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1 Goals

• This is a prep talk for Danny Neftin's talk.

• I aim to cover roughly the following topics:

◦ (i) Standard results about central simple algebras, towards a discussion of maximal sub�elds. (ref:
Reiner's book Maximal Orders.)

◦ (ii) A discussion of the Brauer group, with a discussion of how cocycles in H2 give k-algebras. (ref:
Dummit/Foote)

◦ (iii) The Albert-Brauer-Hasse-Noether theorem. (ref: Reiner)

◦ (iv) The de�nition of k-admissibility and some results thereto, from a paper of Schacher. (ref: Schacher's
paper Sub�elds of Division Rings, I)

• Three reasons why one should care about central simple algebras:

◦ The Brauer group plays a rather central (ha!) role in some of the big results in class �eld theory, which
I will brie�y mention.

◦ Studying maximal orders in central simple algebras is one way of trying to generalize the classical theory
of modular forms. (Shimura curves, etc.)

◦ Many of the results are really neat.

2 The Usual Results About Central Simple Algebras

• De�nition: For a �eld k, a central simple k-algebra A is a �nite-dimensional associative algebra which is
simple and whose center is precisely k.

• Examples:

◦ Any �eld is a central simple algebra over itself.

◦ The quaternions are a real central simple algebra; in fact, they are essentially the only one aside from R
itself.

◦ The n × n matrices over any division ring are a central simple algebra (over the center of that division
ring). In fact, these are all the central simple algebras!

• Theorem (Wedderburn): Every left-artinian simple ring is isomorphic to an algebra of matrices over a division
ring.

◦ This sometimes seems almost too magical a statement, but it's really very concrete. Here is a more explicit
version: Let A be a left-artinian simple ring and I be any minimal left ideal of A. Then D = HomA(I, I)
is a division ring, and A = HomD(I, I) ∼= Mn×n(Dopp), where n is the dimension of the left D-module
I, and Dopp is the opposite ring of D.

• By Wedderburn's theorem we immediately have that every central simple k-algebra is of the form Mn×n(D)
for some (unique up to isomorphism) division ring D containing k, and some (unique) n.
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◦ De�nition: We will call D the division ring part of A.

◦ In fact, Z(A) = {α In : α ∈ Z(D)} ∼= Z(D), so the center of D is also k.

◦ The Frobenius theorem states that the only division rings over R are R, C, and H � a proof is given,
of all places, in Silverman 1. Combined with Wedderburn's theorem, we see that every central simple
R-algebra is a matrix ring over R or H (C is not possible since its center is not R).
∗ For those who like topology: this is related to Hurwitz's theorem classifying which spheres can be
�ber products, which is equivalent to asking which normed division algebras exist. (The answer is:
R, C, H, and O, giving S0, S1, S3, and S7.)

◦ Every central simple Fq-algebra is isomorphic to Mn×n(Fq), because a �nite division ring is a �eld by
Wedderburn's little theorem.

• Theorem: Let A be a central simple k-algebra and B an artinian simple k-algebra (not necessarily �nite-
dimensional). Then B ⊗k A is an artinian simple algebra with center Z(B).

◦ Corollary 1: Let A be a central simple k-algebra and L/k a �eld extension. Then L ⊗k A is a central
simple L-algebra.

◦ Corollary 2: The tensor product of two central simple k-algebras is again a central simple k-algebra.

• Theorem: Let B be a simple subring of the central simple k-algebra A. De�ne the centralizer of B in A,
denoted B′, to be B′ = {x ∈ A : xb = bx for all b ∈ B}. Then B′ is a simple artinian ring, and B is its
centralizer in A.

◦ Proving this theorem requires a discussion of the double centralizer property, which I won't get into here.
But it's neat.

◦ Corollary: With notation as above, for V a simple left A-module and D = HomA(V, V ), then D⊗k B ∼=
HomB′(V, V ) and [B : k] · [B′ : k] = [A : k].

∗ The �rst part is a restatement of the theorem; the second part follows from counting the dimensions
of a bunch of related spaces.

◦ Corollary: With notation as above, A ⊗k Bopp ∼= Mr×r(B
′) where r = [B : k], and furthermore,

B ⊗k B′ ∼= A if B has center k.

∗ This follows, more or less, just by writing everything down as matrix algebras and then counting
dimensions.

3 Splitting Conditions

• De�nition: For A a central simple k-algebra, we say that an extension E of k splits A if E ⊗k A ∼= Mr×r(E)
for some r.

◦ Splitting �elds always exist; for example, the algebraic closure k̄ is always one. This is true because
k̄ ⊗k A is a central simple k̄-algebra hence is of the form Mr×r(D

′) for some division ring D′ (of �nite
degree) over k̄. But then every element of D′ is algebraic over k̄, hence actually lies in k̄.

◦ If E splits A, then so does every �eld containing E; just write down the tensor products.

• Theorem: A splits at L if and only if D splits at L, where D is the division ring part of A.

◦ This reduces the question of a central simple algebra's splitting to a simpler one, about a division ring
splitting.

◦ Proof: Say A ∼= Mn×n(D) by Wedderburn.

◦ If D splits at L, then L⊗kD ∼= Mm×m(L). Hence we may write L⊗kA ∼= L⊗kMn×n(D) ∼= Mn×n(L⊗k
D) ∼= Mn×n(Mm×m(L)) ∼= Mmn×mn(L).

◦ Conversely, if L⊗kA ∼= Mr×r(L) thenMr×r(L) ∼= L⊗kMn×n(D) ∼= Mn×n(L⊗kD). By Wedderburn we
know that L ⊗k D ∼= Ms×s(D

′) for some division ring D′, so that Mr×r(L) ∼= Mns×ns(D
′). But by the

uniqueness part of Wedderburn's theorem then forces D′ = L, so that L⊗k D ∼= Ms×s(L), as desired.
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• Theorem: Let D be a division ring with center k, with [D : k] �nite. Then every maximal sub�eld E of D
contains k and is a splitting �eld forD, and further, ifm = [E : k], then [D : k] = m2 and E⊗kD ∼= Mm×m(E),
where m is called the degree of D.

◦ Proof: [D : k] is �nite so D contains maximal sub�elds. Clearly any such E must contain k, otherwise
E(k) would be larger. Now consider the centralizer E′ of E: obviously E′ contains E, and in fact we
must have equality since for each x ∈ E′, E(x) is a sub�eld of D containing E. So our earlier theorems
immediately give [E : k]2 = [E′ : k] · [E : k] = [D : k] and D ⊗k E ∼= HomE(D,D) ∼= Mr×r(E) where
r = [D : E] = [E : k].

◦ If k has positive characteristic, there is a maximal sub�eld of D which is separable over k. This is more
of a slog, so I'll skip it.

4 The Brauer Group

• Let L/k be an extension of �elds, let D be a division ring, and A and B be central simple k-algebras.

◦ Reminder: if A ∼= Mr×r(D) then we refer to D as the division ring part of A.

• De�nition: We say A and B are similar, denoted A ∼ B, if their respective division ring parts are k-isomorphic.
(A k-isomorphism is a ring isomorphism which �xes k.)

◦ Equivalently, by Wedderburn's theorem, there exist integers r and s so that A ⊗k Mr×r(k) ∼= B ⊗k
Ms×s(K).

◦ Denote the equivalence class of A under ∼ by [A].

• Theorem: The classes of central simple k-algebras form an abelian group B(k), called the Brauer group of k,
with multiplication given by tensor product, with identity [k] and with [A]−1 = [Aopp].

◦ Proof: From before we know that the tensor product A ⊗k B is also a central simple k-algebra, so we
have a well-de�ned multiplication of classes [A][B] = [A⊗k B].

◦ This operation is obviously associative, commutative and has identity [k], so we need only check that
[A][Aopp] = [k].

◦ From before we also know that A⊗k Bopp ∼= Mr×r(B
′), so by taking A = B, so that B′ = k, we obtain

[A][Aopp] = [Mr×r(k)] = [k].

• Proposition: For k ⊂ L, we have a group homomorphism B(k)→ B(L) via [A] 7→ [L⊗k A] for [A] ∈ B(k).

• De�nition: De�ne B(L/k) to be the kernel of the map B(k)→ B(L); then [A] ∈ B(L/k) i� L⊗k A ∼= Mr(L)
for some r. (Recall that we say that L splits A.)

5 H2 and the Crossed Product Construction

• De�nition: For any group G and G-module A, a 2-cocycle is a function f : G×G→ A satisfying the cocycle
condition f(g, h) + f(gh, k) = g · f(h, k) + f(g, hk) for all g, h, k ∈ G.

◦ Equivalently, a 2-cocycle is determined by a collection of elements ag,h in A (called a factor set) with the
property that ag,h + agh,k = g · ah,k + ag,hk, and the 2-cocycle f is the function sending (g, h) 7→ ag,h.

◦ The multiplicative form of this relation is aσ,τaστ,ρ = σ(aτ,ρ)aσ,τρ, for σ, τ, ρ ∈ G.

• De�nition: A 2-cochain f is a coboundary if there is a function f1 : G → A such that f(g, h) = g · f1(h) −
f1(gh) + f1(g) for all g, h ∈ G.

◦ The cohomology group H2(G,A) is the group of 2-cocycles modulo coboundaries, as with every coho-
mology group ever.
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◦ One reason that H2 is interesting (in general group cohomology) is that the cohomology classes cor-
respond bijectively to equivalence classes of extensions of G by A; namely, to short exact sequences
1→ A→ E → G→ 1, where extensions are equivalent if there is an isomorphism of E which makes this

diagram commute:
1 → A → E → G → 1

↓ ↓ ↓
1 → A → E → G → 1

, where the maps from A → A and G → G are

the identity. Split extensions correspond to the trivial cohomology class.

• De�nition: A 2-cocycle is called a normalized 2-cocycle if f(g, 1) = 0 = f(1, g) for all g ∈ G.

◦ One may verify that each 2-cocycle lies in the same cohomology class as a normalized 2-cocycle: explicitly,
if f ′ is the 2-coboundary whose f1 is identically f(1, 1) (which is to say f ′(g, h) = g · f(1, 1)) then one
can check that f − f ′ is normalized.

◦ So we may as well just deal with normalized 2-cocycles when talking about elements of the cohomology
group, since it makes life easier.

• If L/k is a �nite Galois extension of �elds with Galois group G = Gal(L/k) then we can use the normalized
2-cocycles in Z2(G,L×) to construct central simple k-algebras using the crossed product construction. Here
is the construction:

◦ Suppose f = {aσ,τ}σ,τ∈G is a normalized 2-cocycle in Z2(G,L×) and let Bf be the vector space over L
having basis uσ for σ ∈ G.

◦ Thus elements of Bf are sums of the form
∑
σ∈G

ασuσ where the ασ lie in L.

◦ De�ne a multiplication on Bf by uσα = α(σ)uσ, and uσuτ = aσ,τuστ , for α ∈ L and σ, τ ∈ G.

• Theorem: Bf is a central simple k-algebra split at L, and, furthermore, choosing a di�erent cocycle in the
same cohomology class produces a k-isomorphic k-algebra.

◦ We need to check associativity, �nd an identity, check that the center is k, and show that it is simple.
We will also verify that L is maximal and that the choice of cocycle does not matter.

◦ Associativity: One can compute from this de�nition that (uσuτ )uρ = aσ,τaστ,ρuστρ and uσ(uτuρ) =
σ(aτ,ρ)aσ,τρuστρ. But aσ,τaστ,ρ = σ(aτ,ρ)aσ,τρ is precisely the multiplicative form of the cocycle condi-
tion, so the multiplication is associative.

◦ Identity: Since we assumed the cocycle was normalized, we have a1,σ = aσ,1 = 1 for all σ ∈ G, so u1 is
an identity in G.

◦ Center is k: If x =
∑
σ∈G

ασuσ is in the center, then xβ = βx for all β ∈ L shows that σ(β) = β if ασ 6= 0.

But since there is an element of L not �xed by σ (for any σ 6= 1), we get ασ = 0 for all σ 6= 1. Hence
x = α1u1; then xuτ = uτx i� τ(α1) = α1 for all τ ∈ G, which just says that α1 is �xed by the entire
Galois group (i.e., is in k).

◦ Simple: Let I be a nonzero ideal and take any x = ασ1
uσ1

+ · · ·+ασm
uσm

in I with the minimal number
of terms. If m > 1 then there is an element β ∈ L× with σm(β) 6= σm−1(β). But then x− σm(β)xβ−1

is in I, but has zero uσm term but nonzero uσm−1 term. Hence m = 1 and x = αuσ, and this element is
a unit with inverse σ−1(α−1)uσ−1 .

◦ Cohomology representative does not matter: If f ′ = {a′σ,τ} is a di�erent representative of the coho-
mology class of f , then the multiplicative form of the coboundary condition says that there exist ele-
ments bσ ∈ L× with a′σ,τ = aσ,τ (σ(bτ )b−1στ bσ). Let ϕ be the L-vector space homomorphism de�ned by
ϕ(u′σ) = bσuσ: then one can push symbols to see that ϕ(u′σu

′
τ ) = ϕ(u′σ)ϕ(u′τ ). Hence ϕ is a k-algebra

isomorphism of Bf and Bf ′ .

◦ Split at L: Upon identifying L with the elements αu1 in Bf , we see that Bf is a k-algebra containing
L, and has [Bf : k] = [L : k]2. By our results earlier on central simple algebras, this tells us that L is
a maximal sub�eld of Bf . Applying the theorem about A ⊗k Bopp ∼= Mr×r(B

′) with A = B = B′ =
Bopp = L shows that Bf splits at L.

4



• The above theorem tells us that B(L/k) and H2(G,L×) are two groups which share the same elements. We
should expect that they're actually isomorphic as groups, which indeed they are, but this requires a little
more work.

◦ If we start with the trivial cohomology class, we should end up with the trivial element of the Brauer
group � namely, Mn×n(k) � and indeed, we do, although it requires some checking.

◦ Similarly, the addition in H2 corresponds to tensor product; this takes a fair bit of additional e�ort.

◦ Remark: This result shows that every division ring D with center k such that [D : k] is �nite, is similar
to some crossed product algebra. However, there exist (in�nite-dimensional) division rings which are not
isomorphic to crossed-product algebras.

6 Albert-Brauer-Hasse-Noether

• Theorem (Albert-Brauer-Hasse-Noether): If A is a central simple k-algebra, then A ∼ k if and only if Ap ∼ kp
for each prime p of k.

◦ The forward direction is obvious (localization plays nice with matrices); the reverse direction is hard. I
won't go into the proof, aside from mentioning that it uses the Hasse Norm Theorem.

◦ This is a �Hasse principle� sort of theorem: it tells us that if a central simple k-algebra splits at each
prime p, then the algebra splits globally.

◦ For each prime p of k, there is a homomorphism B(k)→ B(kp) de�ned by [A] 7→ [kp ⊗k A]. For mp the
local index of A at p (which I won't de�ne here), we have mp = 1 hence [Ap] = 1 for all but �nitely
many p. So we have a well-de�ned homomorphism B(k)→

∑
pB(kp); the Albert-Brauer-Hasse-Noether

theorem is precisely the statement that this map is injective.

• A stronger result, due to Hasse, �ts this map into the following exact sequence: 1 → B(k) →
∑

pB(kp)
inv→

Q/Z→ 0, where inv denotes the Hasse invariant map.

◦ Neukirch proves the exactness of this sequence �rst and then deduces the above results as corollaries.

◦ The usual method of doing it this way is to prove that 1 → H2(GL/k, L
×) →

∑
pH

2(GLp/kp , L
×
p )

inv→
1
nZ/Z→ 0, for all �nite cyclic extensions L/k of degree n.

◦ Then apply the relation between H2 and the Brauer groups (namely, H2(GL/k, L
∗) ∼= B(L/k), and the

same inside the direct sum) and then show that B(k) =
⋃
LB(L/k) where the union is taken over �nite

cyclic extensions of k.

• Corollary: For A a central simple K-algebra with local indices {mp}, then the order of [A] in B(k) is lcm(mp).

◦ Proof: We have [A]t = 1 in B(k) i� [Ap]
t = 1 in B(kp) for each p, but by the Hasse invariant we know

that the order of [Ap] in B(kp) is mp.

• One can use the Grunwald-Wang theorem in concert with Albert-Brauer-Hasse-Noether to prove the following
result: if k is a global �eld then the order of [A] in the Brauer group is equal to index[A] =

√
[A : k].

• Another corollary of Albert-Brauer-Hasse-Noether is the following: For k a global �eld and D a division ring
with center k, there exists a maximal sub�eld E of D which is a cyclic extension of k.

7 Schacher's paper

• De�nition: If L/k is a �nite extension of �elds, then L is k-adequate if there is a division ring D with center
k containing L as a maximal commutative sub�eld; otherwise L is k-de�cient.

• De�nition: A �nite group G is k-admissible if there is a Galois extension L/k with Galois group G, and L is
k-adequate.

• A k-division ring is a division ring D �nite-dimensional over its center k. From earlier results we know that
[D : k] = n2 where n = [E : k] is called the degree of D, and E is (any) maximal sub�eld.

5



• Let m be the order of [D] in B(k). We call k stable if m = n for every k-division ring D; we just mentioned
that Grunwald-Wang plus Albert-Brauer-Hasse-Noether shows that global �elds are stable.

• Also from Albert-Brauer-Hasse-Noether, we know that D has a maximal sub�eld (in fact, the proof shows
there are in�nitely many nonisomorphic choices) which is cyclic over k. However, the theorem says nothing
about what other maximal sub�elds are possible.

• Prop 2.1: If k is stable, then L is k-adequate i� B(L/k) has an element of order [L : k].

◦ Proof: de�nition chase.

• Prop 2.2: If k is stable, then L is k-adequate i� L is contained in a k-division ring.

◦ In other words, for stable �elds, the maximality condition comes for free.

◦ Proof: If k ⊂ L ⊂ D, let M be a maximal sub�eld of D containing L. Then use the exact sequence
0 → B(L/k) → B(M/k) → B(M/L) to get an element of the proper order in B(L/k) from an element
in B(M/k).

• Now assume k is a global �eld and L is a �nite Galois extension of k with G = Gal(L/k) and |G| = n. We
know that L is k-adequate i� H2(G,L×) has an element of order n; since this group is abelian we need only
determine if it has an element of order plii for each prime power plii in the factorization of n.

• Also recall we have the exact sequence 1→ H2(GL/k, L
×)→

∑
pH

2(GLp/kp , L
×
p )

inv→ 1
nZ/Z→ 0.

• Prop 2.5: With notation as above, for p a prime and r an integer, H2(G,L×) contains an element of order pr

if and only if nq = [Lq : kq] is divisible by pr for two di�erent primes q of k.

◦ Proof: Suppose a ∈ H2 has order pr. Write a = aq1 + · · ·+aqr for aqi ∈ H2(GLq/kq , L
×
q ) for some primes

q1, . . . , qr of k. Then one of the aqi must have order divisible by pr since the order of a is pr � but the
sum of the invariants being 0 forces at least one other of the aqi to be divisible by pr as well. Then for
these two, clearly nqi = [Lqi : kqi ] is also divisible by pr.

◦ Conversely, suppose that nq1 and nq2 are divisible by pr. Then we can �nd aq1 ∈ H2(GLq1/kq1
, L×p1

) and

aq2 ∈ H2(GLq2
/kq2

, L×q2
) with aq1 having Hasse invariant 1/pr and aq2 having invariant −1/pr. Then

aq1 + aq2 has order pr in H2(G,L×).

• Prop 2.6: With notation as above, if pr is the highest power of p dividing n, then H2(G,L×) has an element
of order pr i� Gq = Gal(Lq/kq) contains a p-Sylow subgroup of G for two di�erent primes q of k.

◦ This is just a restatement of 2.5, using the fact that Gq is a subgroup of G.

• Example (non-adequate extension): Let k = Q and L = Q(ζ8). Then [L : k] = 4 with Galois group the Klein
4-group. L is unrami�ed at odd primes, hence Gp is either Z/2Z or 0 for p > 2, and G2 is the Klein 4-group.
Hence by Prop 2.5, H2 has no elements of order 4, so L is Q-de�cient.

◦ We can rephrase this result (using the equivalent criterion for adequacy) as: any division ring with center
Q containing a root of x4 + 1 is in�nite-dimensional.

• As one might expect, it seems like it would not be too hard to work out these computations in examples with
reasonably nice Galois groups � things like Q(

√
p,
√
q) or Q(ζn) � to see which ones are Q-adequate.

• Theorem (Schacher): If G is Q-admissible, then every Sylow subgroup of G is metacyclic (i.e., is a cyclic
extension of a cyclic group). For abelian groups, the converse also holds.

◦ One might guess that, based on some examples, every Q-admissible group is solvable, but this is not
true: S5 is also Q-admissible.

◦ If we allow ourselves to raise the base �eld away from Q, we can get other groups. In fact....

• Theorem (Schacher): For any �nite group G, there exists a number �eld k such that G is k-admissible.
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◦ The situation does not carry over to function �elds: many groups are not admissible over any global �eld
of nonzero characteristic. For example....

• Theorem (Schacher): For k a global �eld of characteristic p, then if G is k-admissible then every q-Sylow
subgroup of G is metacyclic for q 6= p.

◦ In particular, S9 is not admissible over any function �eld, as both its 2-Sylow and 3-Sylow subgroups are
not metacyclic.
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