
Kakeya Sets: The Paper: The Talk

1 Outline

• I aim to cover roughly the following things:

1. Brief history of the Kakeya problem in analysis

2. The �nite-�eld Kakeya problem >�> Dvir's solution

3. Kakeya over non-Archimedean local rings >�> my and Marci's work

2 Kakeya in Analysis

• A Kakeya (needle) set is a subset of the plane R2 inside which it is possible to rotate a needle of length 1
completely around.

◦ Obvious example: A circle of diameter 1, area
π

4
.

◦ Less obvious example: A deltoid, area
π

8
.

• Question (�Kakeya needle problem�): How small (in measure) can a Kakeya needle set be?

◦ Originally asked by Soichi Kakeya in 1917, for a convex set. (That problem was also solved, although I
don't know what the answer is.)

◦ Answer (Besicovitch, 1919): Arbitrarily small measure.

◦ Construction is fairly geometric: general idea is to divide up the region into smaller pieces, then translate
the pieces so they overlap a lot. End result is a sort of spiky-triangle shape.

◦ It is also possible to adjust the construction so as to keep the Kakeya set simply-connected and still have
arbitrarily small measure.

• If we reformulate the problem slightly, to say a Kakeya set is one containing a unit line segment in every
possible direction, then one can construct a Kakeya set of measure zero.

• Followup question 1: Are there Kakeya sets of measure zero in Rn? (yes: just take the product of a 2-
dimensional set with a unit segment.)

• Followup question 2 (�Kakeya conjectures�): �How small� of a measure zero set can a Kakeya set be? In other
words, must a Kakeya set in Rn actually be n-dimensional (Hausdor� or Minkowski), or could its dimension
be less than n?

◦ Answer: In the plane, a Kakeya set must be 2-dimensional. (This is a not easy theorem.)

◦ For higher dimensions, only lower bounds are known. Example: Terry Tao and (Nets) Katz showed that
a Kakeya set in Rn must have dimension at least (2−

√
2)(n− 4) + 3.

• Some other remarks:

◦ Kakeya sets have some uses in harmonic analysis, and are of interest to analysts. There is also a related
Kakeya maximal function, which I don't know anything about, that is also interesting.

◦ Example: A theorem of Fe�erman uses Kakeya sets to show that certain truncated Fourier integrals need
not converge in Lp norm for p 6= 2. Barry Mazur told me that Fe�erman's result partly explains �why
L2 is the best Lp space�.



3 Finite-Field Kakeya

• In 1999, Thomas Wol� posed a reformulation of the Kakeya problem in a �nite �eld setting.

• Wol�'s ��nite-�eld Kakeya problem� asks: For Fq a �eld, we de�ne a Kakeya set in (Fq)n to be a (�nite) set
which contains a line in every possible direction.

◦ Here, a line through x in the direction of y is the set of points x+ t y as t runs through the elements of
Fq.
◦ So in this context, a Kakeya set is a set K such that, for every y ∈ Fnq there exists x ∈ Fnq such that
x+ ty ∈ K for all t ∈ Fq.

• Wol� conjectured that a Kakeya set in Fnq must contain at least cn·|Fq|
n
points, for some constant cn depending

only on n (and not on q).

• Several authors proved lower bounds on the order of q4n/7 using fairly di�cult methods in additive number
theory, before Zeev Dvir proved the full conjecture in roughly one page in 2008 using very elementary algebraic
geometry.

• Theorem (Dvir): If K is a Kakeya set in Fnq , then |K| ≥
(
n+ q − 2

n

)
≥ 1

n!
· qn.

• Proof:

◦ Suppose otherwise, and take K to be a Kakeya set of size less than

(
n+ q − 2

n

)
. Then the collection of

polynomials in Fq[x1, · · · , xn] of degree at most q−1 is a vector space of dimension

(
n+ q − 2

n

)
> |K|,

so there exists a nonzero polynomial P ∈ Fq[x1, · · · , xn] of degree at most q − 1 such that P (x) = 0 for
all x ∈ K.

◦ Write P =

q−1∑
i=0

Pi, where Pi is homogeneous of degree i, and �x y ∈ Fnq .

◦ Since K is a Kakeya set, for any y ∈ Fnq there exists b ∈ Fnq for which P (b + ty) = 0 for all t ∈ F. For
�xed b and y, this is a polynomial of degree q − 1 in the variable t which vanishes for q di�erent values
of t. Hence this polynomial in t is identically zero, and so in particular its coe�cient of tq−1 is zero.
Expanding shows this is just Pq−1(y).

◦ Therefore, Pq−1(y) = 0 for every y ∈ Fnq . However, this can only happen if Pq−1 is the zero polynomial �
to see this, just use the division algorithm with respect to x1, then x2, up through xn, and the fact that
Pq−1 has degree less than q.

◦ Now repeat the above argument for each of Pq−2, . . . , P1 to see that P must be a constant, hence the
zero polynomial. Contradiction.

◦ Hence |K| ≥
(
n+ q − 2

n

)
=

(q + n− 2)(q + n− 3) · · · (q − 1)

n!
≥ 1

n!
· qn for n ≥ 4.

4 Non-Archimedean Kakeya, interlude

• In 2010, Jordan along with Richard Oberlin and Terry Tao wrote a paper reviewing the Kakeya problem over
�nite �elds. Others had shown that the constant in Dvir's estimate is not sharp � it can be improved to(
1

2
+ o(1)

)n
, which EOT thought likely to be optimal, perhaps up to removing the o(1).

• If we take the probability measure on Fnq (so that the whole space has measure 1) then Dvir's result says

that the measure of a Kakeya set in Fnq is at least
1

n!
, which is positive. (This is in opposition to the case of

Kakeya sets over the reals, which can have zero measure.)



• In section 4.20 of their paper, EOT discuss the analogy between the �nite-�eld Kakeya problem and the real
one. Part of the reason that the �nite-�eld results might not capture useful information about the problem
over R is the lack of �multiple scales�: over Fnq there is no useful idea of a distance between points and lines �
either two points are the the same, or they are not � while over R there is a very strong notion of distance.

• EOT suggested considering Kakeya sets over other rings which do have some notion of �distance�, such as the
�nite rings Z/pnZ and Fq[t]/tn. Over these rings we can pose the Kakeya conjecture since we have a notion
of dimension.

• Even better would be to consider the in�nite rings Zp and Fq[[t]], which are complete and thus seem much
closer to R.

• EOT also observed that although the measure of a Kakeya set in Fnq is always positive, the best known bound
nevertheless goes to zero as n goes to ∞. They therefore asked whether, perhaps, there might be a Kakeya
set of measure zero lurking in the completion Fq[[t]].

5 My actual stu�

• Let R be an in�nite ring admitting a Haar measure µ such that µ(R) is �nite.

• A line with direction vector v ∈ Rn through the point x ∈ Rn consists of the elements in Rn of the form
x+ tv as t runs through the elements of R.

• A Kakeya set in Rn is a subset of Rn which contains (all the points on) at least one line with each possible
direction vector.

• For a �nite ring R, the Minkowski dimension of a set E ⊂ Rn is de�ned as
log |E|
log |R|

. The natural analogue

of the Minkowski dimension of a compact subset E ⊂ Fq[[t]]n is lim
k→∞

log |Ek|
log |Fq|k

, where Ek is the image of the

projection of E onto Fq[[t]]/tk. (Similarly, for E inside Znp .)

• Theorem 1 (�, Habliscek): For all n > 1, there exists a Kakeya set E ⊂ Fq[[t]]n of measure 0.

• Theorem 2 (�, Habliscek): The Minkowski dimension of any Kakeya set in Fq[[t]]2 or Z2
p is 2.

5.1 Sketch of Theorem 1 (Measure Zero)

• I construct a Kakeya set K of measure zero in Fq[[t]]2; to get one in a higher dimension just take K×Fq[[t]]n−2.

• I refer to a nonzero direction vector v = (a, b) in Fq[[t]]2 as nonreduced if t divides both a and b, and as
reduced otherwise. It is obvious that any line with nonreduced direction vector v passing through (x, y) is
contained in the line with direction vector v/t through (x, y); thus, we need only consider reduced direction
vectors.

• Every nonzero reduced direction vector is of the form (1, b) or (b, 1). So we need only �nd a set E of measure
zero containing a line with direction vector (1, b) for each b ∈ Fq[[t]]; then K = {(x, y) : (x, y) or (y, x) ∈ E}
still has measure zero, and is Kakeya.

• Notation:

◦ For any a ∈ Fq[[t]], let ai denote the coe�cient of ti.

◦ For any a ∈ Fq[[t]], de�ne the element a∗ ∈ Fq[[t]] by

a∗i =

{
0 if i = 2k − 2 for some natural number k,

ai+1 otherwise.



• Here is the construction: de�ne

E = {(x, y) ∈ Fq[[t]]2 : ax+ y = a∗ for some a ∈ Fq[[t]]}.

◦ To see that this contains the required lines, observe that, for any b ∈ Fq[[t]], the points (x, y) = (0,−b∗)+
s(1, b) are contained in E, as s ranges over Fq[[t]], since (−b)s+ (−b∗ + bs) = (−b)∗.
◦ It only remains to prove that E has measure zero (which is, obviously, the hard part).

• We can see that (x, y) ∈ E if and only if there exist ai ∈ Fq for all i ≥ 0 such that the coe�cients of x and y
satisfy the following in�nite system:

a0x0 + y0 = 0, [0]

a1x0 + a0x1 + y1 = a2, [1]

a2x0 + a1x1 + a0x2 + y2 = 0, [2]

...

anx0 + an−1x1 + · · ·+ a0xn + yn = a∗n, [n]

...

• For an arbitrary element (x, y) ∈ Fq[[t]]2, de�ne sn(x, y) to be the number of tuples (a0, . . . , an) ∈ Fn+1
q

satisfying the �rst n equations; observe that sn(x, y) only depends on {x0, y0, . . . , xn, yn}. Clearly if sn(x, y) =
0 for any integer n, then (x, y) 6∈ E, and sk(x, y) = 0 for all k > n, so µ ({(x, y)|sn(x, y) = 0}) is non-decreasing
as n→∞. We show this measure tends to 1 as n→∞.

• Observe that the equations at any stage are linear in the ai. Moreover, for i not of the form 2k − 2 for some
integer k, Equation [i] states ai+1 = aix0 + ai−1x1 + ... + a0xi + yi, and so we may reduce our system of
equations by eliminating ai+1. Basic linear algebra then implies that s2k−2(x, y) is either zero or ql for some
integer l ≤ k.

• Now we do a somewhat unconscionable amount of polynomial arithmetic to show the following:

• Lemma: If for a given {x0, x1, · · · , x2n−2} and {y0, y1, · · · , y2n−2} we have s2n−2(x, y) = ql, and {x2n−1, y2n−1, ..., x2n+1−2, y2n+1−2}
are randomly and uniformly chosen from Fq, then

s2n+1−2(x, y) =


0 with probability q−1

ql+2 ,

ql with probability 1− 1
ql+1 ,

ql+1 with probability 1
ql+2 .

• What this says is that we have a Markov chain [DRAW PICTURE!] on the points 0, 1, q, q2, · · · such that a
positive proportion of measure, independent of time, at each nonzero point is sent to 0. One can also easily
check that the expected value does not change over time. Since the expected value at time zero is 1, and
eventually (by a trivial induction) the measure at ql points goes to zero, we see that the measure concentrated
at 0 must go to 1 as n→∞.

• Remark: Using a more intricate analysis (which is surprisingly di�cult despite the fact that everything is

totally explicit!), one can prove that at time t, the measure away from 0 is� ln(t)

t
, for an explicitly computable

constant that depends only on q.

5.2 Sketch of Theorem 2 (Minkowski Dimension)

• Theorem 2 (�, Habliscek): The Minkowski dimension of any Kakeya set in Fq[[t]]2 or Z2
p is 2.

• Proposition: Let E be a Kakeya set in R2 where R = Fq[t]/tk or Z/pkZ. Then |E| ≥ |R|
2

2k .



◦ Enumerate the lines by their �coe�cients� � take Li to be any line with equation αix + y = bi where
αi ≡ i mod pk. (Do the same thing for R = Fq[t]/tk by reading polynomials in base q.)

◦ We prove the proposition essentially by a counting argument. Given two lines in R2 with equations
Li : αix+y = bi and Lj : αjx+y = bj with i 6= j, we see that if (x0, y0) ∈ Li∩Lj then (αi−αj)x0 = bi−bj .
Hence if v(αi − αj) = l, then the number of possible values for x0 cannot exceed |m|l, where v is the m-
adic valuation. In particular, since the value of x0 determines the value of y0, the size of the intersection
|Li ∩ Lj | is at most |m|l = |m|v(αi−αj).

• Lemma: For the function f(u) :=
∑u
i=1 m

v(αi), we have f(u) ≤ u ·
⌈
log|m|(u)

⌉
. In particular, for u ≤ |m|k/k =

|R|/k, we have f(u) ≤ |R|.

◦ Proof: Just count the number of terms for which v(αi) = w.

• Proof of Prop: Apply inclusion-exclusion by writing our Kakeya set E as the union of a bunch of lines, and
subtracting away their possible intersections.

◦ For l =
⌊
|R|
k

⌋
we have

|E| ≥ | ∪l+1
j=1 Lj | ≥

l+1∑
j=1

(
|Lj | −

j−1∑
i=1

|Li ∩ Lj |

)

◦ Now look at the terms in the sum. We have |Lj |−
∑j−1
i=1 |Li∩Lj | = |R|−

∑j−1
i=1 mv(αj−αi) = |R|−f(j−1).

◦ Now just sum and use the upper bound on f from the lemma. The result follows.

• Proof of Theorem:

◦ Suppose E is a Kakeya set in Fq[[t]] or Zp. Then its projection Ek to R = Fq[t]/tk or Z/pkZ is also
Kakeya.

◦ By the proposition, we have |Ek| ≥
|R|
2k

.

◦ Then the Minkowski dimension of Ek is at least 2− log(2k)

k log(|m|)
.

◦ So for �xed p or q, as k →∞ this bound goes to 2. Hence result.


