A Crash Course in Central Simple Algebras

Evan

October 24, 2011

1 Goals

- This is a prep talk for Danny Neftin's talk.
- I aim to cover roughly the following topics:
	- (i) Standard results about central simple algebras, towards a discussion of maximal subelds. (ref: Reiner's book Maximal Orders.)
	- \circ (ii) A discussion of the Brauer group, with a discussion of how cocycles in H^2 give k-algebras. (ref: Dummit/Foote)
	- (iii) The Albert-Brauer-Hasse-Noether theorem. (ref: Reiner)
	- \circ (iv) The definition of k-admissibility and some results thereto, from a paper of Schacher. (ref: Schacher's paper Subfields of Division Rings, I)
- Three reasons why one should care about central simple algebras:
	- \circ The Brauer group plays a rather central (ha!) role in some of the big results in class field theory, which I will briefly mention.
	- Studying maximal orders in central simple algebras is one way of trying to generalize the classical theory of modular forms. (Shimura curves, etc.)
	- Many of the results are really neat.

2 The Usual Results About Central Simple Algebras

- Definition: For a field k, a central simple k-algebra A is a finite-dimensional associative algebra which is simple and whose center is precisely k .
- Examples:
	- \circ Any field is a central simple algebra over itself.
	- The quaternions are a real central simple algebra; in fact, they are essentially the only one aside from R itself.
	- \circ The $n \times n$ matrices over any division ring are a central simple algebra (over the center of that division ring). In fact, these are all the central simple algebras!
- Theorem (Wedderburn): Every left-artinian simple ring is isomorphic to an algebra of matrices over a division ring.
	- This sometimes seems almost too magical a statement, but it's really very concrete. Here is a more explicit version: Let A be a left-artinian simple ring and I be any minimal left ideal of A. Then $D = \text{Hom}_{A}(I, I)$ is a division ring, and $A = \text{Hom}_D(I, I) \cong M_{n \times n}(D^{opp})$, where n is the dimension of the left D-module I, and D^{opp} is the opposite ring of D.
- By Wedderburn's theorem we immediately have that every central simple k-algebra is of the form $M_{n\times n}(D)$ for some (unique up to isomorphism) division ring D containing k, and some (unique) n.
- \circ Definition: We will call D the division ring part of A.
- ∘ In fact, $Z(A) = \{ \alpha I_n : \alpha \in Z(D) \} \cong Z(D)$, so the center of D is also k.
- \circ The Frobenius theorem states that the only division rings over R are R, C, and H a proof is given, of all places, in Silverman 1. Combined with Wedderburn's theorem, we see that every central simple R-algebra is a matrix ring over $\mathbb R$ or $\mathbb H$ (C is not possible since its center is not $\mathbb R$).
	- ∗ For those who like topology: this is related to Hurwitz's theorem classifying which spheres can be fiber products, which is equivalent to asking which normed division algebras exist. (The answer is: $\mathbb{R}, \mathbb{C}, \mathbb{H}, \text{ and } \mathbb{O}, \text{ giving } S^0, S^1, S^3, \text{ and } S^7.$
- \circ Every central simple \mathbb{F}_q -algebra is isomorphic to $M_{n\times n}(\mathbb{F}_q)$, because a finite division ring is a field by Wedderburn's little theorem.
- Theorem: Let A be a central simple k-algebra and B an artinian simple k-algebra (not necessarily finitedimensional). Then $B \otimes_k A$ is an artinian simple algebra with center $Z(B)$.
	- ⊙ Corollary 1: Let A be a central simple k-algebra and L/k a field extension. Then $L \otimes_k A$ is a central simple L-algebra.
	- Corollary 2: The tensor product of two central simple k-algebras is again a central simple k-algebra.
- Theorem: Let B be a simple subring of the central simple k-algebra A . Define the centralizer of B in A , denoted B', to be $B' = \{x \in A : xb = bx \text{ for all } b \in B\}$. Then B' is a simple artinian ring, and B is its centralizer in A.
	- Proving this theorem requires a discussion of the double centralizer property, which I won't get into here. But it's neat.
	- ⊙ Corollary: With notation as above, for V a simple left A-module and $D = \text{Hom}_{A}(V, V)$, then $D \otimes_k B \cong$ $\text{Hom}_{B'}(V, V) \text{ and } [B : k] \cdot [B' : k] = [A : k].$
		- ∗ The first part is a restatement of the theorem; the second part follows from counting the dimensions of a bunch of related spaces.
	- ⊙ Corollary: With notation as above, $A \otimes_k B^{opp} \cong M_{r \times r}(B')$ where $r = [B : k]$, and furthermore, $B \otimes_k B' \cong A$ if B has center k.
		- ∗ This follows, more or less, just by writing everything down as matrix algebras and then counting dimensions.

3 Splitting Conditions

- Definition: For A a central simple k-algebra, we say that an extension E of k splits A if $E \otimes_k A \cong M_{r \times r}(E)$ for some r.
	- \circ Splitting fields always exist; for example, the algebraic closure \bar{k} is always one. This is true because $\bar{k} \otimes_k A$ is a central simple \bar{k} -algebra hence is of the form $M_{r \times r}(D')$ for some division ring D' (of finite degree) over \bar{k} . But then every element of D' is algebraic over \bar{k} , hence actually lies in \bar{k} .
	- \circ If E splits A, then so does every field containing E; just write down the tensor products.
- Theorem: A splits at L if and only if D splits at L, where D is the division ring part of A.
	- This reduces the question of a central simple algebra's splitting to a simpler one, about a division ring splitting.
	- \circ Proof: Say $A \cong M_{n \times n}(D)$ by Wedderburn.
	- If D splits at L, then $L \otimes_k D \cong M_{m \times m}(L)$. Hence we may write $L \otimes_k A \cong L \otimes_k M_{n \times n}(D) \cong M_{n \times n}(L \otimes_k A)$ $D) \cong M_{n \times n}(M_{m \times m}(L)) \cong M_{mn \times mn}(L).$
	- ⊙ Conversely, if $L \otimes_k A \cong M_{r \times r}(L)$ then $M_{r \times r}(L) \cong L \otimes_k M_{n \times n}(D) \cong M_{n \times n}(L \otimes_k D)$. By Wedderburn we know that $L \otimes_k D \cong M_{s \times s}(D')$ for some division ring D', so that $M_{r \times r}(L) \cong M_{ns \times ns}(D')$. But by the uniqueness part of Wedderburn's theorem then forces $D' = L$, so that $L \otimes_k D \cong M_{s \times s}(L)$, as desired.
- Theorem: Let D be a division ring with center k, with $[D: k]$ finite. Then every maximal subfield E of D contains k and is a splitting field for D, and further, if $m = [E : k]$, then $[D : k] = m^2$ and $E \otimes_k D \cong M_{m \times m}(E)$, where m is called the <u>degree</u> of D .
	- \circ Proof: $[D: k]$ is finite so D contains maximal subfields. Clearly any such E must contain k, otherwise $E(k)$ would be larger. Now consider the centralizer E' of E: obviously E' contains E, and in fact we must have equality since for each $x \in E'$, $E(x)$ is a subfield of D containing E. So our earlier theorems immediately give $[E:k]^2 = [E':k] \cdot [E:k] = [D:k]$ and $D \otimes_k E \cong \text{Hom}_E(D,D) \cong M_{r \times r}(E)$ where $r = [D : E] = [E : k].$
	- \circ If k has positive characteristic, there is a maximal subfield of D which is separable over k. This is more of a slog, so I'll skip it.

4 The Brauer Group

- Let L/k be an extension of fields, let D be a division ring, and A and B be central simple k-algebras.
	- \circ Reminder: if $A \cong M_{r \times r}(D)$ then we refer to D as the division ring part of \underline{A} .
- Definition: We say A and B are similar, denoted $A \sim B$, if their respective division ring parts are k-isomorphic. (A k-isomorphism is a ring isomorphism which fixes k .)
	- ⊙ Equivalently, by Wedderburn's theorem, there exist integers r and s so that $A \otimes_k M_{r \times r}(k) \cong B \otimes_k$ $M_{s\times s}(K)$.
	- Denote the equivalence class of A under ∼ by [A].
- Theorem: The classes of central simple k-algebras form an abelian group $B(k)$, called the Brauer group of k, with multiplication given by tensor product, with identity [k] and with $[A]^{-1} = [A^{opp}]$.
	- \circ Proof: From before we know that the tensor product $A \otimes_k B$ is also a central simple k-algebra, so we have a well-defined multiplication of classes $[A][B] = [A \otimes_k B]$.
	- \circ This operation is obviously associative, commutative and has identity $[k]$, so we need only check that $[A][A^{opp}] = [k].$
	- ⊙ From before we also know that $A \otimes_k B^{opp} \cong M_{r \times r}(B')$, so by taking $A = B$, so that $B' = k$, we obtain $[A][A^{opp}] = [M_{r \times r}(k)] = [k].$
- Proposition: For $k \subset L$, we have a group homomorphism $B(k) \to B(L)$ via $[A] \mapsto [L \otimes_k A]$ for $[A] \in B(k)$.
- Definition: Define $B(L/k)$ to be the kernel of the map $B(k) \to B(L)$; then $[A] \in B(L/k)$ iff $L \otimes_k A \cong M_r(L)$ for some r. (Recall that we say that L splits A .)

5 H^2 and the Crossed Product Construction

- Definition: For any group G and G-module A, a 2-cocycle is a function $f : G \times G \to A$ satisfying the cocycle condition $f(g, h) + f(gh, k) = g \cdot f(h, k) + f(g, hk)$ for all $g, h, k \in G$.
	- \circ Equivalently, a 2-cocycle is determined by a collection of elements $a_{a,h}$ in A (called a factor set) with the property that $a_{g,h} + a_{gh,k} = g \cdot a_{h,k} + a_{g,h,k}$, and the 2-cocycle f is the function sending $(g,h) \mapsto a_{g,h}$.
	- \circ The multiplicative form of this relation is $a_{\sigma,\tau}a_{\sigma\tau,\rho} = \sigma(a_{\tau,\rho})a_{\sigma,\tau\rho}$, for $\sigma,\tau,\rho \in G$.
- Definition: A 2-cochain f is a coboundary if there is a function $f_1 : G \to A$ such that $f(g, h) = g \cdot f_1(h)$ $f_1(gh) + f_1(g)$ for all $g, h \in G$.
	- \circ The cohomology group $H^2(G, A)$ is the group of 2-cocycles modulo coboundaries, as with every cohomology group ever.

 \circ One reason that H^2 is interesting (in general group cohomology) is that the cohomology classes correspond bijectively to equivalence classes of extensions of G by A ; namely, to short exact sequences $1 \to A \to E \to G \to 1$, where extensions are equivalent if there is an isomorphism of E which makes this diagram commute: $1 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$ ↓ ↓ ↓ , where the maps from $A \to A$ and $G \to G$ are

 $1 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$

the identity. Split extensions correspond to the trivial cohomology class.

- Definition: A 2-cocycle is called a normalized 2-cocycle if $f(g, 1) = 0 = f(1, g)$ for all $g \in G$.
	- One may verify that each 2-cocycle lies in the same cohomology class as a normalized 2-cocycle: explicitly, if f' is the 2-coboundary whose f_1 is identically $f(1,1)$ (which is to say $f'(g,h) = g \cdot f(1,1)$) then one can check that $f - f'$ is normalized.
	- So we may as well just deal with normalized 2-cocycles when talking about elements of the cohomology group, since it makes life easier.
- If L/k is a finite Galois extension of fields with Galois group $G = \text{Gal}(L/k)$ then we can use the normalized 2-cocycles in $Z^2(G, L^\times)$ to construct central simple k-algebras using the crossed product construction. Here is the construction:
	- \circ Suppose $f = \{a_{\sigma,\tau}\}_{\sigma,\tau \in G}$ is a normalized 2-cocycle in $Z^2(G, L^{\times})$ and let B_f be the vector space over L having basis u_{σ} for $\sigma \in G$.
	- \circ Thus elements of B_f are sums of the form \sum $\alpha_{\sigma}u_{\sigma}$ where the α_{σ} lie in L.
	- σ∈G \circ Define a multiplication on B_f by $u_{\sigma} \alpha = \alpha(\sigma) u_{\sigma}$, and $u_{\sigma} u_{\tau} = a_{\sigma,\tau} u_{\sigma \tau}$, for $\alpha \in L$ and $\sigma, \tau \in G$.
- Theorem: B_f is a central simple k-algebra split at L, and, furthermore, choosing a different cocycle in the same cohomology class produces a k-isomorphic k-algebra.
	- \circ We need to check associativity, find an identity, check that the center is k, and show that it is simple. We will also verify that L is maximal and that the choice of cocycle does not matter.
	- \circ Associativity: One can compute from this definition that $(u_{\sigma}u_{\tau})u_{\rho} = a_{\sigma,\tau}a_{\sigma\tau,\rho}u_{\sigma\tau\rho}$ and $u_{\sigma}(u_{\tau}u_{\rho}) =$ $\sigma(a_{\tau,\rho})a_{\sigma,\tau\rho}a_{\sigma\tau\rho}$. But $a_{\sigma,\tau}a_{\sigma\tau,\rho}=\sigma(a_{\tau,\rho})a_{\sigma,\tau\rho}$ is precisely the multiplicative form of the cocycle condition, so the multiplication is associative.
	- \circ Identity: Since we assumed the cocycle was normalized, we have $a_{1,\sigma} = a_{\sigma,1} = 1$ for all $\sigma \in G$, so u_1 is an identity in G.
	- \circ Center is k: If $x = \sum$ $\sigma \in G$ $\alpha_{\sigma}u_{\sigma}$ is in the center, then $x\beta = \beta x$ for all $\beta \in L$ shows that $\sigma(\beta) = \beta$ if $\alpha_{\sigma} \neq 0$.

But since there is an element of L not fixed by σ (for any $\sigma \neq 1$), we get $\alpha_{\sigma} = 0$ for all $\sigma \neq 1$. Hence $x = \alpha_1 u_1$; then $x u_\tau = u_\tau x$ iff $\tau(\alpha_1) = \alpha_1$ for all $\tau \in G$, which just says that α_1 is fixed by the entire Galois group (i.e., is in k).

- \circ Simple: Let I be a nonzero ideal and take any $x = \alpha_{\sigma_1} u_{\sigma_1} + \cdots + \alpha_{\sigma_m} u_{\sigma_m}$ in I with the minimal number of terms. If $m > 1$ then there is an element $\beta \in L^{\times}$ with $\sigma_m(\beta) \neq \sigma_{m-1}(\beta)$. But then $x - \sigma_m(\beta) x \beta^{-1}$ is in I, but has zero u_{σ_m} term but nonzero $u_{\sigma_{m-1}}$ term. Hence $m=1$ and $x=\alpha u_{\sigma}$, and this element is a unit with inverse $\sigma^{-1}(\alpha^{-1})u_{\sigma^{-1}}$.
- \circ Cohomology representative does not matter: If $f' = \{a'_{\sigma,\tau}\}\$ is a different representative of the cohomology class of f , then the multiplicative form of the coboundary condition says that there exist elements $b_{\sigma} \in L^{\times}$ with $a'_{\sigma,\tau} = a_{\sigma,\tau}(\sigma(b_{\tau})b_{\sigma\tau}^{-1}b_{\sigma})$. Let φ be the L-vector space homomorphism defined by $\varphi(u'_{\sigma}) = b_{\sigma}u_{\sigma}$: then one can push symbols to see that $\varphi(u'_{\sigma}u'_{\tau}) = \varphi(u'_{\sigma})\varphi(u'_{\tau})$. Hence φ is a k-algebra isomorphism of B_f and $B_{f'}$.
- \circ Split at L: Upon identifying L with the elements αu_1 in B_f , we see that B_f is a k-algebra containing L, and has $[B_f : k] = [L : k]^2$. By our results earlier on central simple algebras, this tells us that L is a maximal subfield of B_f . Applying the theorem about $A \otimes_k B^{opp} \cong M_{r \times r}(B')$ with $A = B = B' =$ $B^{opp} = L$ shows that B_f splits at L.
- The above theorem tells us that $B(L/k)$ and $H^2(G, L^\times)$ are two groups which share the same elements. We should expect that they're actually isomorphic as groups, which indeed they are, but this requires a little more work.
	- If we start with the trivial cohomology class, we should end up with the trivial element of the Brauer group – namely, $M_{n\times n}(k)$ – and indeed, we do, although it requires some checking.
	- \circ Similarly, the addition in H^2 corresponds to tensor product; this takes a fair bit of additional effort.
	- \circ Remark: This result shows that every division ring D with center k such that $[D : k]$ is finite, is similar to some crossed product algebra. However, there exist (infinite-dimensional) division rings which are not isomorphic to crossed-product algebras.

6 Albert-Brauer-Hasse-Noether

- Theorem (Albert-Brauer-Hasse-Noether): If A is a central simple k-algebra, then $A \sim k$ if and only if $A_p \sim k_p$ for each prime p of k .
	- The forward direction is obvious (localization plays nice with matrices); the reverse direction is hard. I won't go into the proof, aside from mentioning that it uses the Hasse Norm Theorem.
	- \circ This is a "Hasse principle" sort of theorem: it tells us that if a central simple k-algebra splits at each prime p, then the algebra splits globally.
	- \circ For each prime p of k, there is a homomorphism $B(k) \to B(k_p)$ defined by $[A] \mapsto [k_p \otimes_k A]$. For m_p the local index of A at p (which I won't define here), we have $m_p = 1$ hence $[A_p] = 1$ for all but finitely many \frak{p} . So we have a well-defined homomorphism $B(k)\to\sum_{\frak{p}}B(k_{\frak{p}});$ the Albert-Brauer-Hasse-Noether theorem is precisely the statement that this map is injective.
- A stronger result, due to Hasse, fits this map into the following exact sequence: $1 \to B(k) \to \sum_{\mathfrak{p}} B(k_{\mathfrak{p}}) \stackrel{\text{inv}}{\to}$ $\mathbb{Q}/\mathbb{Z} \to 0$, where inv denotes the Hasse invariant map.
	- \circ Neukirch proves the exactness of this sequence first and then deduces the above results as corollaries.
	- \circ The usual method of doing it this way is to prove that $1 \to H^2(G_{L/k}, L^\times) \to \sum_{\mathfrak{p}} H^2(G_{L_{\mathfrak{p}}/k_{\mathfrak{p}}}, L_{\mathfrak{p}}^\times) \stackrel{\text{inv}}{\to}$ $\frac{1}{n}\mathbb{Z}/\mathbb{Z} \to 0$, for all finite cyclic extensions L/k of degree n.
	- Then apply the relation between H^2 and the Brauer groups (namely, $H^2(G_{L/k}, L^*) \cong B(L/k)$, and the same inside the direct sum) and then show that $B(k) = \bigcup_L B(L/k)$ where the union is taken over finite cyclic extensions of k.
- Corollary: For A a central simple K-algebra with local indices $\{m_{p}\}\$, then the order of [A] in $B(k)$ is lcm (m_{p}) .
	- ∞ Proof: We have $[A]^t = 1$ in $B(k)$ iff $[A_p]^t = 1$ in $B(k_p)$ for each p, but by the Hasse invariant we know that the order of $[A_p]$ in $B(k_p)$ is m_p .
- One can use the Grunwald-Wang theorem in concert with Albert-Brauer-Hasse-Noether to prove the following result: if k is a global field then the order of [A] in the Brauer group is equal to index[A] = $\sqrt{[A : k]}$.
- Another corollary of Albert-Brauer-Hasse-Noether is the following: For k a global field and D a division ring with center k, there exists a maximal subfield E of D which is a cyclic extension of k.

7 Schacher's paper

- Definition: If L/k is a finite extension of fields, then L is k-adequate if there is a division ring D with center k containing L as a maximal commutative subfield; otherwise L is k-deficient.
- Definition: A finite group G is k-admissible if there is a Galois extension L/k with Galois group G, and L is k-adequate.
- A k-division ring is a division ring D finite-dimensional over its center k. From earlier results we know that $[D : k] = n^2$ where $n = [E : k]$ is called the <u>degree</u> of D, and E is (any) maximal subfield.
- Let m be the order of $[D]$ in $B(k)$. We call k stable if $m = n$ for every k-division ring D; we just mentioned that Grunwald-Wang plus Albert-Brauer-Hasse-Noether shows that global fields are stable.
- Also from Albert-Brauer-Hasse-Noether, we know that D has a maximal subfield (in fact, the proof shows there are infinitely many nonisomorphic choices) which is cyclic over k . However, the theorem says nothing about what other maximal subfields are possible.
- Prop 2.1: If k is stable, then L is k-adequate iff $B(L/k)$ has an element of order $[L:k]$.

◦ Proof: denition chase.

- Prop 2.2: If k is stable, then L is k-adequate iff L is contained in a k-division ring.
	- \circ In other words, for stable fields, the maximality condition comes for free.
	- \circ Proof: If $k \subset L \subset D$, let M be a maximal subfield of D containing L. Then use the exact sequence $0 \to B(L/k) \to B(M/k) \to B(M/L)$ to get an element of the proper order in $B(L/k)$ from an element in $B(M/k)$.
- Now assume k is a global field and L is a finite Galois extension of k with $G = \text{Gal}(L/k)$ and $|G| = n$. We know that L is k-adequate iff $H^2(G, L^{\times})$ has an element of order n; since this group is abelian we need only determine if it has an element of order $p_i^{l_i}$ for each prime power $p_i^{l_i}$ in the factorization of n.
- Also recall we have the exact sequence $1 \to H^2(G_{L/k}, L^\times) \to \sum_{\mathfrak{p}} H^2(G_{L_{\mathfrak{p}}/k_{\mathfrak{p}}}, L_{\mathfrak{p}}^\times) \stackrel{\text{inv}}{\to} \frac{1}{n}\mathbb{Z}/\mathbb{Z} \to 0.$
- Prop 2.5: With notation as above, for p a prime and r an integer, $H^2(G, L^\times)$ contains an element of order p^r if and only if $n_q = [L_q : k_q]$ is divisible by p^r for two different primes q of k.
	- \circ Proof: Suppose $a \in H^2$ has order p^r . Write $a = a_{q_1} + \cdots + a_{q_r}$ for $a_{q_i} \in H^2(G_{L_q/k_q}, L_q^{\times})$ for some primes $\mathfrak{q}_1,\ldots,\mathfrak{q}_r$ of k. Then one of the a_{q_i} must have order divisible by p^r since the order of a is p^r – but the sum of the invariants being 0 forces at least one other of the a_{q_i} to be divisible by p^r as well. Then for these two, clearly $n_{q_i} = [L_{q_i} : k_{q_i}]$ is also divisible by p^r .
	- \circ Conversely, suppose that n_{q_1} and n_{q_2} are divisible by p^r . Then we can find $a_{q_1} \in H^2(G_{L_{\mathfrak{q}_1}/k_{\mathfrak{q}_1}}, L_{\mathfrak{p}_1}^{\times})$ and $a_{q_2} \in H^2(G_{L_{\mathfrak{q}_2}/k_{\mathfrak{q}_2}},L^{\times}_{\mathfrak{q}_2})$ with a_{q_1} having Hasse invariant $1/p^r$ and a_{q_2} having invariant $-1/p^r$. Then $a_{q_1} + a_{q_2}$ has order p^r in $H^2(G, L^{\times})$.
- Prop 2.6: With notation as above, if p^r is the highest power of p dividing n, then $H^2(G, L^\times)$ has an element of order p^r iff $G_q = \text{Gal}(L_q/k_q)$ contains a p-Sylow subgroup of G for two different primes q of k.
	- \circ This is just a restatement of 2.5, using the fact that G_q is a subgroup of G.
- Example (non-adequate extension): Let $k = \mathbb{Q}$ and $L = \mathbb{Q}(\zeta_8)$. Then $[L : k] = 4$ with Galois group the Klein 4-group. L is unramified at odd primes, hence G_p is either $\mathbb{Z}/2\mathbb{Z}$ or 0 for $p > 2$, and G_2 is the Klein 4-group. Hence by Prop 2.5, H^2 has no elements of order 4, so L is Q-deficient.
	- We can rephrase this result (using the equivalent criterion for adequacy) as: any division ring with center $\mathbb Q$ containing a root of $x^4 + 1$ is infinite-dimensional.
- As one might expect, it seems like it would not be too hard to work out these computations in examples with reasonably nice Galois groups – things like $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ or $\mathbb{Q}(\zeta_n)$ – to see which ones are Q-adequate.
- Theorem (Schacher): If G is Q-admissible, then every Sylow subgroup of G is metacyclic (i.e., is a cyclic extension of a cyclic group). For abelian groups, the converse also holds.
	- One might guess that, based on some examples, every Q-admissible group is solvable, but this is not true: S_5 is also Q-admissible.
	- \circ If we allow ourselves to raise the base field away from \mathbb{Q} , we can get other groups. In fact....
- Theorem (Schacher): For any finite group G , there exists a number field k such that G is k-admissible.
- o The situation does not carry over to function fields: many groups are not admissible over any global field of nonzero characteristic. For example....
- Theorem (Schacher): For k a global field of characteristic p, then if G is k-admissible then every q -Sylow subgroup of G is metacyclic for $q \neq p$.
	- \circ In particular, S_9 is not admissible over any function field, as both its 2-Sylow and 3-Sylow subgroups are not metacyclic.