
An Introduction to Modular Symbols

• This is a preparatory talk for Rob Harron's talk; he will talk about overconvergent modular symbols and
families of p-adic modular forms.

• The goal of this talk is to review the relevant aspects of the classical theory of modular forms, and then discuss
the basics of modular symbols.

1 The Classical Theory [in brief]

• Classical theory dates to early 1800s, connected with elliptic functions. Developed much more in the 1920s
by Hecke and others. Classical modular forms live entirely over C.

• Serre, 1970s, developed ad hoc theory of modular forms in a p-adic setting, by p-adically interpolating Eisen-
stein series.

• Hida expanded more in mid-1980s, but still had some limitations. Hida constructed families (�Hida families�)
of p-adic cuspforms varying with the weight k which were eigenforms for the (p-adic) Hecke operators.

◦ In analogy with classical theory, also get Galois representations.

1.1 Modular Forms

• Holomorphic will always mean holomorphic on the upper half-plane.

• Let Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
modN

}
, Γ1(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
modN

}
. The

latter are the principal congruence subgroups; in general we call Γ ⊆ SL2(Z) a congruence subgroup if it
contains some Γ1(N).

• For γ =

(
a b
c d

)
∈ SL2(Z), f holomorphic, the weight-k slash operator is (f |k γ)(z) = (cz + d)−kf(γz),

where k, N ∈ N, and γz =
az + b

cz + d
in the usual way.

• A modular form (resp. cuspform) of weight k and level N is a holomorphic f invariant under the weight k
action of Γ1(N) and which is �holomorphic at ∞� (resp. vanishes at ∞) � i.e., such that limy→∞(f |k γ) is
�nite (resp. 0) for all γ ∈ SL2(Z).

• Since in particular a modular form of any weight and level is invariant under translation by 1, it has a Fourier

decomposition f(τ) =
∞∑
n=0

cn(f) · qnwhere q = e2πiτ . Holomorphicity implies that the negative coe�cients

vanish; a cuspform also has zero constant term.

• Collection of modular forms of wt. k and level N is Mk(N), and of cuspforms is Sk(N). They are �nite-
dimensional vector spaces.

◦ Constant functions are the only forms of weight 0. Generally we will assume that k ≥ 1 since 0 is boring.

◦ Eisenstein series E2k =
∑

(m,n)∈Z2\0

1

(m+ nτ)2k
for k > 2 give simple examples of positive weight.

◦ I would be remiss if I didn't also write down ∆ = g3
2 − 27g2

3 , where g2 = 60G4 and g3 = 140G6; ∆ is a
cuspform of weight 12.

• As an cultural remark, for us the weight of a modular form will always be an integer or (if you're more
highbrow) something p-adic. But one can also talk about modular forms of non-integral weight (e.g., if you
talk to the group of people who study stu� like mock theta functions: they often have modular forms or things
like modular forms that have half-integral weight), and this theory is also interesting.



◦ The de�nition of the slash operator needs to be modi�ed, in such cases: for example, if the congruence
subgroup contains −I, then in the de�nition above one obtains f(z) = (−1)kf(z), which forces f to be
identically zero. One can �x this by introducing a multiplicative character into the mix; this will take
care of �root of unity� issues from the Γ-invariance

1.2 Hecke Operators

• Have Γ1(N) E Γ0(N), and the map sending

(
a b
c d

)
to d is an isomorphism of the quotient with (Z/NZ)×.

The wt-k action of Γ0(N) preservesMk(N) and Sk(N) hence we get an action of the quotient on each.

• For d ∈ (Z/NZ)× we write the corresponding automorphism ofMk(N) as 〈d〉, sometimes called the �diamond
operator�. (Probably nothing to do with Diamond.)

• If l is a prime not dividing N we de�ne the automorphism Sl = 〈l〉 · lk−2. [This is the l-diamond operator on
f , times lk−2.]

• The lth Hecke endomorphism Tl on Mk(N) is de�ned as (Tl f)(τ) =

∞∑
n=0

cl·n(f)qn +

∞∑
n=0

l · cn(Slf)ql·n. [Not

obvious that this actually preservesMk(N), but it does, and it preserves Sk(N) too.]

◦ Lots of other ways to de�ne the Hecke operator Tl: the geometric interpretation is that it's (essentially)
a sum over all sublattices of index l.

◦ Algebraically, it can be also written as a particular double coset operator.

◦ De�nition extends to composite values of l fairly easily, but skipped for brevity.

• The Hecke algebra Tk(N) of weight k and level N is the Z-subalgebra of End(Mk(N)) generated by the
operators l Sl = 〈l〉 lk−1 and Tl, as l ranges over all primes not dividing N .

◦ Tk(N) is commutative, reduced, and free of �nite rank over Z. The tensor product Tk(N)⊗C also acts
faithfully onMk(N).

◦ All eigenvalues of the Hecke operators are algebraic integers. The systems of simultaneous eigenvalues
for all the Hecke operators onMk(N) are closed under Gal(Q/Q). The spaceMk(N) is the direct sum
of simultaneous eigenspaces for Hecke operators.

• We call f a Hecke eigenform if it is an eigenvector for both l Sl and Tl for all prime l - N . This is equivalent
to the existence of a ring hom λ : Tk(N)→ C such that T f = λ(T ) f for all T ∈ Tk(N).

◦ Hecke eigenforms are �nice� � for example, knowing the �rst-degree term in the Fourier expansion allows
one to determine all the Fourier coe�cients recursively. It would, for example, be generally useful if we
had a recipe for writing down lots of Hecke eigenforms.

◦ Example: Eisenstein series are Hecke eigenforms for N = 1. Their eigenvalues are λ(lSl) = l2k−1,
λ(Tl) = 1 + l2k−1.

1.3 Galois Representations (for cultural purposes only)

• Theorem: For any prime p, let Σ be the primes dividing pN and QΣ be the maximal extension unrami�ed
outside Σ. Then there is a continuous, semisimple representation ρλ : Gal(QΣ/Q) → GL2

(
Qp
)
arising from

Tk(N) uniquely determined up to equivalence by the condition that for each prime l not in Σ, the image of
Frobenius � i.e., ρλ(Frobl) � has characteristic polynomial given by X2 − λ(Tl)X + λ(lSl).

◦ The uniqueness of the representation is not very hard: Chebotarev implies that the union of the conjugacy
classes is dense in GQ,Σ, and so the characteristic polynomials of two such representations agree on a
dense set (hence everywhere by continuity). Then, use the fact that a semisimple �nite-dimensional
representation of a group is uniquely determined up to equivalence by its characteristic polynomials.



◦ Existence is more work: part: the proof is due to Deligne (k > 2), Eichler-Shimura-Igusa (k = 2), and
Deligne-Serre (k = 1). In the case k = 2 this representation really is familiar, as weight-2 modular
forms correspond to elliptic curves, and the resulting Galois representation is just the usual one coming
from the Tate module. For higher weights the construction involves the cohomology of particular moduli
spaces.

◦ The polynomial X2 − λ(Tl)X + λ(lSl) is called the lth Hecke polynomial of λ. It should be familiar
from (e.g.,) elliptic curves; in that setting it is the characteristic polynomial of Frobenius and also the
numerator of the curve's zeta function.

2 From Modular Forms to Modular Symbols

• Now I would like to explain how to go between modular forms as we usually think of them (�functions on the
upper half-plane with a q-series�) and modular symbols (�something else�).

• From the basics of de Rham cohomology, we know that (up to the correct choice of coe�cients), singular
cohomology is �the same� as (algebraic) de Rham cohomology.

• In the particular case of the modular curveX0(N) = Γ0(N)\h, this saysH1(X0(N),Q)⊗C ∼= H1
dR(X0(N)/Q)⊗

C, the isomorphism being via Poincare duality, or, if you like being explicit, by the pairing H1(...)×H1
dR(...)→

C given by integrating di�erential forms in the latter over cycles in the former.

◦ As Q-vector spaces, these two (co)homology groups H1(X0(N),Q) and H1
dR(X0(N)/Q) are isomorphic,

but not the same (as subspaces of C�), due to the presence of some transcendental periods.

• For weight 2 modular forms, the invariant di�erentials look like ωf = f(z) dz � standard homework exercise:
verify that the automorphy factor from f cancels the one from dz after applying γ ∈ SL2(Z). When we
integrate ω, we land in C/Λ, where Λ = 〈ω1, ω2〉 for some complex numbers ω1 and ω2 � this is just the usual
story about complex tori and elliptic curves.

• For weight k, in order to make the transformations work out correctly, what is instead needed is to set
ωf = f(z) · (zX + Y )k−2 dz, where X,Y ∈ Symk−2C2.

◦ Reminder: SymgC2 can be thought of as the space of homogeneous polynomials in 2 variables of degree
g. The action of SL2(Z) is given by (P |γ)(X,Y ) = P (dX − cY,−bX + aY ) � i.e., by the �adjugate�
(sometimes called the �classical adjoint�).

• For fun, let's check this works: for γ =

[
a b
c d

]
∈ SL2(Z), we have

◦ γ : f(z)→ (cz + d)kf(z), by de�nition

◦ γ : dz → (cz + d)−2 dz, by �this is always true�

◦ γ : (zX+Y )k−2 →
[
az + b

cz + d
(γX) + (γY )

]k−2

= (cz+d)2−k·[(az + b) (dX − cY ) + (cz + d)(−bX + aY )]
k−2

=

(cz + d)2−k(zX + Y )k−2

◦ and indeed if we multiply all of those things together, we see that f(z) · (zX + Y )k−2 dz is invariant
under SL2(Z).

• So, if we denote V = Symk−2C2, we want to study elements in H1(Γ0(N), V ).

• Now, Eichler-Shimura almost says that H1(Γ0(N), V ) ∼= Mk(Γ0(N))⊕ M̄k(Γ0(N)).

◦ But... in Eichler-Shimura we actually want Mk⊕Sk, so in fact we don't want to use the regular singular
cohomology H1: the correct cohomology theory is actually what is called �parabolic cohomology�, the
�avor of which is �the image of cohomology with compact support, in regular cohomology�.

◦ Explicitly, H1
p (Γ0(N), Symk−2C2) = image

[
H1
cpt(Y0(N), V )→ H1(Y0(N), V )

]
. (We're using cohomol-

ogy with compact support, so we also compactify our space to Y0(N)... for some reason.)



◦ That last guy is basically H1
cpt(Γ\h̄, Ṽ ), where Ṽ is the locally constant sheaf associated to V on Γ\h, and

h̄ = h ∪ P1(Q), the compacti�cation of the upper-half plane (note h̄ is just the closure under adjoining
∞ and all of its images under SL2(Z)).

◦ Now excision more or less says that H1(h̄,P1(Q),Z) ∼= Div0(P1(Q)), because P1(Q) is the boundary of
the compacti�ed upper half-plane.

• So, if that long chain of hazy statements about cohomology groups made any sense, the result is that we can
study modular forms by studying things in Hom

[
Div0(P1(Q)), V

]
which behave correctly under the action

of Γ.

◦ Roughly, the idea is: elements of the divisor group are just sums of [P ]− [Q] where P and Q are rational
numbers (or ∞).

◦ If we are given a modular form wrt Γ, it gives a Γ-invariant element of Hom
[
Div0(P1(Q)), V

]
, by

integrating the modular form over the paths which sum to an element of Div0(P1(Q)).

3 Modular Symbols, in general

• Okay, so, we've just seen that we want to study stu� in Hom
[
Div0(P1(Q)), V

]
. Let's get a little bit more

formal.

• Let ∆0 = Div0(P1(Q)) denote the set of degree-zero divisors on P1(Q).

◦ It has the structure of a left Z[GL2(Q)]-module where GL2(Q) acts via fractional linear transformations.

• Let Γ be a �nite-index subgroup of PSL2(Z) and V be a right Z[Γ]-module with an addition structure of

S0(p) =

{(
a b
c d

)
: (a, p) = 1, p|c, ad− bc 6= 0

}
. In particular note that V = Symk−2C2 has such a

structure, as noted earlier.

◦ We give Hom(∆0, V ) the structure of a right Γ-module by de�ning (φ|γ)(D) = φ(γD)|γ for φ : ∆0 → V ,
D ∈ ∆0, and γ ∈ Γ.

• For φ ∈ Hom(∆0, V ), we say that φ is a V -valued modular symbol on Γ if φ|γ = φ for all γ ∈ Γ, and we
denote the space of all V -valued modular symbols by SymbΓ(V ).

◦ So, if φ : ∆0 → V , φ ∈ SymbΓ(V ) i� φ(γD) = φ(D)|γ−1 for all γ ∈ Γ.

◦ As we saw earlier, we can view modular symbols (canonically) as elements of the cohomology group
H1
c (H/Γ, Ṽ ). But we would like to get our hands on them, so we will prefer to think of them as actual

explicit maps rather than cohomology classes.

• The addition structure gives us a Hecke action on the modular symbols via (e.g.,) double cosets.

◦ Example: if Γ = Γ0(N) and l - N then φ|Tl = φ|
(

l 0
0 1

)
+

l−1∑
a=0

φ|
(

1 a
0 l

)
.

• What we would like is to be able to describe Γ-invariant functions on ∆0 with values in V . This is accomplished
by the Manin relations.

◦ Let GL+
2 (Q) be the positive-determinant matrices. If γ =

(
a b
c d

)
then we denote by [γ] the oriented

geodesic path in the upper half-plane which goes from
a

b
to

c

d
. In other words, it is a semicircular path

in the upper half-plane whose endpoints are
a

b
,
c

d
. In the usual way we think of these as 1-chains in

P1(Q), and take closures under �nite formal sums of such things.

◦ We denote by Z1 = Z1(H∗,P1(Q)) the Z-module of such modular 1-chains.



◦ We have an action of PGL+
2 (Q) on Z1 via FLTs, and if β, γ ∈ GL+

2 (Q) then β · [γ] = [βγ].

◦ Taking boundaries gives a surjective PGL+
2 (Q)-morphism ∂ : Z1 → ∆0. Two modular chains are

homologous if their images under ∂ are equal.

• Let G = PSL2(Z). A modular path of the form [γ] with γ ∈ G is called a unimodular path, and a formal
sum of them is called a unimodular 1-chain.

◦ Every modular chain is homologous to a unimodular chain. Reason: the matrix whose entries are the
numerators and denominators of any consecutive terms in a continued fraction approximation to any real
number always has determinant ±1. (This is called the �Manin trick�.)

∗ Alternatively, to get from p/q to r/s, one could write down the portion of the Farey sequence
of rationals with denominators ≤ max(q, s), and use the wonderful fact that the determinants of
adjacent terms are always 1.

◦ Moreover, G acts transitively on unimodular paths, so we get a surjective map from Z[G]→ Z1
∂→ ∆0 .

◦ The kernel of this map is the left ideal I = Z[G](1 + τ + τ2) + Z[G](1 + σ), where σ =

(
0 −1
1 0

)
and

τ=

(
0 −1
1 −1

)
of orders 2 and 3 respectively.

◦ These are the so-called Manin relations, and they tell us that ∆0
∼= Z[G]/I.

• Ergo, we can describe what ∆0 looks like in the following way: write down a set of right coset representatives
of Γ\G, say g1, · · · , gr. Then the relations between the generators come from I: for example, gi(1 + σ) =
gi + giσ = gi + γi,jgj ∈ I for some j and some γi,j ∈ Γ.

◦ This is especially pleasant to do geometrically: all that is needed is to draw a fundamental region F and
all of the paths joining each of the coset representatives on the real axis (and ∞), and then reduce to
�nd a minimal set of generators by using {a→ b}+ {b→ c} = {a→ c} and the other relations.

◦ The end result will be (one can show) if Γ is torsion-free, then after doing this process of reduction,
essentially the only relation will be �∂F = 0� (where this is summing over the paths making up the
boundary of F).

4 Now what?

• I don't want to tread too much on what Rob is going to do in his talk, but let me just outline the ideas of
what comes next:

◦ Above, I told the story of what happens with V -valued modular symbols when V = Symk−2C2. But
there is no reason only to consider just these V .

◦ One can, for example, study instead the V -valued modular symbols where V = Symk−2Q2
p. This leads

to the theory of �overconvergent modular symbols�, which are particular modular symbols taking values
in certain spaces of (p-adic) distributions.

◦ One cares about overconvergent modular symbols because, roughly, they say things about p-adic modular
forms, in the same way that ordinary modular symbols say things about classical modular forms.

◦ p-adic families of modular forms (�Hida families�) arose from the observation that there existed families
of modular forms of varying weights whose coe�cients satis�ed congruences modulo powers of p: the
particular congruences were shown to be compatible with taking an inverse limit, hence �p-adic family�.

◦ It would be nice (read as: �we want and are trying to make computable�) if one could say enough things
about overconvergent modular symbols to be able to compute lots of Hida families.


