
Artin L-Functions and Arithmetic Equivalence (Evan Dummit, September 2013)

1 Intro

• This is a prep talk for Guillermo Mantilla-Soler's talk.

• There are approximately 3 parts of this talk:

◦ First, I will talk about Artin L-functions (with some examples you should know) and in particular try to
explain very vaguely what �local root numbers� are. This portion is adapted from Neukirch and Rohrlich.

◦ Second, I will do a bit of geometry of numbers and talk about quadratic forms and lattices.

◦ Finally, I will talk about arithmetic equivalence and try to give some of the broader context for Guillermo's
results (adapted mostly from his preprints).

• Just to give the �avor of things, here is the theorem Guillermo will probably be talking about:

◦ Theorem (Mantilla-Soler): Let K,L be two non-totally-real, tamely rami�ed number �elds of the same
discriminant and signature. Then the integral trace forms of K and L are isometric if and only if for all
odd primes p dividing disc(K) the p-local root numbers of ρK and ρL coincide.

2 Artin L-Functions and Root Numbers

• Let L/K be a Galois extension of number �elds with Galois group G, and ρ be a complex representation of
G, which we think of as ρ : G→ GL(V ).

• Let p be a prime of K, P|p a prime of L above p, with kL = OL/P and kK = OK/p the corresponding residue
�elds, and also let GP and IP be the decomposition and inertia groups of P above p.

• By standard things, the group GP/IP ∼= G(kL/kK) is generated by the Frobenius element FrobP (which in
the group on the right is just the standard q-power Frobenius where q = Nm(p)), so we can think of it as
acting on the invariant space V IP .

• De�nition: With L/K as above and ρ a complex representation of G, the corresponding Artin L-series is

L(s; L/K, ρ) =
∏

p∈OK

[
det(1− FrobP ·Nm(p)−s)

]−1
.

◦ Although the notation suggests the de�nition might depend on our choice of the prime P lying over p, it
actually doesn't: Galois acts transitively on the primes over p � so choosing a di�erent one will at most
change FrobP by conjugation, which will not a�ect the determinant.

◦ The series gives an analytic function for Re(s) > 1 in the usual way.

◦ By the usual character theory, L(s; L/K, ρ) only depends on the character χ associated to ρ, so we will
often write L(s; L/K, χ) instead (when convenient).

• The general Artin L-series has some special cases which might be more familiar:

◦ If we take ρ to be the trivial representation of G, it is easy to see that we end up with the Dedekind zeta

function ζK(s) =
∏

p∈OK

[
1−Nm(p)−s)

]−1
=
∑

p∈OK

1

Nm(p)s
.

◦ If we take L = Q(ζm), K = Q, so that G ∼= (Z/mZ)×: then a 1-dimensional representation ρ is the same
as a Dirichlet character χ : (Z/mZ)× → C∗. Class �eld theory then tells us what Frobenius does, and we

see that Artin L-series here reduces to the Dirichlet L-series L(s, χ) =
∏
p

(1− χ(p) · p−s)−1 =

∞∑
n=1

χ(n)

ns
.

◦ Now, both of these special cases have a nice representation as a sum (as well as being nice Euler products).
One might ask whether the general Artin L-series also has a nice representation as a sum � unfortunately,
it doesn't.

• The L-series behaves nicely in the ways one would expect:

◦ If χ1 and χ2 are two characters, then L(s; L/K, χ1 + χ2) = L(s; L/K, χ1) · L(s; L/K, χ2).



◦ If L′/L/K is a tower with χ a character of G(L/K), then L(s; L′/K, χ) = L(s; L/K, χ).

◦ If L/M/K is a tower and χ a character of G(L/M) and χ∗ the character induced on G(L/K), then
L(s; L/M, χ) = L(s; L/K, χ∗).

• One can generalize the de�nition further, by making the observation that a representation of Gal(L/K) is
really the same thing as a continuous representation of Gal(K̄/K) � or, by inducing appropriately, a continuous
representation of GQ̄ � so we can extend the de�nition to give a general Artin L-series attached to an arbitrary
Galois representation. (I won't bother to write it down since the �avor is the same as what I already wrote.)

◦ A typical example would be: if E is an elliptic curve over K, then the absolute Galois group of K acts
on the l-Tate module Tl(E) and gives us a nice l-adic Galois representation, whose Artin L-function we
can then write down � in this case, it is closely related to the zeta function of the curve.

• Now, if this product has any business being called an L-series, it should have a functional equation.

◦ As usual, we need to �nd the appropriate gamma functions (and such) to deal with the in�nite places.
The resulting �in�nite part� L∞ is basically the same as for other L-series, and we don't actually really
care about the details here.

◦ We also have to �x any �modularity� issues with the representation ρ, so we also need to �nd an integer
A(ρ) that solves those issues; the resulting A(ρ) will only be divisible by the primes at which ρ is rami�ed.

◦ We obtain a completed Artin L-series Λ(s; L/K, χ) = A(ρ)s/2 · L∞ · L, and it satis�es a functional
equation Λ(s; L/K, χ) = W (χ) · Λ(1− s; L/K, χ̄), where W (χ) is a constant of absolute value 1.

• This constant W (χ) (which may be familiar in the context of elliptic curves: it is the �sign of the functional
equation�) is itself the product of local factors W (χv) called local root numbers: these are what we are
interested in.

◦ The local root numbers are complex numbers of absolute value 1, and W (χv) = 1 whenever v is unram-
i�ed.

◦ There are formulas of Deligne and others which give more explicit formulas for the local root numbers.

3 Quadratic Forms and Lattices

• Now I will discuss elementary things in the geometry of numbers.

• First, recall the basic equivalences from linear algebra regarding quadratic forms and bilinear forms:

◦ If q is a quadratic form on a vector space V , then q can be uniquely written as q(x) = xTAx for a

symmetric matrix A. (e.g., x2 + 2xy + 2y2 is associated to A =

(
1 1
1 2

)
.)

◦ If q is a quadratic form, then 〈x, y〉 =
q(x+ y)− q(x)− q(y)

2
is a symmetric bilinear form with matrix

A, and vice versa (given a bilinear form 〈x, y〉, the associated quadratic form is 〈x, x〉).
◦ I will often implicitly equate all of these ways of thinking about quadratic forms.

◦ A quadratic form is nondegenerate if none of the eigenvalues of its associated matrix are zero.

• Also recall that a lattice in Rn is a subgroup Λ generated by some (R-linearly independent) basis vectors
v1, · · · , vm.

◦ Observe that R-linear independence implies that Λ is discrete, thus avoiding silliness like Z + Z
√

2.

◦ Usually our lattices will have full rank (i.e., rank n), in which case the lattice has a fundamental domain

whose volume will be equal to |D|1/2 where D = det(〈vi, vj〉) by standard linear algebra: if A is the
change-of-basis matrix sending the vi to the standard basis elements ei, then vol(Λ) = |det A|, and
A = DDT .

◦ The lattice carries a natural bilinear form (hence by the above, an associated quadratic form), namely
the dot product inherited from Rn. If the lattice has full rank then the associated quadratic form will
be nondegenerate.



◦ Two lattices are isometric if there exists a volume-preserving map between them (i.e., an isometry).
Equivalently, they are isometric if there exists an orthogonal matrix which conjugates their corresponding
matrices to one another. (This should be familar in the speci�c example of elliptic curves over C as lattices
in C up to isometry.)

• If K/Q is a number �eld of degree n, let σ1, · · · , σr be the real embeddings of K and τ1, · · · , τs, τ̄1, · · · , τ̄s be
the 2s complex embeddings of K.

◦ We have a natural bilinear form associated to K (the rational trace form), namely 〈·, ·〉 : K ×K → Q
de�ned by 〈x, y〉 = trQ(xy) =

∑
σ

σ(xy).

◦ We also have a natural map j : K → Rn via x 7→ (σ1(x), · · · , σr(x),Re(τ1(x)), · · · ,Re(τs(x)), Im(τ1(x)), · · · ,Re(τs(x))).
Since n = r + 2s we see this is a map into Rn.

• De�nition: The image of OK under this map j yields a rank-n sublattice of Rn, called the Minkowski lattice
of K.

◦ Up to some factors of 2 (resulting from the fact that we took real and imaginary parts), the fundamental
domain of the Minkowski lattice has volume equal to

√
|DK |, by the remark above, since the entries

in the matrix are precisely those used in the de�nition of the discriminant. (Speci�cally, the volume is
2−s
√
|DK |.)

◦ Example: The Gaussian integers inside C = R2 are the Minkowski lattice of Q(i). The discriminant of
this number �eld is −4, and the volume of the fundamental domain is 1, and indeed 1 = 2−1 ·

√
|−4|.

• De�nition: The integral trace form is the restriction of the rational trace form to the ring of integers of K:
thus, it is the map 〈·, ·〉 : OK ×OL → Z with 〈x, y〉 = trK/Q(xy).

◦ The signature of the integral trace form is equal to the number of real embeddings of K.

◦ The integral trace form carries strictly more information than the rational trace form.

4 Arithmetic Equivalence (and related things)

• Perlis in the 1970s proved that if two number �elds have the same zeta function (such �elds are called
arithmetically equivalent), then their degrees, discriminants, and signatures are equal.

◦ Arithmetically �elds are not necessarily isomorphic: for example, there exists a pair of nonisomorphic
�elds of degree 8 which are arithmetically equivalent.

◦ Indeed, Perlis gave a criterion for arithmetic equivalence: if K,L are number �elds and N is the Galois
closure of KL/Q, then K and L are arithmetically equivalent i� Gal(N/K) and Gal(N/L) are �almost
conjugate� subgroups of Gal(N/Q).

• The context is as follows: If K/Q has degree n, then ζK is the L-function of the permutation representation
ρK of GQ, so we can think of ρK as an element of H1(Q, Sn). The inclusion ι : SN → On(Q̄) induces a map
of pointed sets ι∗ : H1(Q, Sn)→ H1(Q, On) (where On is the group of orthogonal matrices).

• But the cohomology group H1(Q, On) classi�es isometry classes of nondegenerate rational quadratic forms of
dimension n.

◦ This is an example of Galois descent; here is a sketch of the argument from Serre's book on local �elds
book.

◦ Let V be any Q-vector space and x ∈ [⊗pV ]⊗ [⊗qV ∗] be a �xed tensor of type (p, q)

◦ De�ne the set �E(K/Q)� of Q-isomorphism classes of pairs (V ′, x′) that are K-isomorphic to (V, x) �
that is, if they are isomorphic after tensoring with K.

◦ Also de�ne AK to be the group of K-automorphisms of (VK , xK) obtained by tensoring with K.

◦ Then it is a moderately exciting cocycle computation to construct a bijection between E(K/k) and
H1(Gal(K/Q), AK).

◦ In our case, if we take x to be a nondegenerate rational quadratic form, then E(K/Q) is the set of classes
of quadratic forms that are K-isomorphic to it, and the group AK is the group of orthogonal matrices
with K-coe�cients.



• So now we can ask: what quadratic form corresponds to ι∗(ρK)?

◦ The answer turns out to be: it is the rational trace form tr(xy). By invoking Chebotarev, we see that two
arithmetically equivalent number �elds will have the same rational trace form, up to some orthogonal
matrix (i.e., up to isometry).

◦ The converse to this result is not true: two number �elds can have the same integral trace form, but not
even the same discriminant.

• At this point, there are a variety of questions that one might ask: What hypotheses are needed to make �equal
trace forms� imply �arithmetically equivalent�? And exactly what else does the integral trace form tell us?

◦ These and related questions are what Guillermo will be talking about.

• Theorem (Mantilla-Soler): Let K,L be two non-totally-real, tamely rami�ed number �elds of the same dis-
criminant and signature. Then the integral trace forms of K and L are isometric if and only if for all odd
primes p dividing disc(K) the p-local root numbers of ρK and ρL coincide.

◦ The punchline is: a particular Stiefel-Whitney invariant gives a connection between the root numbers
and the integral trace form. Then everything (seems to?) reduce down to using some formulas for the
root numbers and some group cohomology arguments.


