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1 Goals

• This is a prep talk for Jerry Wang's talk.

• I aim to discuss extremely roughly the following topics:

◦ (i) Some things about hyperelliptic curves (cf. Farkas and Kra's book)

◦ (ii) A slapdash discussion of the 2-Selmer group (cf. Silverman 1)

◦ (ii) �Arithmetic Invariant Theory� as it applies to hyperelliptic curves (cf. Bhargava and Gross's papers)

2 Hyperelliptic Curves

• This is adapted from Farkas/Kra's �Riemann Surfaces�, so I might accidentally say �Riemann surface� instead
of �algebraic curve� (though it shouldn't really matter anywhere).

• As we all know, if D is a divisor on C, then Riemann-Roch says l(D) = deg(D)− g+ 1 + l(K −D), where K
is the canonical divisor.

◦ The rhetorical question we usually ask when talking about elliptic curves is: is there a meromorphic
function with a pole at only one point? (Yes: ℘, and it has a double pole, because it's not possible to
have only a single pole.)

◦ The general version asks something like: given C of genus ≥ 2, what can we say about the points P such
that there exists a meromorphic function of degree ≤ g with a pole only at P?

• Theorem (Weierstrass Gap): If C is a curve of genus g ≥ 2 and P is any point of C, then there are precisely
g integers 1 = n1 < n2 < · · · < ng < 2g such that there does not exist a function holomorphic on M\ {P}
with a pole of exact order nj at P .

◦ These numbers n1, · · · , ng are called the �gaps� at P ; the other positive integers are called �non-gaps�.
The gaps and non-gaps obey a bunch of properties, which I won't list. (The non-gaps rather obviously
form a semigroup.)

◦ The theorem follows immediately by using Riemann-Roch on the sequence l(0), l(P ), l(2P ), l(3P ), ... ;
we are looking for entries that repeat. By Riemann-Roch we know that l(kP ) = k− g+ 1 for k ≥ 2g− 1,
so after l((2g − 1)P ) there are no duplicates, and since l(0) = 1 and l((2g − 1)P ) = g, there are exactly
g duplicate entries: hence there are g gaps, all in the set {1, · · · , 2g − 1}, and 1 is always a gap.

• De�nition: A point P on a curve of genus ≥ 2 is a Weierstrass point if at least one of the integers 2, · · · , g is
not a �gap�, or equivalently, if the gaps are 1, g + 1, g + 2, · · · , 2g − 1.

◦ There are �nitely many Weierstrass points on a curve of genus ≥ 2; more precisely, there are between
2g + 2 and g3 − g of them. (Both bounds are in fact attainable.)

• De�nition: A hyperelliptic curve C is a rami�ed double cover of P1. If it has a point over k, then C has an
a�ne integral model of the form y2 = f(x) where f ∈ k[x] is a polynomial of degree 2g + 1 with no repeated
roots (for smoothness).
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◦ Degree 3 would give an elliptic curve. We'll allow this, except when we won't.

◦ By a change of variables, we can assume that f has odd degree.

• Here are some things that are true about a hyperelliptic curve C of genus g over Q (with a given identity
point, which we put at ∞):

◦ Every curve of genus 2 is hyperelliptic, but this is not true of higher genus.

◦ There is a function y of degree 2 on C, which is unique up to Mobius transformations.

◦ There are exactly 2g+2 Weierstrass points on C, and the gap sequence at each point is 1, 3, 5, · · · , 2g−1.

◦ The Weierstrass points are in fact the branch points of y � or equivalently: they are ∞ along with the
2g + 1 roots of f(x).

◦ As such, the set of Weierstrass points provides a moduli space for the space of hyperelliptic curves:
2g + 2 distinct points in P1, up to Mobius transformations � thus, by dimension arguments, the space
of hyperelliptic curves is something like 2g − 1-dimensional. (The space of genus-g curves I think has
dimension 3g − 3 for g > 1, so feel free to compare the sizes.)

• Now let us take a hyperelliptic curve C with equation y2 = f(x) = x2g+1 + c2x
2g−1 + · · ·+ c2g+1.

◦ The ring of rational functions regular away from ∞ is Q[x, y] = Q[x,
√
f(x)].

◦ C has a unique a�ne integral equation y2 = x2g+1 + c2x
2g−1 + · · ·+ c2g+1, if we clear denominators, and

further assume that it is not the case that there is a prime p such that pk divides ck for all k � in such a
case we say the coe�cients are indivisible [with liberty and justice for all].

◦ The discriminant of f(x) is nonzero and has homogeneous degree 2g(2g+1) in the coe�cients cm (where
cm has degree m).

◦ De�nition: The discriminant ∆ of the curve C is ∆(C) = 42nD. As usual, if p doesn't divide ∆ then the
curve has good reduction at p.

◦ De�nition: The naive height H of the curve is H(C) = max
{
|ck|2g(2g+1)/k

}
2≤k≤2g+1

.

◦ The discriminant and height extend those for elliptic curves. The height is useful because it gives a way
to order the hyperelliptic curves, since there are only �nitely many curves with H(C) < X for any X.

3 The 2-Selmer Group

• De�nition: The 2-Selmer group S2(J) of the Jacobian Jac(C) is a �nite subgroup of H1(Q, J [2]), and is the
necessary piece in the exact sequence 0→ J(Q)/2J(Q)→ S2(J)→XJ [2]→ 0.

◦ This de�nition is rather opaque, even if you've seen it before. (Plus, I haven't de�ned the Tate-Shafarevich
group.) I will try to unpack it a little bit.

◦ S2(J) is a �nite subgroup of the Galois cohomology group H1(Q, J [2]), and measures in some sense the
failure of the Hasse principle in this setting.

◦ In the land of elliptic curves (i.e., the context with which the author is actually familiar), the 2-Selmer
group arises in a reasonably natural way. For the general version one needs only replace �elliptic curve�
with �Jacobian of an abelian variety� everywhere... probably!

• So say that E is an elliptic curve over K, and suppose that we want to talk about E(K)/2E(K) � say, in
order to compute the weak Mordell-Weil group.

◦ Also adopt the usual shorthand: �x an algebraic closure K̄ of K and let G(K̄/K) be the Galois group
Gal(K̄/K).

• If we let φ : E → E be the multiplication-by-2 map, we have an exact sequence of G(K̄/K)-modules 0 →
E[2] → E

·2→ E → 0, so taking Galois cohomology gives the long exact sequence 0 → E/K[2] → E(K)
·2→

E(K)→ H1(G(K̄/K), E[2])→ H1(G(K̄/K), E)→ H1(G(K̄/K), E)→ · · · .
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• From this we get the short exact sequence 0→ E(K)/2E(K)→ H1(G(K̄/K), E[2])→ H1(G(K̄/K), E)[2]→
0.

• To try to understand this global picture better, let's look at the local one: if Kv is a completion, then we get
a local sequence just like the one above. Then we can glue all of them into a nice commutative diagram:

0 → E(K)/2E(K) → H1(G(K̄/K), E[2]) → H1(G(K̄/K), E)[2] → 0
↓ ↓ ↓

0 →
∏

v E(Kv)/2E(Kv) →
∏

vH
1(Gv, E[2]) → H1(Gv, E)[2] → 0

where Gv is the decomposition group.

• We would like to �nd the image of E(K)/2E(K) in H1(G(K̄/K), E[2]), which by exactness is equivalent to
�nding the kernel of H1(G(K̄/K), E[2]) → H1(G(K̄/K), E)[2]. This in turn is equivalent to determining
whether the appropriate principal homogeneous spaces are trivial � and this is hard, because we're asking
whether a curve has a K-rational point, and Diophantine equations are hard to solve.

◦ Remark: If E/K is an elliptic curve, a �principal homogeneous space� is a smooth curve C/K along with
a simply transitive algebraic group action, de�ned over K, of E on C. It turns out that such a thing
is secretly some twist of E/K, but one which may not actually have any K-rational points. The set of
principal homogeneous spaces up to K-isomorphism forms the Weil-Chatelet group WC(E/K) and is
isomorphic to the Galois cohomology group H1(G(K̄/K), E).

• However, if we look downstairs at all of the local questions, �nding each local kernel (equivalently, �nding
whether some curve has a Kv-point) is reducible to a �nite computation via Hensel's lemma.

• Thus it would be nice if, say, the global problem reduced to solving the local one. Unfortunately, this is not
the case, and the failure of �locally trivial everywhere implies globally trivial� is measured by the 2-Selmer
group, which is the kernel of the middle map H1(G(K̄/K), E[2])→

∏
vH

1(Gv, E[2]).

◦ For completeness, the 2-part of the Tate-Shafarevich group X is the kernel of the map on the right.

◦ Thus, to get the diagram which I originally drew to de�ne the 2-Selmer group, merely take kernels of
the vertical maps.

• So, in short: we care about the 2-Selmer group because it tells us things about the Mordell-Weil group.

• Exercise (for the reader): apply a homomorphism to the above discussion that replaces �elliptic curve� with
�Jacobian of a hyperelliptic curve� in the appropriate locations.

4 Arithmetic Invariant Theory and Hyperelliptic Curves

• Let k be a �eld, G a reductive algebraic group over k, and V a linear representation of G.

◦ Recall/De�nition: A reductive algebraic group is one whose unipotent radical (i.e., the set of unipotent
elements of the radical of G, the radical being the component containing 1 of its maximal normal solvable
subgroup) is trivial. Semisimple groups like SLn are reductive, as are tori and GLn. The name comes
from the fact that linear representations of such groups are completely reducible.

• The classical problem of invariant theory is to give some kind of description of the algebra of G-invariant
polynomials with k-coe�cients, and relate this to the G-orbits on V .

◦ For example, if we take the 3-dimensional adjoint representation of SL2 via conjugation on the trace-zero

2×2 matrices

(
a b
c −a

)
, then the determinant −a2− bc is invariant under this action, and in fact this

generates the ring of polynomial invariants in this case, if we are doing everything over C. [Note that
this is exactly the space of interest that I mentioned above!]

◦ Things get more complicated � but also more interesting � in the non-algebraically-closed case. This is
what we call �arithmetic invariant theory�. There is a precise way of formulating this using nonabelian
Galois cohomology, but we will not do this, because nonabelian Galois cohomology is terrifying (at least,
for the novice).
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• Here is the kind of thing one can prove with these techniques (for a su�ciently well-chosen de�nition of �one�):

• Theorem (Bhargava-Gross): When all hyperelliptic curves of �xed genus g over Q having a rational Weierstrass
point are ordered by height, the average size of the 2-Selmer groups of their Jacobians is equal to 3.

◦ If it is not already clear, a reason one might care about this is: the 2-rank of the 2-Selmer group bounds
the rank of the Mordell-Weil group, so this gives us an �average upper bound� for the Mordell-Weil rank.
This is extremely interesting.

◦ The idea of the proof revolves around �arithmetic invariant theory�, as it is so called by Bhargava and
Gross (and probably others). The same techniques were used in Bhargava-Shankar to bound the average
rank of elliptic curves. There, the idea was to convert the problem into one of studying the orbits of
PGL2 on Sym4, the space of binary quartics.

◦ Over Q, PGL2 is isomorphic to SO(W ) where W is the space of 2 × 2 matrices of trace zero (with
quadratic form equal to the determinant), and the representation of PGL2 on Sym4 is essentially given
by conjugation.

• The idea is to generalize this to looking at representations of SO(W ) for some other well-chosen W , which I
will now attempt to talk about. [I will now use n in place of what was the genus g, because now I need g to
be an element of a group.]

◦ Let W be a bilinear space of rank 2n+ 1 over Q, where the matrix of the bilinear form 〈w, u〉 on Q2n+1

consists of the �anti-diagonal identity matrix� A =

 0 . . . 1
...

. . .
...

1 . . . 0

.
◦ Let SO(W ) be the special orthogonal group of W over Q: the subgroup of GL(W ) de�ned by 〈gw, gu〉 =
〈w, u〉 and det(g) = +1.

◦ Let V be the representation of SO(W ) given by conjugation on the self-adjoint operators T : W → W
of trace zero. With respect to the above basis, T is self-adjoint i� its matrix is symmetric about the
�anti-diagonal�.

◦ The coe�cients of the characteristic polynomial f(x) = det(xI−T ) = x2n+1 + c2x
2n−1 + · · ·+ c2g+1 give

2g invariant polynomials ck on V with ck of degree k, and they generate the ring of SO(W )-invariants.

◦ Note that this very similar to the thing I wrote down earlier describing hyperelliptic curves. The idea is:
a class in the 2-Selmer group of the Jacobian of the hyperelliptic curve C with equation y2 = f(x) over
Q corresponds to the orbit of SO(W )(Q) on V (Q) having those polynomial invariants.

∗ The exact way this arises (which the author freely admits he does not understand at all) is by writing
down the pencil of quadrics on P2n+1 generated by Q(w, z) = 〈w,w〉 and Q′(w, z) = 〈w, Tw〉 + z2,
taking the discriminant locus disc(xQ− x′Q′), and then observing that the Fano variety of maximal
linear isotropic subspaces of the base locus is smooth and forms a principal homogeneous space for
the Jacobian J(C).

∗ Then by considering a natural involution τ(w, z) = (w,−z), one gets a principal homogeneous space
PT for the 2-torsion subgroup J [2] of the Jacobian, and in fact the isomorphism class of this principal
homogeneous space determines the orbit of T .

∗ From here one gets an injection from the set of rational orbits of SO(W ) on V with characteristic
polynomial f(x) to the set of elements in H1(Q, J [2]).

• Theorem: For C given by y2 = f(x) where f is monic and separable as above, the the classes in the 2-Selmer
group of the Jacobian J(C) over Qcorrespond bijectively to the orbits of SO(W )(Q) on self-adjoing operators
T : W →W with characteristic polynomial f(x) such that the associated Fano variety FT has points over Qv

for all places v.

◦ Given this result (which is also hard), in order to get the main result, the problem is reduced to one of
characterizing those orbits.

◦ This counting is accomplished by constructing a fundamental domain for the action, and then counting
the number of integral points in the domain with bounded height and applying some sieving arguments.

• To actually learn what this is all about, read the papers by Bhargava and Gross.
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