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1 Goals

e This is a prep talk for Danny Neftin’s talk.

e I aim to cover roughly the following topics:

o (i) Standard results about central simple algebras, towards a discussion of maximal subfields. (ref:
Reiner’s book Maximal Orders.)

o (ii) A discussion of the Brauer group, with a discussion of how cocycles in H? give k-algebras. (ref:
Dummit /Foote)

o (iii) The Albert-Brauer-Hasse-Noether theorem. (ref: Reiner)

o (iv) The definition of k-admissibility and some results thereto, from a paper of Schacher. (ref: Schacher’s
paper Subfields of Division Rings, I)

e Three reasons why one should care about central simple algebras:

o The Brauer group plays a rather central (ha!) role in some of the big results in class field theory, which
I will briefly mention.

o Studying maximal orders in central simple algebras is one way of trying to generalize the classical theory
of modular forms. (Shimura curves, etc.)

o Many of the results are really neat.

2 The Usual Results About Central Simple Algebras

e Definition: For a field k, a central simple k-algebra A is a finite-dimensional associative algebra which is
simple and whose center is precisely k.

e Examples:

o Any field is a central simple algebra over itself.

o The quaternions are a real central simple algebra; in fact, they are essentially the only one aside from R
itself.

o The n x n matrices over any division ring are a central simple algebra (over the center of that division
ring). In fact, these are all the central simple algebras!

e Theorem (Wedderburn): Every left-artinian simple ring is isomorphic to an algebra of matrices over a division
ring.

o This sometimes seems almost too magical a statement, but it’s really very concrete. Here is a more explicit
version: Let A be a left-artinian simple ring and I be any minimal left ideal of A. Then D = Hom4 (I, 1)
is a division ring, and A = Homp(I,I) & M, «,(D°PP), where n is the dimension of the left D-module
1, and D°PP ig the opposite ring of D.

e By Wedderburn’s theorem we immediately have that every central simple k-algebra is of the form M,, (D)
for some (unique up to isomorphism) division ring D containing k, and some (unique) n.



o

Definition: We will call D the division ring part of A.
In fact, Z(A) ={al,:a € Z(D)} = Z(D), so the center of D is also k.
The Frobenius theorem states that the only division rings over R are R, C, and H — a proof is given,

of all places, in Silverman 1. Combined with Wedderburn’s theorem, we see that every central simple
R-algebra is a matrix ring over R or H (C is not possible since its center is not R).
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x For those who like topology: this is related to Hurwitz’s theorem classifying which spheres can be
fiber products, which is equivalent to asking which normed division algebras exist. (The answer is:
R, C, H, and Q, giving S°, S!, S3, and S7.)

o Every central simple [F,-algebra is isomorphic to M, (F,), because a finite division ring is a field by
Wedderburn’s little theorem.

e Theorem: Let A be a central simple k-algebra and B an artinian simple k-algebra (not necessarily finite-
dimensional). Then B ® A is an artinian simple algebra with center Z(B).

o Corollary 1: Let A be a central simple k-algebra and L/k a field extension. Then L ®; A is a central
simple L-algebra.

o Corollary 2: The tensor product of two central simple k-algebras is again a central simple k-algebra.

e Theorem: Let B be a simple subring of the central simple k-algebra A. Define the centralizer of B in A,
denoted B’, to be B’ = {x € A : 2b=bx for all b € B}. Then B’ is a simple artinian ring, and B is its
centralizer in A.

o Proving this theorem requires a discussion of the double centralizer property, which I won’t get into here.
But it’s neat.

o Corollary: With notation as above, for V' a simple left A-module and D = Hom4(V, V), then D ®; B =
Homp/(V,V) and [B: k|- [B': k] = [A : k].
x The first part is a restatement of the theorem; the second part follows from counting the dimensions
of a bunch of related spaces.

o Corollary: With notation as above, A ®; B°P? = M, ,.,.(B’) where r = [B : k], and furthermore,
B ®, B’ = A if B has center k.

* This follows, more or less, just by writing everything down as matrix algebras and then counting
dimensions.

3 Splitting Conditions

e Definition: For A a central simple k-algebra, we say that an extension E of k splits A if E @ A = M,.«.(E)
for some r.

o Splitting fields always exist; for example, the algebraic closure k is always one. This is true because
k ® A is a central simple k-algebra hence is of the form M, ..(D’) for some division ring D" (of finite
degree) over k. But then every element of D’ is algebraic over k, hence actually lies in k.

o If E splits A, then so does every field containing F; just write down the tensor products.
e Theorem: A splits at L if and only if D splits at L, where D is the division ring part of A.

o This reduces the question of a central simple algebra’s splitting to a simpler one, about a division ring
splitting.

o Proof: Say A = M,,x,(D) by Wedderburn.

o If D splits at L, then L ®y D = My, (L). Hence we may write L®y A 2 L®j My xn(D) 2 My xn(L Qg
D) = Myxn(Mmxm (L)) = Munxmn (L)

o Conversely, if L&y A = M, (L) then M, (L) 2 L&k Mypxn(D) = Myxn(L &g D). By Wedderburn we
know that L ®k D = M,y s(D’) for some division ring D’, so that M,«,(L) & Mpsxns(D’). But by the
uniqueness part of Wedderburn’s theorem then forces D’ = L, so that L ® D = M,y (L), as desired.



4

Theorem: Let D be a division ring with center k, with [D : k] finite. Then every maximal subfield E of D
contains k and is a splitting field for D, and further, if m = [E : k], then [D : k] = m? and E®y, D = M, xm(E),
where m is called the degree of D.

o Proof: [D : k] is finite so D contains maximal subfields. Clearly any such F must contain k, otherwise
E(k) would be larger. Now consider the centralizer E' of E: obviously E’ contains F, and in fact we
must have equality since for each x € E’, E(x) is a subfield of D containing E. So our earlier theorems
immediately give [E : k]> = [E' : k] - [E : k] = [D : k] and D ®; E = Hompg(D, D) & M,.(E) where
r=[D:E]=[E:k]

o If k has positive characteristic, there is a maximal subfield of D which is separable over k. This is more
of a slog, so I'll skip it.

The Brauer Group
Let L/k be an extension of fields, let D be a division ring, and A and B be central simple k-algebras.

o Reminder: if A~ M, (D) then we refer to D as the division ring part of A.

Definition: We say A and B are similar, denoted A ~ B, if their respective division ring parts are k-isomorphic.
(A k-isomorphism is a ring isomorphism which fixes k.)

o Equivalently, by Wedderburn’s theorem, there exist integers r and s so that A ®; M,«.(k) = B Q4
My s(K).

o Denote the equivalence class of A under ~ by [A].

Theorem: The classes of central simple k-algebras form an abelian group B(k), called the Brauer group of k,
with multiplication given by tensor product, with identity [k] and with [A]~1 = [A°PP].

o Proof: From before we know that the tensor product A ®; B is also a central simple k-algebra, so we
have a well-defined multiplication of classes [A][B] = [A ®j B.

o This operation is obviously associative, commutative and has identity [k], so we need only check that
[A][A°PP] = [K].

o From before we also know that A ®; B°PP = M, .(B’), so by taking A = B, so that B’ = k, we obtain
[AJ[A%PP] = [Myr ()] = [K].
Proposition: For k C L, we have a group homomorphism B(k) — B(L) via [A] — [L ®j A] for [A] € B(k).

Definition: Define B(L/k) to be the kernel of the map B(k) — B(L); then [A] € B(L/k) iff L ®, A= M, (L)
for some r. (Recall that we say that L splits A.)

H? and the Crossed Product Construction

Definition: For any group G and G-module A, a 2-cocycle is a function f : G x G — A satisfying the cocycle
condition f(g,h) + f(gh,k) =g- f(h, k) + f(g, hk) for all g, h, k € G.

o Equivalently, a 2-cocycle is determined by a collection of elements a4 p, in A (called a factor set) with the
property that ag n + agnx = g - ank + ag,nk, and the 2-cocycle f is the function sending (g, h) — ag p-

o The multiplicative form of this relation is a¢ r@or, = 0(ar, )00 +p, for o, 7,p € G.

Definition: A 2-cochain f is a coboundary if there is a function f; : G — A such that f(g,h) = g- fi(h) —
fi(gh) + fi(g) for all g,h € G.

o The cohomology group H?(G, A) is the group of 2-cocycles modulo coboundaries, as with every coho-
mology group ever.
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One reason that H? is interesting (in general group cohomology) is that the cohomology classes cor-

respond bijectively to equivalence classes of extensions of G by A; namely, to short exact sequences

1—- A— FE — G — 1, where extensions are equivalent if there is an isomorphism of F which makes this
1 - A - E - G —1

diagram commute: 4 + 4 , where the maps from A —+ A and G — G are
1 - A - E - G —1

the identity. Split extensions correspond to the trivial cohomology class.

e Definition: A 2-cocycle is called a normalized 2-cocycle if f(g,1) =0 = f(1,g) for all g € G.
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One may verify that each 2-cocycle lies in the same cohomology class as a normalized 2-cocycle: explicitly,
if f’ is the 2-coboundary whose f; is identically f(1,1) (which is to say f'(g,h) = g - f(1,1)) then one
can check that f — f’ is normalized.

So we may as well just deal with normalized 2-cocycles when talking about elements of the cohomology
group, since it makes life easier.

o If L/k is a finite Galois extension of fields with Galois group G = Gal(L/k) then we can use the normalized
2-cocycles in Z2(G, L*) to construct central simple k-algebras using the crossed product construction. Here
is the construction:

o

o

o

Suppose f = {aor}, req 18 a normalized 2-cocycle in Z?(G,L*) and let By be the vector space over L
having basis u, for o € G.

Thus elements of By are sums of the form Z a,U, where the o, liein L.
oeG
Define a multiplication on By by u,a = a(0)us, and ust; = a rUor, for « € L and o, 7 € G.

e Theorem: By is a central simple k-algebra split at L, and, furthermore, choosing a different cocycle in the
same cohomology class produces a k-isomorphic k-algebra.
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We need to check associativity, find an identity, check that the center is k, and show that it is simple.
We will also verify that L is maximal and that the choice of cocycle does not matter.

Associativity: One can compute from this definition that (usu;)u, = o r0orplor, and ue(uru,) =
0(ar,p)o,rpUorp. But G rasr, = 0(ar,)as -, is precisely the multiplicative form of the cocycle condi-
tion, so the multiplication is associative.

Identity: Since we assumed the cocycle was normalized, we have a1, = a,;1 =1 for all o € G, so u; is
an identity in G.

Center is k: If z = Zagua is in the center, then 28 = Sz for all 8 € L shows that o(8) = S if a, # 0.

oceG
But since there is an element of L not fixed by o (for any o # 1), we get a, = 0 for all o # 1. Hence

x = aqug; then zu, = v,z iff 7(1) = aq for all 7 € G, which just says that «; is fixed by the entire
Galois group (i.e., is in k).

Simple: Let I be a nonzero ideal and take any z = oy, Uy, +- - - + Qp,, Uy, in I with the minimal number
of terms. If m > 1 then there is an element 3 € L* with 0,,(8) # 0m—1(3). But then z — 0,,,(8) x 87!
is in I, but has zero u,,, term but nonzero u,, , term. Hence m = 1 and z = au,, and this element is
a unit with inverse o~ (a " Hug-1.

Cohomology representative does not matter: If f' = {aj .} is a different representative of the coho-
mology class of f, then the multiplicative form of the coboundary condition says that there exist ele-
ments b, € L* with a/, . = ag+(0(b;)b,}bs). Let ¢ be the L-vector space homomorphism defined by
p(ul) = byu,: then one can push symbols to see that o(ulul) = @(ul)e(ul). Hence ¢ is a k-algebra

isomorphism of By and By.

Split at L: Upon identifying L with the elements cvuy in By, we see that By is a k-algebra containing
L, and has [By : k] = [L : k]?. By our results earlier on central simple algebras, this tells us that L is
a maximal subfield of By. Applying the theorem about A ®j B°’? = M,,(B’') with A = B = B’ =
B°PP = [, shows that By splits at L.



e The above theorem tells us that B(L/k) and H?(G,L*) are two groups which share the same elements. We

should expect that they’re actually isomorphic as groups, which indeed they are, but this requires a little
more work.

o If we start with the trivial cohomology class, we should end up with the trivial element of the Brauer
group — namely, M, «, (k) — and indeed, we do, although it requires some checking.

o Similarly, the addition in H? corresponds to tensor product; this takes a fair bit of additional effort.

o Remark: This result shows that every division ring D with center k such that [D : k] is finite, is similar
to some crossed product algebra. However, there exist (infinite-dimensional) division rings which are not
isomorphic to crossed-product algebras.

6 Albert-Brauer-Hasse-Noether
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e A stronger result, due to Hasse, fits this map into the following exact sequence: 1 — B(k) — >_, B(ky) =

e Theorem (Albert-Brauer-Hasse-Noether): If A is a central simple k-algebra, then A ~ k if and only if A, ~ k,

for each prime p of k.

o The forward direction is obvious (localization plays nice with matrices); the reverse direction is hard. I
won’t go into the proof, aside from mentioning that it uses the Hasse Norm Theorem.

o This is a “Hasse principle” sort of theorem: it tells us that if a central simple k-algebra splits at each
prime p, then the algebra splits globally.

o For each prime p of k, there is a homomorphism B(k) — B(k,) defined by [A] — [k, ® A]. For m, the
local index of A at p (which I won’t define here), we have m, = 1 hence [A,] = 1 for all but finitely
many p. So we have a well-defined homomorphism B(k) — >_, B(ky); the Albert-Brauer-Hasse-Noether
theorem is precisely the statement that this map is injective.

myv

Q/Z — 0, where inv denotes the Hasse invariant map.

o Neukirch proves the exactness of this sequence first and then deduces the above results as corollaries.
o The usual method of doing it this way is to prove that 1 — HQ(GL/k7LX) — Zp H2(GLp/kp,L;) iy
17)Z — 0, for all finite cyclic extensions L/k of degree n.

o Then apply the relation between H? and the Brauer groups (namely, H?> (Gryk, L*) =2 B(L/k), and the
same inside the direct sum) and then show that B(k) = J, B(L/k) where the union is taken over finite
cyclic extensions of k.

e Corollary: For A a central simple K-algebra with local indices {m, }, then the order of [A] in B(k) is lem(my,).

o Proof: We have [A]' =1 in B(k) iff [4,]" =1 in B(k,) for each p, but by the Hasse invariant we know
that the order of [A,] in B(k,) is m,,.

One can use the Grunwald-Wang theorem in concert with Albert-Brauer-Hasse-Noether to prove the following
result: if k is a global field then the order of [A] in the Brauer group is equal to index[A] = \/[A : k].

Another corollary of Albert-Brauer-Hasse-Noether is the following: For k a global field and D a division ring
with center k, there exists a maximal subfield E of D which is a cyclic extension of k.

Schacher’s paper

Definition: If L/k is a finite extension of fields, then L is k-adequate if there is a division ring D with center
k containing L as a maximal commutative subfield; otherwise L is k-deficient.

Definition: A finite group G is k-admissible if there is a Galois extension L/k with Galois group G, and L is
k-adequate.

e A k-division ring is a division ring D finite-dimensional over its center k. From earlier results we know that

[D : k] = n? where n = [E : k] is called the degree of D, and E is (any) maximal subfield.



Let m be the order of [D] in B(k). We call k stable if m = n for every k-division ring D; we just mentioned
that Grunwald-Wang plus Albert-Brauer-Hasse-Noether shows that global fields are stable.

Also from Albert-Brauer-Hasse-Noether, we know that D has a maximal subfield (in fact, the proof shows
there are infinitely many nonisomorphic choices) which is cyclic over k. However, the theorem says nothing
about what other maximal subfields are possible.

Prop 2.1: If k is stable, then L is k-adequate iff B(L/k) has an element of order [L : k.
o Proof: definition chase.
Prop 2.2: If k is stable, then L is k-adequate iff L is contained in a k-division ring.

o In other words, for stable fields, the maximality condition comes for free.

o Proof: If k C L C D, let M be a maximal subfield of D containing L. Then use the exact sequence
0 — B(L/k) - B(M/k) — B(M/L) to get an element of the proper order in B(L/k) from an element
in B(M/k).

Now assume k is a global field and L is a finite Galois extension of k with G = Gal(L/k) and |G| = n. We
know that L is k-adequate iff H?(G, L*) has an element of order n; since this group is abelian we need only
determine if it has an element of order pi for each prime power pi in the factorization of n.

Also recall we have the exact sequence 1 — H*(Gr ., L*) — >, H*(Gr, /&, Ly) ny 17)7 —o.

Prop 2.5: With notation as above, for p a prime and r an integer, H?(G, L*) contains an element of order p"
if and only if nq = [Lq : kq| is divisible by p” for two different primes q of k.

o Proof: Suppose a € H? has order p". Write a = ay, +---+a,, for a,, € H2(GLq/kq , Ly ) for some primes
qi,...,qr of k. Then one of the a, must have order divisible by p" since the order of a is p” — but the
sum of the invariants being 0 forces at least one other of the a4, to be divisible by p” as well. Then for
these two, clearly ng, = [Lg, : kq,] is also divisible by p”.

o Conversely, suppose that n,, and n,, are divisible by p". Then we can find a,, € H*(G La, /ke,» Lpy) and
ag, € H*(GL,, /k,,  Ly,) with a,, having Hasse invariant 1/p” and a4, having invariant —1/p". Then
aq, + ag, has order p” in H*(G, L*).

Prop 2.6: With notation as above, if p” is the highest power of p dividing n, then H?(G, L) has an element
of order p" iff G, = Gal(L,/k,) contains a p-Sylow subgroup of G for two different primes q of k.

o This is just a restatement of 2.5, using the fact that G, is a subgroup of G.

Example (non-adequate extension): Let k = Q and L = Q((s). Then [L : k] = 4 with Galois group the Klein
4-group. L is unramified at odd primes, hence G, is either Z/27Z or 0 for p > 2, and G is the Klein 4-group.
Hence by Prop 2.5, H? has no elements of order 4, so L is Q-deficient.

o We can rephrase this result (using the equivalent criterion for adequacy) as: any division ring with center
Q containing a root of z* + 1 is infinite-dimensional.

As one might expect, it seems like it would not be too hard to work out these computations in examples with
reasonably nice Galois groups — things like Q(,/p, \/q) or Q(¢,) — to see which ones are Q-adequate.

Theorem (Schacher): If G is Q-admissible, then every Sylow subgroup of G is metacyclic (i.e., is a cyclic
extension of a cyclic group). For abelian groups, the converse also holds.

o One might guess that, based on some examples, every Q-admissible group is solvable, but this is not
true: Ss is also Q-admissible.

o If we allow ourselves to raise the base field away from Q, we can get other groups. In fact....

Theorem (Schacher): For any finite group G, there exists a number field k such that G is k-admissible.



o The situation does not carry over to function fields: many groups are not admissible over any global field
of nonzero characteristic. For example....

e Theorem (Schacher): For k a global field of characteristic p, then if G is k-admissible then every g¢-Sylow
subgroup of G is metacyclic for ¢ # p.

o In particular, Sy is not admissible over any function field, as both its 2-Sylow and 3-Sylow subgroups are
not, metacyclic.



