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The p-Adic Numbers

Outline of Talk

| will start by motivating the p-adic numbers with some curious,
and totally illegal, infinite sum calculations.

Then | will give the actual definition of the p-adic numbers, and
illustrate various kinds of calculations with them.

Next, | will talk about some of the unusual and neat analytical and
topological properties of the p-adic numbers.

Finally, time permitting, | will try to describe some uses of the
p-adic numbers in number theory.
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How To Sum Geometric Series, |

Consider the geometric series

1 1 1
— 14+ ..
S=1ldg+ +5+

@ As we all presumably remember, this series converges and its
sum is 2. To (re)determine this, just note that

15_1+1+1+1+
27 2 4 8 16

and so subtracting and cancelling common terms yields
1
S--5=1
2

from which we see S = 2.
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How To Sum Geometric Series, |l

The same approach works for the more general geometric series
S=1l+r+r+r+-.

Namely, just multiply it by r and then subtract from the original.
Explicitly, we have

S = 14r+r2+r3+r%+.-.
rS = r+rP4+rr 4+t

and so subtracting and cancelling yields S — rS = 1 from which

S=1/(1-r).



The p-Adic Numbers

How To Sum Geometric Series, Il

Of course, these manipulations are only valid under the assumption
that the original series

S=1+4r+rP4+r34+...

converges!.

@ Since (as one may check) the geometric series S only
converges when |r| < 1, the derivation of the formula
L+r+r>+r34---=1/(1—r)is only valid for |r| < 1.

@ In particular, it is completely illegal to do something like
setting r = 2, or r = 10, in that formula.

! Actually, to do the cancellations without changing the value requires
absolute convergence, but geometric series converge only when they converge
absolutely, so it's fine.
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How NOT To Sum Geometric Series, |

So let's set r = 2 in that formula: it yields
1+2+4+8+16+---=1/(1—-2)=—1.

[Pause here for the audience to express shock and horror.]
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So let's set r = 2 in that formula: it yields
1+2+4+8+16+---=1/(1—-2)=—1.

[Pause here for the audience to express shock and horror.]

@ This is clearly nonsense for several reasons: first, the left-hand
side is a sum of a bunch of positive integers (which goes to
+00) while the right-hand side is negative!

@ Completely ridiculous! There is absolutely no scenario in
which this calculation could possibly be correct.
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How NOT To Sum Geometric Series, |

So let's set r = 2 in that formula: it yields
1+2+4+8+16+---=1/(1—-2)=—1.

[Pause here for the audience to express shock and horror.]

@ This is clearly nonsense for several reasons: first, the left-hand
side is a sum of a bunch of positive integers (which goes to
+00) while the right-hand side is negative!

@ Completely ridiculous! There is absolutely no scenario in
which this calculation could possibly be correct.

@ Except... the whole point of this talk is to demonstrate how
this calculation can be made meaningful and valid.
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How NOT To Sum Geometric Series, Il

To give some motivation, let's instead take r = 10: it yields
1+ 10+ 100 + 1000 4 10000 + --- =1/(1 —10) = —1/9.

[Pause here for audience to express slightly more shock and

horror.]
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How NOT To Sum Geometric Series, Il

To give some motivation, let's instead take r = 10: it yields
1+ 10+ 100 + 1000 4 10000 + --- =1/(1 —10) = —1/9.

[Pause here for audience to express slightly more shock and
horror.]

@ This one is even worse than the one with r = 2, because now
the right-hand side isn't even an integer.

@ Somehow, that seems even less reasonable than the sum
coming out to be negative. To fix that, let's multiply it by 9.
That gives

9+ 90 + 900 + 9000 + 90000 + - - - = —1.
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How NOT To Sum Geometric Series, Il

So let's see if we can make any sense out of

9 + 90 + 900 + 9000 + 90000 + - - - = —1.

@ Being as charitable as possible, try imagining that the sum on
the left actually makes sense. If we just add up a few terms,
we get numbers like 9, 99, 999, 9999, 99999, ....

@ So the limit would then be a number whose base-10 expansion
(all 9s) just keeps going, like this:
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How NOT To Sum Geometric Series, Il

So let's see if we can make any sense out of

9 + 90 + 900 + 9000 + 90000 + - - - = —1.

@ Being as charitable as possible, try imagining that the sum on
the left actually makes sense. If we just add up a few terms,
we get numbers like 9, 99, 999, 9999, 99999, ....

@ So the limit would then be a number whose base-10 expansion
(all 9s) just keeps going, like this:

..999999999999999999999999999999999999999999999999999999999999999

@ Now, the ludicrous claim is that this weird number equals —1.
So let's try adding 1 to it.



The p-Adic Numbers

How NOT To Sum Geometric Series, 1V

Here we go, adding:

...999999999999999999999999999999
+ 1




The p-Adic Numbers

How NOT To Sum Geometric Series, 1V

Here we go, adding:

1
...999999999999999999999999999999

+ 1
0
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How NOT To Sum Geometric Series, 1V

Here we go, adding:

11
...999999999999999999999999999999

+ 1
00
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How NOT To Sum Geometric Series, 1V

Here we go, adding:

111
...999999999999999999999999999999

+ 1
000
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How NOT To Sum Geometric Series, 1V

Let's jump ahead about ten steps:

1111111111111
...999999999999999999999999999999

+ 1
0000000000000
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How NOT To Sum Geometric Series, 1V

The pattern is pretty clear, right? Just keep going forever:

11111111111111111111111111111
...999999999999999999999999999999

+ 1
...000000000000000000000000000000
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How NOT To Sum Geometric Series, V

So what does this tell us?

@ It sure looks like if we add 1 to the number
...99999999999999, we get the number ...00000000000000.

@ And if a string of a bunch of zeroes means anything, that last
number is just 0.

@ So to summarize, if we add 1 to
9 4 90 + 900 + 9000 + 90000 + - - -, we get 0.

@ Thus subtracting 1 yields the conclusion
9 + 90 + 900 + 9000 4 90000 + - - - = —1, as claimed.
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How NOT To Sum Geometric Series, V

So what does this tell us?

@ It sure looks like if we add 1 to the number
...99999999999999, we get the number ...00000000000000.

@ And if a string of a bunch of zeroes means anything, that last
number is just 0.

@ So to summarize, if we add 1 to
9 4 90 + 900 + 9000 + 90000 + - - -, we get 0.

@ Thus subtracting 1 yields the conclusion
9 + 90 + 900 + 9000 4 90000 + - - - = —1, as claimed.

Mental exercise for you: redo this calculation but with base-2
expansions to “explain” why 1+2+4+8+16+--- = —1.
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Towards the p-adics, |

In order to make calculations like the ones we just did meaningful,
we need to describe a place in which the infinite sum
1+24+448+16+4 -, actually converges in a meaningful way.

e Going with this idea, recall? that an infinite series can
converge only if its terms eventually become small.

@ So we are looking for a way to measure the “size” of an
integer, in such a way that the powers of 2 become small in
size as we take higher and higher powers of 2.

@ Of course, we could just define an arbitrary “size” function on
integers, but we want this size function to behave nicely.

@ So, what conditions do we want?

2More formally, this is sometimes called the “nth term test for divergence”:
if the terms a, do not have limit zero as n — oo, then the infinite sum
ai + a2 + az + - -- cannot converge.
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We can take some cues from a size function that already exists:
the usual absolute value |n|.

@ Of course, this absolute value doesn’t have the property that
powers of 2 have small size, since |2"| = 2" grows large as
n — oo, rather than going to 0.

@ But it does have lots of other nice properties. Here are some
particularly good ones:

(1) The absolute value is positive except at 0: |a| > 0 with
equality only for a = 0.

(2) The absolute value is multiplicative: |ab| = |a||b| for any
integers a and b.

(3) The absolute value satisfies the triangle inequality:
|a+ b| < |a| + |b]| for any integers a and b.
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So, let's see if we can cook up an absolute-value-like function | - |2
on integers that has those same three properties

(1) |ala2 > 0 with equality only for a = 0.

(2) |abla = |a|2|b]2 for any integers a and b.

(3) |a+ bl2 < |al2 + |b|2 for any integers a and b.
and also has the property that |2"| — 0 as n — oo.
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Towards the p-adics, Il

So, let's see if we can cook up an absolute-value-like function | - |2
on integers that has those same three properties

(1) |ala2 > 0 with equality only for a = 0.

(2) |abla = |a|2|b]2 for any integers a and b.

(3) |a+ bl2 < |al2 + |b|2 for any integers a and b.
and also has the property that |2"| — 0 as n — oo.

@ Since the absolute value is multiplicative, to make |27, — 0
as n — 0o, we want to have [2|> < 1.

@ So let's try, arbitrarily, taking |2|o = 1/2. Then |2"|> would be
1/2", which certainly goes to zero very fast.

@ But what should we do with the other integers? By thinking
about prime factorizations, it's enough to decide what to do
with the other prime numbers.
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Towards the p-adics, IV

Here's a really lazy idea: take |p|o = 1 for all of the other prime
numbers aside from p = 2.

[Pause to allow audience to appreciate the laziness.]
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Towards the p-adics, IV

Here's a really lazy idea: take |p|o = 1 for all of the other prime
numbers aside from p = 2.
[Pause to allow audience to appreciate the laziness.]

o Using multiplicativity, if n = 2Kq where g is odd, then we are
defining |n| = 1/2%, and also |0 = 0. Certainly it has a
simplicity to it, but does it satisfy our requirements?

(1) |al2 > 0 with equality only for a = 0.
(2) |ab|a = |a|2]b|2 for any integers a and b.
(3) |a+ bl2 < |al2 + |b|2 for any integers a and b.

e Certainly (1) and (2) are fine, but what about (3)? Let's try
some examples to check.
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With our absolute value |n| = 1/2k for n = 2kg where g is odd,
let’s try out the triangle inequality |a + bl2 < |a|2 + |bl2:

ea—=1b=3
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Towards the p-adics, V

With our absolute value |n| = 1/2k for n = 2kg where g is odd,
let’s try out the triangle inequality |a + bl2 < |a|2 + |bl2:

@a=1b=3:then|a+ b =1/4and |a] =1, |b|=1 V
@ea—=2b=7
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Towards the p-adics, V

With our absolute value |n| = 1/2k for n = 2kg where g is odd,
let’s try out the triangle inequality |a + bl2 < |a|2 + |bl2:

@a=1b=3:then|a+b =1/4and |a|=1, |b|=1 Vv
@a=2 b="7:then|a+ b =1and|a|=1/2, |b|=1. V
@ea=2b=4
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Towards the p-adics, V

With our absolute value |n| = 1/2k for n = 2kg where g is odd,
let’s try out the triangle inequality |a + bl2 < |a|2 + |bl2:

ea=1b=3:then|a+b|=1/4and |a|=1, |b|=1. V

@ a=2 b="7:then|a+ b =1and|a] =1/2, |b|=1. V

@ a=2 b=4 then|a+ b =1/2and |a| =1/2, |b|=1/4. v
@ea=4,b=4
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Towards the p-adics, V

With our absolute value |n| = 1/2k for n = 2kg where g is odd,
let’s try out the triangle inequality |a + blx < |al2 + |b]2:

@a=1b=3:then|a+ b =1/4and |a] =1, |b|=1 V
@a=2 b="7:then|a+ b =1and|a|=1/2, |b|=1. V

@ a=2 b=4 then|a+ b =1/2and |a| =1/2, |b|=1/4. v
@ a=4, b=4: then|a+ b =1/8and |a| =1/4, |b|=1/4. v
@ a=4 b=12




The p-Adic Numbers

Towards the p-adics, V

With our absolute value |n| = 1/2k for n = 2kg where g is odd,
let’s try out the triangle inequality |a + blx < |al2 + |b]2:

@a=1b=3:then|a+ b =1/4and |a] =1, |b|=1 V
@ a=2 b="7:then|a+ b =1and|a] =1/2, |b|=1. V
@ a=2 b=4 then|a+ b =1/2and |a| =1/2, |b|=1/4. v
@ a=4 b=4: then |a+ b|=1/8and |a| =1/4, |b|=1/4. v
°
°

a=4, b=12: then |a+ b| =1/16, |a| = 1/4, |b| =1/4. vV
a=28 b=38
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With our absolute value |n| = 1/2k for n = 2kg where g is odd,
let’s try out the triangle inequality |a + blx < |al2 + |b]2:

ea=1b=3:then|a+b|=1/4and |a|=1, |b|=1. V

@ a=2 b="7:then|a+ b =1and|a] =1/2, |b|=1. V

@ a=2 b=4 then|a+ b =1/2and |a| =1/2, |b|=1/4. v
a=4,b=4: then |a+ b|=1/8 and |a| =1/4, |b|=1/4. V
a=4, b=12: then |a+ b| =1/16, |a| = 1/4, |b| =1/4. vV
a=38, b=28: then |a+ b| =1/16, |a| =1/8, |b| =1/8. V
a=40, b=280
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Towards the p-adics, V

With our absolute value |n| = 1/2k for n = 2kg where g is odd,
let's try out the triangle inequality |a + b|o < |a|2 + |b|2:

@a=1b=3:then|a+ b =1/4and |a] =1, |b|=1 V
@ a=2 b="7:then|a+ b =1and|a] =1/2, |b|=1. V
@ a=2 b=4 then|a+ b =1/2and |a| =1/2, |b|=1/4. v
@ a=4, b=4: then|a+ b =1/8and |a| =1/4, |b|=1/4. v
@ a=4, b=12: then |a+ b| =1/16, |a| =1/4, |b|=1/4. V
@ a=38, b=28: then |a+ b| =1/16, |a| =1/8, |b| =1/8. V
@ a=40,b=280: |a+ b|=1/8, |]a| =1/8, |b| =1/16. v

It looks like it always works. In fact, an even stronger statement

seems to hold: |a+ b|y is always less than or equal to the
maximum of |a|, and |b|,.
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Let's prove that:

Proposition

Suppose that |n|, = 1/2% for n = 2%q where q is odd. Then for
any integers a and b we have |a + b|a < max(|a|2, |b|2).
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Let's prove that:

Proposition

Suppose that |n|, = 1/2% for n = 2%q where q is odd. Then for
any integers a and b we have |a + b|a < max(|a|2, |b|2).

Proof:
o If a=0or b =0 the result is trivial.
o Now suppose a = 2%q, and b = 2% q;, where g,, g, are odd.
By swapping a, b if necessary, suppose k; < kp.
@ Then |a| =2 % and |b| = 27k so max(|a|s, |bl2) = 27 .
@ Also a+ b= 2ka(qa + 2kb*kaqb), so we see that the power of

2 dividing a + b is at least 2%, This means
|a+ blp < 27k = max(|al2, |b|2) as desired.
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So what was the point of all this?

@ The point was to show that we can define an alternate
absolute value function on integers with the property that
increasing powers of 2 have absolute values tending to 0 (in
fact, tending to 0 exponentially).

@ The plan now is to use this absolute value to make sense of
this infinite series 1 +2+4+8+ 16+ ---.
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Towards the p-adics, VIII

But before we do that, | want to observe that nothing here was
specific to the prime 2.

o If we replace 2 with some other prime p (e.g., 3, or 5, or
2027) we can define a similar absolute value function: for
n = pkq where q is not divisible by p, define |n|, = 1/pk.
@ Then by the same argument, this absolute value function
satisfies all three of our desired properties:
(1) lalp > 0 with equality only for a = 0.
(2) |ab|, = |a|p|b|p for any integers a and b.
(3) |a+ bl, < la|p + |b|, for any integers a and b.
e This function |n|, is called the p-adic absolute value. In fact
we have a stronger property:
(3") |a+ blp < max(|alp,|b|p) for any integers a and b.
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In fact, here's a much more interesting fact:

Theorem (Ostrowski's Theorem)

Suppose | - | is a nontrivial® absolute value on the integers,
meaning that

(1) |al > 0 with equality only for a = 0.

(2) |ab| = |al||b| for any integers a and b.

(3) |a+ b| < |a| + |b]| for any integers a and b.

Then | - | is a either a power of the usual absolute value or a power
of the p-adic absolute value for some prime p.

<

So what this means is: up to normalizing, these are the only
possible nontrivial® absolute value functions on Z.

3The trivial absolute value is the one with [0] = 0 and |n| = 1 for all n # 0.
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So, now that we have the p-adic absolute value | - |5, we can use it
to make sense of sequences.
@ The idea is that we can use it to define a distance metric on
integers by setting dp(a, b) = |a — b|p.
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The p-adic Metric, |

So, now that we have the p-adic absolute value | - |5, we can use it
to make sense of sequences.
@ The idea is that we can use it to define a distance metric on
integers by setting dp(a, b) = |a — b|p.
@ This p-adic distance function makes Z into a metric space:
1. First, dy(a,a) =]a—a|, = 0.
2. Second, dy(a,b) = |a— b|, = |b— a|, = dp(b, a) since
| — 1|p =1
3. Finally, dp(a, b) + dp(b,c) =|a— b|p+ |b—cl|p <
[(@a—b)+(b—q)|p= |a c|p = dp(a, c) by applying the
triangle inequality for the p-adic absolute value.
The main purpose of having this distance metric is to talk about
convergent sequences.
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The p-adic Metric, Il

If {ap}n>1 is a sequence in a metric space with distance function
d, we say that the sequence converges to a limit L when
d(an,L) — 0 as n — oo.

@ Inside R with the usual absolute value distance
d(a, b) = |a — b|, this is just the usual notion of a convergent
sequence of real numbers.
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The p-adic Metric, Il

If {ap}n>1 is a sequence in a metric space with distance function
d, we say that the sequence converges to a limit L when
d(an,L) — 0 as n — oo.

@ Inside R with the usual absolute value distance
d(a, b) = |a — b|, this is just the usual notion of a convergent
sequence of real numbers.

@ The exciting part is to work instead inside Z with the p-adic
metric dp.

@ Here's a nontrivial example: under the 2-adic metric, the
sequence with a, = 2" converges to L = 0 as n — o0, since
d2(an,0) = |2" — 0]2 = 1/2" tends to 0 as n grows.

@ This is encouraging, since the whole point was to find a place
where higher powers of 2 become smaller and smaller.
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Our original interest was in trying to understand the sum
1+2+4+448+ 16+ ---, which our illegal use of the geometric
series formula told us was equal to —1.
@ Let's see what happens with the 2-adic metric.
o If we take the nth partial sum a, =1+2+4+8+... 4271
of this sequence, then we can just check the formula
ap, =2"—1 (e.g., by induction).
@ Therefore, under the 2-adic metric d», we have
da(an,—1) =lan+ 12 =1]2" - 1)+ 1|, =|2"|, =1/2".
@ Hence under the 2-adic metric, the sequence of partial sums
converges to —1!
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The p-adic Metric, IV

So, if we (very reasonably) define the expression
1+2+4+4+4+8+ 16+ --- to be the limit of its partial sums, then
under the 2-adic metric, the statement

1+2+4+8+16+--- = —1is now completely, 100% correct!

[Pause to allow the audience to feel the amazement of this fact.]
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The p-adic Metric, IV

So, if we (very reasonably) define the expression
1+2+4+4+4+8+ 16+ --- to be the limit of its partial sums, then
under the 2-adic metric, the statement

1+2+4+8+16+--- = —1is now completely, 100% correct!

[Pause to allow the audience to feel the amazement of this fact.]
@ We can do a similar calculation to see that
9 4+ 90 4+ 900 + 9000 + - - - also converges 2-adically to —1.
e Explicitly, for a, =9+904---4+9-10""1 = 10" — 1 we see
dr(an, —1) = |ap + 1]2 =107 = 1/2" — 0 as n — oo.
@ Hence under the 2-adic metric, we have
9-+90+900+ 9000+ --- = —1.

@ In fact, this statement is also true under the 5-adic metric,
since |10"|s = 1/5" also tends to zero.
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The p-adic Metric, V

So, we see that under the 2-adic metric, we have
9-+90+900+9000+ ---=—1.

But the original sum we were after was
1+10+100+ 1000+ - - -, which was supposed to equal —1/9.

Obviously, we cannot make a valid statement like that inside
the integers, since —1/9 is not an integer.

The question still remains, however: does the sum

1+ 10+ 100+ 1000 + - - - converge under the 2-adic metric?

The direct answer is: it cannot converge to an integer (since if
it did, multiplying that integer by 9 would yield —1, but there
is no such integer).

But what if we take a different notion of convergence?
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The p-adic Metric, VI

Another way to decide if a sequence of real numbers converges is
to test whether it is a Cauchy sequence.

@ A sequence {ap}n>1 is Cauchy if for any € > 0 there exists N
such that d(am, an) < € whenever m,n > N.

o Intuitively, the terms in a Cauchy sequence all get (and stay)
arbitrarily close as we go far out in the sequence.

@ Cauchy sequences are used in constructing the real numbers
starting from the rational numbers, since every real number is
the limit of a Cauchy sequence of rational numbers.

@ More precisely, if we define two Cauchy sequences {a,} and
{bn} to be equivalent if d(a,, b,) — 0 as n — oo, then the
real numbers are obtained as the equivalence classes of Cauchy
sequences of rational numbers under the usual distance.
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The p-adic Integers, |

We can perform an analogous completion procedure on the
integers under the p-adic metric to obtain a place where all of our
Cauchy sequences actually converge.

Definition

The p-adic integers, denoted Zp, consist of all equivalence classes
of Cauchy sequences of integers under the p-adic metric.

@ This is a fairly opaque definition since it relies on Cauchy
sequences.

@ Fortunately, there is a much more concrete description of the
elements of Zp, and in fact, the elements look just like the
kinds of sums we have been considering.
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The p-adic Integers, |l

Explicitly, the elements of Z, are all uniquely given as “infinite
base-p expansions”, of the form
ag + a1p + aop® + azp> + agp® + - - -, where each a; has
0<a <p—1.
@ In base p, we would write such a number as ... azazaraiag.

@ It is not hard to see that the partial sums of any such
expansion are a Cauchy sequence under the p-adic metric
(since for m > n, the difference between the mth and nth has
all terms with at least p” in them).

@ It is a bit more work to show that every Cauchy sequence is
equivalent to one of these, and that all of these sequences are
inequivalent. (But it's true.)
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The p-adic Integers, Il

What is even nicer is that we can add, subtract, and multiply
p-adic integers as well.

o Intuitively, they behave like power series in p, but with
carrying: we just add, subtract, or multiply as appropriate,
keeping track of carries as we go.

o If we want to write down the terms up to p”, we can just do
the calculations with the terms up to p”.

@ For example, with p = 5, if we want to add
1+p+p?+p>+p*+ - tol+4p+2p>+0p>+0p*+---,
we just add term-by-term to get 1+ 5p +3p? 4+ p3 +p* + - --
and then resolve the carry in the p-coefficient to get
1+0p+4p° +p>+p*+---.

e Multiplication is similar: just use the distributive law and then
resolve all of the carries at the end.
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The p-adic Integers, IV

Multiplication is similar: just use the distributive law and then
resolve all of the carries at the end.
e For example, with p =5, if we want to multiply
14+2p+3p%+--- with 1 +4p+2p?+---, we distribute,
collect terms, and then resolve carries to get
(1+2p+3p +-- )L +4p+2p>+--)
1(14+4p+2p°+---)+2p(L+4p+2p°+---)+3p°(1+4p+2p° + -
= (1+4p+2p°+---)+(2p+8p*+4p>+--- )+ (3p* +12p° +6p* + --
= 1+6p+13p°+---
= 1+p+4p°+--



The p-Adic Numbers

The p-adic Integers, V

In many situations, we can even find multiplicative inverses of
elements of Z,, which in turn allows us to do division.

@ For example, in Z, we have the product
L-p)A+p+p’+p>+ptt--)
=(+p+p+p+- )+ (=p)A+ptp+p>+)
=1+ptpPP+p+ )+ (=p—p—p> ) =1

@ That means 1 — p has a multiplicative inverse in Z,, namely,
l+p+p2+p+pt+---.

e Or, written differently: 1/(1—p) =1+p+p?>+p3+p*+---.
Precisely our geometric series formulal

More generally, an element ag + a1p + a»p? + azp® + asp* + - - -
will have a multiplicative inverse precisely when ag # 0.
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Solving Equations Mod p”, |

Historically, the motivation for constructing and studying the
p-adic integers came from studying solutions to polynomial
equations modulo primes and prime powers.

@ A natural way to try to solve a polynomial equation modulo a
prime power p” is first to solve it mod p, then solve it mod
p2, then solve it mod p3, and so forth.

@ The reason this is a good idea is that any solution mod p?
must reduce to one of the solutions found mod p, so one can
just test the solutions mod p plus multiples of p to get the
solutions mod p2.

@ The same idea works to solve the equation mod p3 given the

solutions mod p?: a solution mod p3 must reduce to one mod

p?, so just test the solutions mod p? plus multiples of p.
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Solving Equations Mod p”, Il

To illustrate, let’s solve the very simple equation x + 1 = 0 modulo
powers of 2.

@ First, solve it mod 21: obviously we have one solution x =1
(mod 2).
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Solving Equations Mod p”, Il

To illustrate, let’s solve the very simple equation x + 1 = 0 modulo
powers of 2.
@ First, solve it mod 21: obviously we have one solution x =1
(mod 2).
@ Next, solve it mod 22. It reduces to the solution above mod 2,
so it is of the form x = 1 + 2a (mod 4) for some a =0, 1.
Testing possible a gives only a =1, so that x = 1+ 2 (mod 4).
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Solving Equations Mod p”, Il

To illustrate, let’s solve the very simple equation x + 1 = 0 modulo
powers of 2.

@ First, solve it mod 21: obviously we have one solution x =1
(mod 2).

@ Next, solve it mod 22. It reduces to the solution above mod 2,
so it is of the form x = 1 + 2a (mod 4) for some a =0, 1.
Testing possible a gives only a =1, so that x = 1+ 2 (mod 4).

@ Next, solve it mod 23. It reduces to the solution above mod 4,
so it is of the form x = 1+ 2 4 4a (mod 4) for some a =0, 1.
Testing possible a givesonly a=1,sothat x=14+2+4
(mod 8).
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Solving Equations Mod p”, Il

To illustrate, let’s solve the very simple equation x + 1 = 0 modulo
powers of 2.

@ First, solve it mod 21: obviously we have one solution x =1
(mod 2).

@ Next, solve it mod 22. It reduces to the solution above mod 2,
so it is of the form x = 1 + 2a (mod 4) for some a =0, 1.
Testing possible a gives only a =1, so that x = 1+ 2 (mod 4).

@ Next, solve it mod 23. It reduces to the solution above mod 4,
so it is of the form x = 1+ 2 4 4a (mod 4) for some a =0, 1.
Testing possible a givesonly a=1,sothat x=14+2+4
(mod 8).

@ Repeating this process yields a unique solution each time,
namely x =1+2+4+8+4--- 4+ 271 (mod 2").

@ Of course, this is just —1 mod 27, the actual integer solution
of the equation.
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Solving Equations Mod p”, IlI

The 2-adic equality 1 +2+4 48+ --- = —1 encapsulates all of
these calculations at once, and reflects that the original equation
x + 1 = 0 actually has an integer solution x = —1.
@ This lifting procedure works for most polynomial equation too,
as first shown explicitly by Hensel:

Theorem (Hensel's Lemma)

Suppose q(x) is a polynomial with integer coefficients. If g(a) =0
(mod p9) and q'(a) # 0 (mod p), then there is a unique k modulo
p such that q(a+ kp?) = 0 (mod p*!. Explicitly, this value is
PR S (C)

q(a) pd -

This result says if x = a is a root of g(x) mod p, and ¢'(a) #0
(mod p), then it lifts to a unique root of the polynomial mod p?,
mod p3, mod p*, ...: and in fact, in Zp.
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Solving Equations Mod p”, IV

Although the expression in Hensel's lemma may look very
unpleasant, the iteration procedure is actually quite nice.

@ From the description, the new root a’ = a + kp is given by
q(a)
q'(a)

procedure used in Newton's method for finding a zero of a
differentiable function g(x).

ad=a— , and this is precisely the same as the iteration

@ What this means is: this procedure is really just applying
Newton's method inside the p-adic integers to compute a root
of the polynomial g(x).
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Some Other Facts About Z,

There is so very much more to say about the p-adic numbers, but
since | don't want to take way too much time, let me just say a
few of the really neat facts:

@ Z, has very interesting topological properties. For example,
Zp is compact, locally compact, and totally disconnected.

@ The only closed subgroups of Zj are the sets p"Zy, which has
finite index p”. As a consequence, every closed subgroup of
Zp is open.

@ An infinite series of p-adic integers converges if and only if the
terms have norms tending to zero.

@ A function defined by a power series f(x) = Y 1" 5 anx" will
converge for all x € Z, with |x|, < r for an appropriate radius
of convergence r determined by the p-adic valuations of the
coefficients. In particular, if the coefficients are integers, then
the series converges for all |x|, < 1.



The p-Adic Numbers

A Mind-Bending Calculation

By manipulating the series appropriately, one can show that the
usual binomial expan5|on for the square root function

Vi+tx=>7", (1/2)(1/2-1)(A/2=2)(1/2=n+1) y n , when squared,

nl
actually produces the value 1+ x in Z, as Iong as |x|p < 1.
@ Setting x = 7/9, which has |x| < 1 and \x\7 < 1, gives
yooo  W2)/2- 1) (2=t g gy — 1 1 1.1 1124 .

n=0 5'5_19

@ Over the real numbers, this sum converges to the value
\/16/9 =4/3.

@ However, 7-adically, this sum is congruent to 1 modulo 7
(since all of the terms after the “1" have a factor of 7 in
them). But x = 4/3 is congruent to —1 modulo 7 (since
1/3 = —2 (mod 7), and so in fact the 7-adic series converges
to —4/3.

@ So: the exact same series converges to different roots of the
polynomial x> — 16/9 over the real numbers and in Z;!
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Thanks to Sam Lowe and the other math club organizers for
providing me the opportunity to speak here today!

| hope you enjoyed my talk, and I'd like to thank you for attending!
Enjoy your weekend!



