is Sk(N). They are �nite-dimensional
vector spaces.

◦ Constant functions are the only forms of weight 0. Generally we will assume that k ≥ 1 since 0 is boring.

◦ Eisenstein series E2k =
∑

(m,n)∈Z2\0

1
(m+ nτ)2k

for k > 2 give simple examples of positive weight.

2.2 Hecke Operators

• Have Γ1(N) E Γ0(N), and the map sending

(
a b
c d

)
to d is an isomorphism of the quotient with (Z/NZ)×.

The wt-k action of Γ0(N) preservesMk(N) and Sk(N) hence we get an action of the quotient on each.

• For d ∈ (Z/NZ)× we write the corresponding automorphism ofMk(N) as 〈d〉, sometimes called the �diamond
operator�.

• If l is a prime not dividing N we de�ne the automorphism Sl = 〈l〉 · lk−2. [This is the l-diamond operator on
f , times lk−2.]

• The lth Hecke endomorphismTl on Mk(N) is de�ned as (Tl f)(τ) =
∞∑
n=0

cl·n(f)qn +
∞∑
n=0

l · cn(Slf)ql·n. [Not

obvious that this actually preservesMk(N), but it does, and Sk(N) too.]

◦ Lots of other ways to de�ne the Hecke operator Tl: geometrically it is essentially a sum over all lattices
of index l.

◦ Algebraically it can be written as a particular double coset operator.

◦ De�nition extends to composite values of l fairly easily, but won't present for brevity.

• The Hecke algebra Tk(N) of weight k and level N is the Z-subalgebra of End(Mk(N)) generated by the
operators l Sl = 〈l〉 lk−1 and Tl, as l ranges over all primes not dividing N .

◦ Tk(N) is commutative, reduced, and free of �nite rank over Z. The tensor product C⊗ Tk(N) also acts
faithfully onMk(N).

◦ All eigenvalues of the Hecke operators are algebraic integers. The systems of simultaneous eigenvalues
for all the Hecke operators onMk(N) are closed underGal(Q/Q). The spaceMk(N) is the direct sum
of simultaneous eigenspaces for Hecke operators.

• We call f a Hecke eigenform if it is an eigenvector for both l Sl and Tl for all prime l - N . This is equivalent
to the existence of a ring hom λ : Tk(N)→ C such that T f = λ(T ) f for all T ∈ Tk(N).

◦ Hecke eigenforms are �nice� � for example, knowing the �rst-degree term in the Fourier expansion allows
one to determine all the Fourier coe�cients recursively.

◦ Ex.: Eisenstein series are Hecke eigenforms for N = 1. Their eigenvalues are λ(lSl) = l2k−1, λ(Tl) =
1 + l2k−1.

• We primarily care about the Hecke eigenvalues rather than the eigenforms, since the eigenvalues give rise to
Galois representations.

2.3 Galois Representations

• Choose a prime p and �x an embedding ip of Q into Qp.

• Also �x k and N and write T for Tk(N). If λ is a system of Hecke eigenvalues appearing in Mk(N) then
since λ takes values in Z we can compose with our embedding into Qp to think of λ as mapping into Zp. Do
this, so that λ : T→ Zp.

• For Σ the primes dividing pN , let QΣ be the maximal extension unrami�ed outside Σ and GQ,Σ = Gal(QΣ/Q).
For l not in Σ, have Frobl ∈ GQ,Σ de�ned up to conjugacy, and a prime L over l with Frobl(x) ≡ xlmodL for
any algebraic integer x ∈ QΣ. [Chebotarev implies that the union of the conjugacy classes is dense in GQ,Σ.]
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• Thm: There is a continuous, semisimple representation ρλ : GQ,Σ → GL2

(
Qp

)
uniquely determined up to

equivalence by the condition that for each prime l not in Σ, the matrix ρλ(Frobl) has characteristic polynomial
given by X2 − λ(Tl)X + λ(lSl).

◦ The uniqueness of the representation is not very hard: as noted above, Chebotarev implies that the char-
acteristic polynomials of two such representations agree on a dense set (hence everywhere by continuity),
and a semisimple �n-dim rep of a group is uniquely determined up to equivalence by its characteristic
polynomials.

◦ Existence is more work: part: the proof is due to Deligne (k > 2), Eichler-Shimura-Igusa (k = 2), and
Deligne-Serre (k = 1). In the case k = 2 this representation really is familiar, as weight-2 modular
forms correspond to elliptic curves, and the resulting Galois representation is just the usual one coming
from the Tate module. For higher weights the construction involves the cohomology of particular moduli
spaces.

◦ The polynomial X2 − λ(Tl)X + λ(lSl) is called the lth Hecke polynomial of λ.

3 Crash Course in p-adic Theory

3.1 The p-adic Hecke Algebra

• Let N, k be positive and p not divide N . We de�ne an action of the operators Sl and Tl on the direct sum
⊕ki=1Mi(N) componentwise (i.e., via the action of the Hecke operators Sl and Tl on eachMi(N)).

• De�ne T(p)
≤k(N) to be the Z-subalgebra of endomorphisms of ⊕ki=1Mi(N) generated by l Sl and Tl as l ranges

over primes not dividing pN . As before we will drop the (N) from T(p)
≤k(N).

◦ There is an obvious injection of T(p)
≤k into

k∏
i=1

Ti since each operator is determined by its action on each

of the direct summands. In fact, the image has �nite index.

◦ Example: if N = 1, p = 2, k = 6, then M4 and M6 are 1-dim (spanned by E4 and E6) and the others

are trivial. Then T(2)
≤6 embeds in Z× Z and a little playing with E4 and E6 will show that the image is

{(u, v) : u ≡ vmod 12}, hence is of index 12.

• Now for k < k′ we have an obvious containment of ⊕ki=1Mi(N) in ⊕k
′

i=1Mi(N), hence restricting gives an

surjection of T(p)
≤k′ onto T(p)

≤k.

• If we tensor with Zp over Z we get a surjection T(p)
≤k′ ⊗Z Zp → T(p)

≤k ⊗Z Zp. [We do this because we want
something p-adic. And now we will do the only thing one ever does with a diagram like this.]

• We de�ne the p-adic Hecke algebra T(N) as the inverse limit T = lim
←k

T(p)
≤k ⊗Z Zp.

◦ As in the classical case we can think of this Hecke algebra as �morally� being generated by lSl and
Tl, interpreted appropriately. [We need to use the �inverse limit versions� of lSl and Tl, but these are
perfectly reasonable � just glue together the images of lSl and Tl at each stage of the limit.]

◦ The ring T is a p-adically complete, Noetherian Zp-algebra. [Aka, �fairly nice�.]

• We de�ne Hecke eigenforms the same way as in the classical case (i.e., as simultaneous eigenvectors for lSl
and Tl for all l not dividing pN), and as before we will mostly care about the eigenvalues.

3.2 p-adic Galois Representations

• As in the classical case, by a p-adic system of Hecke eigenvalues we mean a ring homomorphism ξ : T→ Zp,
obtained by composing with a map into Qp.

• Again in analogy with the classical case, one can prove the existence of a continuous, semi-simple representation
ρξ : GQ,Σ → GL2(Qp) uniquely determined up to equivalence by the condition that for each prime l not dividing
pN , the matrix ρξ(Frobl) has characteristic polynomial equal to the Hecke polynomial X2 − ξ(Tl)X + ξ(lSl).
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◦ Uniqueness follows from the same argument as before.

◦ For existence, if ξ is a system of Hecke eigenvalues which is so-called �p-deprived� then the result is
essentially tautological. Then one proves that the systems which are p-deprived are 'dense' in the set
of all systems of Hecke eigenvalues, and then uses this result and p-adic interpolation to construct the
representation in general.

◦ Fundamental Conjecture: If Σ is any �nite set of primes containing p, and ρ : GQ,Σ → GL2(Qp) is
continuous, semisimple, and odd, then ρ = ρξ for some p-adic system of Hecke eigenvalues ξ.

4 Closing Remarks

• You may have noticed I didn't actually de�ne what a p-adic modular form was. This is because every de�nition
I found was far more technically complicated than I felt was useful, or even understandable.

• The interested audience member may refer to Gouvea's book �Arithmetic of p-adic Modular Forms� for the
(very) gory technical details.

• For a relatively nice, but deep, introduction of the classical theory of modular forms, I recommend Dia-
mond/Shurman's �A First Course in Modular Forms�.

• For a more general and technical discussion of classical results, I liked Miyake's �Modular Forms�.
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