The *p*-Adic Numbers

Evan P. Dummit Northeastern University

Northeastern Math Club November 4th, 2022

Outline of Talk

I will start by motivating the *p*-adic numbers with some curious, and totally illegal, infinite sum calculations.

Then I will give the actual definition of the p-adic numbers, and illustrate various kinds of calculations with them.

Next, I will talk about some of the unusual and neat analytical and topological properties of the *p*-adic numbers.

Finally, time permitting, I will try to describe some uses of the *p*-adic numbers in number theory.

Consider the geometric series

$$S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

• As we all presumably remember, this series converges and its sum is 2. To (re)determine this, just note that

$$\frac{1}{2}S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

and so subtracting and cancelling common terms yields

$$S-\frac{1}{2}S=1$$

from which we see S = 2.

The same approach works for the more general geometric series

$$S=1+r+r^2+r^3+\cdots$$

Namely, just multiply it by r and then subtract from the original. Explicitly, we have

$$S = 1 + r + r^{2} + r^{3} + r^{4} + \cdots$$

rS = r + r^{2} + r^{3} + r^{4} + \cdots

and so subtracting and cancelling yields S - rS = 1 from which S = 1/(1 - r).

How To Sum Geometric Series, III

Of course, these manipulations are only valid under the assumption that the original series

$$S=1+r+r^2+r^3+\cdots$$

converges¹.

- Since (as one may check) the geometric series S only converges when |r| < 1, the derivation of the formula 1 + r + r² + r³ + ··· = 1/(1 − r) is only valid for |r| < 1.
- In particular, it is completely illegal to do something like setting r = 2, or r = 10, in that formula.

¹Actually, to do the cancellations without changing the value requires absolute convergence, but geometric series converge only when they converge absolutely, so it's fine.

So let's set r = 2 in that formula: it yields

$$1 + 2 + 4 + 8 + 16 + \cdots = 1/(1 - 2) = -1.$$

[Pause here for the audience to express shock and horror.]

So let's set r = 2 in that formula: it yields

$$1 + 2 + 4 + 8 + 16 + \cdots = 1/(1 - 2) = -1.$$

[Pause here for the audience to express shock and horror.]

- This is clearly nonsense for several reasons: first, the left-hand side is a sum of a bunch of positive integers (which goes to +∞) while the right-hand side is negative!
- Completely ridiculous! There is absolutely no scenario in which this calculation could possibly be correct.

So let's set r = 2 in that formula: it yields

$$1 + 2 + 4 + 8 + 16 + \cdots = 1/(1 - 2) = -1.$$

[Pause here for the audience to express shock and horror.]

- This is clearly nonsense for several reasons: first, the left-hand side is a sum of a bunch of positive integers (which goes to $+\infty$) while the right-hand side is negative!
- Completely ridiculous! There is absolutely no scenario in which this calculation could possibly be correct.
- Except... the whole point of this talk is to demonstrate how this calculation can be made meaningful and valid.

To give some motivation, let's instead take r = 10: it yields

 $1 + 10 + 100 + 1000 + 10000 + \cdots = 1/(1 - 10) = -1/9.$

[Pause here for audience to express slightly more shock and horror.]

To give some motivation, let's instead take r = 10: it yields

 $1 + 10 + 100 + 1000 + 10000 + \cdots = 1/(1 - 10) = -1/9.$

[Pause here for audience to express slightly more shock and horror.]

- This one is even worse than the one with r = 2, because now the right-hand side isn't even an integer.
- Somehow, that seems even less reasonable than the sum coming out to be negative. To fix that, let's multiply it by 9. That gives

 $9 + 90 + 900 + 9000 + 90000 + \dots = -1.$

So let's see if we can make any sense out of

```
9 + 90 + 900 + 9000 + 90000 + \dots = -1.
```

- Being as charitable as possible, try imagining that the sum on the left actually makes sense. If we just add up a few terms, we get numbers like 9, 99, 999, 9999, 99999,
- So the limit would then be a number whose base-10 expansion (all 9s) just keeps going, like this:

So let's see if we can make any sense out of

```
9 + 90 + 900 + 9000 + 90000 + \dots = -1.
```

- Being as charitable as possible, try imagining that the sum on the left actually makes sense. If we just add up a few terms, we get numbers like 9, 99, 999, 9999, 99999,
- So the limit would then be a number whose base-10 expansion (all 9s) just keeps going, like this:

• Now, the ludicrous claim is that this weird number equals -1. So let's try adding 1 to it.

Here we go, adding:

...9999999999999999999999999999999999

Here we go, adding:

Here we go, adding:

Here we go, adding:

Let's jump ahead about ten steps:

The pattern is pretty clear, right? Just keep going forever:

So what does this tell us?

- And if a string of a bunch of zeroes means anything, that last number is just 0.
- So to summarize, if we add 1 to $9 + 90 + 900 + 9000 + 90000 + \cdots$, we get 0.
- Thus subtracting 1 yields the conclusion $9 + 90 + 900 + 9000 + 90000 + \cdots = -1$, as claimed.

So what does this tell us?

- And if a string of a bunch of zeroes means anything, that last number is just 0.
- So to summarize, if we add 1 to
 9 + 90 + 900 + 9000 + 90000 + ····, we get 0.
- Thus subtracting 1 yields the conclusion $9 + 90 + 900 + 9000 + 90000 + \cdots = -1$, as claimed.

Mental exercise for you: redo this calculation but with base-2 expansions to "explain" why $1 + 2 + 4 + 8 + 16 + \cdots = -1$.

In order to make calculations like the ones we just did meaningful, we need to describe a place in which the infinite sum

 $1+2+4+8+16+\cdots$, actually converges in a meaningful way.

- Going with this idea, recall² that an infinite series can converge only if its terms eventually become small.
- So we are looking for a way to measure the "size" of an integer, in such a way that the powers of 2 become small in size as we take higher and higher powers of 2.
- Of course, we could just define an arbitrary "size" function on integers, but we want this size function to behave nicely.
- So, what conditions do we want?

²More formally, this is sometimes called the "*n*th term test for divergence": if the terms a_n do not have limit zero as $n \to \infty$, then the infinite sum $a_1 + a_2 + a_3 + \cdots$ cannot converge.

We can take some cues from a size function that already exists: the usual absolute value |n|.

- Of course, this absolute value doesn't have the property that powers of 2 have small size, since |2ⁿ| = 2ⁿ grows large as n→∞, rather than going to 0.
- But it does have lots of other nice properties. Here are some particularly good ones:
 - (1) The absolute value is positive except at 0: $|a| \ge 0$ with equality only for a = 0.
 - (2) The absolute value is multiplicative: |ab| = |a||b| for any integers a and b.
 - (3) The absolute value satisfies the triangle inequality: $|a+b| \le |a|+|b|$ for any integers a and b.

So, let's see if we can cook up an absolute-value-like function $|\cdot|_2$ on integers that has those same three properties

- (1) $|a|_2 \ge 0$ with equality only for a = 0.
- (2) $|ab|_2 = |a|_2|b|_2$ for any integers a and b.
- (3) $|a+b|_2 \le |a|_2 + |b|_2$ for any integers a and b.

and also has the property that $|2^n| \to 0$ as $n \to \infty$.

So, let's see if we can cook up an absolute-value-like function $|\cdot|_2$ on integers that has those same three properties

- (1) $|a|_2 \ge 0$ with equality only for a = 0.
- (2) $|ab|_2 = |a|_2|b|_2$ for any integers a and b.
- (3) $|a+b|_2 \le |a|_2 + |b|_2$ for any integers a and b.

and also has the property that $|2^n| \to 0$ as $n \to \infty$.

- Since the absolute value is multiplicative, to make $|2^n|_2 \rightarrow 0$ as $n \rightarrow \infty$, we want to have $|2|_2 < 1$.
- So let's try, arbitrarily, taking $|2|_2 = 1/2$. Then $|2^n|_2$ would be $1/2^n$, which certainly goes to zero very fast.
- But what should we do with the other integers? By thinking about prime factorizations, it's enough to decide what to do with the other prime numbers.

Here's a really lazy idea: take $|p|_2 = 1$ for all of the other prime numbers aside from p = 2.

[Pause to allow audience to appreciate the laziness.]

Here's a really lazy idea: take $|p|_2 = 1$ for all of the other prime numbers aside from p = 2.

[Pause to allow audience to appreciate the laziness.]

Using multiplicativity, if n = 2^kq where q is odd, then we are defining |n| = 1/2^k, and also |0|₂ = 0. Certainly it has a simplicity to it, but does it satisfy our requirements?

(1)
$$|a|_2 \ge 0$$
 with equality only for $a = 0$.

- (2) $|ab|_2 = |a|_2|b|_2$ for any integers a and b.
- (3) $|a+b|_2 \le |a|_2 + |b|_2$ for any integers a and b.
 - Certainly (1) and (2) are fine, but what about (3)? Let's try some examples to check.

With our absolute value $|n| = 1/2^k$ for $n = 2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 \le |a|_2 + |b|_2$:

• *a* = 1, *b* = 3

With our absolute value $|n| = 1/2^k$ for $n = 2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 \le |a|_2 + |b|_2$:

• a = 1, b = 3: then |a + b| = 1/4 and |a| = 1, |b| = 1. \checkmark

With our absolute value $|n| = 1/2^k$ for $n = 2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 \le |a|_2 + |b|_2$:

• a = 1, b = 3: then |a + b| = 1/4 and |a| = 1, |b| = 1. \checkmark

•
$$a = 2$$
, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$. \checkmark

With our absolute value $|n| = 1/2^k$ for $n = 2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 \le |a|_2 + |b|_2$:

- a = 1, b = 3: then |a + b| = 1/4 and |a| = 1, |b| = 1. \checkmark
- a = 2, b = 7: then |a + b| = 1 and |a| = 1/2, |b| = 1. \checkmark
- a=2, b=4: then |a+b|=1/2 and |a|=1/2, |b|=1/4. \checkmark
- *a* = 4, *b* = 4

With our absolute value $|n| = 1/2^k$ for $n = 2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 \le |a|_2 + |b|_2$:

- a = 1, b = 3: then |a + b| = 1/4 and |a| = 1, |b| = 1. \checkmark
- a = 2, b = 7: then |a + b| = 1 and |a| = 1/2, |b| = 1. \checkmark
- a = 2, b = 4: then |a + b| = 1/2 and |a| = 1/2, |b| = 1/4. \checkmark
- a = 4, b = 4: then |a + b| = 1/8 and |a| = 1/4, |b| = 1/4. \checkmark • a = 4, b = 12

With our absolute value $|n| = 1/2^k$ for $n = 2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 \le |a|_2 + |b|_2$:

• a = 1, b = 3: then |a + b| = 1/4 and |a| = 1, |b| = 1. \checkmark

•
$$a = 2$$
, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$. \checkmark

•
$$a=2$$
, $b=4$: then $|a+b|=1/2$ and $|a|=1/2$, $|b|=1/4$. \checkmark

•
$$a = 4$$
, $b = 4$: then $|a + b| = 1/8$ and $|a| = 1/4$, $|b| = 1/4$. \checkmark

•
$$a = 4, b = 12$$
: then $|a + b| = 1/16, |a| = 1/4, |b| = 1/4.$

With our absolute value $|n| = 1/2^k$ for $n = 2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 \le |a|_2 + |b|_2$:

• a = 1, b = 3: then |a + b| = 1/4 and |a| = 1, |b| = 1. \checkmark

•
$$a = 2$$
, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$. \checkmark

•
$$a=2, b=4$$
: then $|a+b|=1/2$ and $|a|=1/2, |b|=1/4$. \checkmark

•
$$a = 4$$
, $b = 4$: then $|a + b| = 1/8$ and $|a| = 1/4$, $|b| = 1/4$. \checkmark

•
$$a = 4$$
, $b = 12$: then $|a + b| = 1/16$, $|a| = 1/4$, $|b| = 1/4$. \checkmark

•
$$a = 8$$
, $b = 8$: then $|a + b| = 1/16$, $|a| = 1/8$, $|b| = 1/8$. \checkmark

With our absolute value $|n| = 1/2^k$ for $n = 2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 \le |a|_2 + |b|_2$:

•
$$a = 1$$
, $b = 3$: then $|a + b| = 1/4$ and $|a| = 1$, $|b| = 1$. \checkmark

•
$$a = 2$$
, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$. \checkmark

•
$$a=2$$
, $b=4$: then $|a+b|=1/2$ and $|a|=1/2$, $|b|=1/4$. \checkmark

•
$$a = 4$$
, $b = 4$: then $|a + b| = 1/8$ and $|a| = 1/4$, $|b| = 1/4$. \checkmark

•
$$a = 4$$
, $b = 12$: then $|a + b| = 1/16$, $|a| = 1/4$, $|b| = 1/4$. \checkmark

•
$$a = 8$$
, $b = 8$: then $|a + b| = 1/16$, $|a| = 1/8$, $|b| = 1/8$. \checkmark

•
$$a = 40, \ b = 80$$
: $|a + b| = 1/8, \ |a| = 1/8, \ |b| = 1/16.$

It looks like it always works. In fact, an even stronger statement seems to hold: $|a + b|_2$ is always less than or equal to the maximum of $|a|_2$ and $|b|_2$.

Let's prove that:

Proposition

Suppose that $|n|_2 = 1/2^k$ for $n = 2^k q$ where q is odd. Then for any integers a and b we have $|a + b|_2 \le \max(|a|_2, |b|_2)$.

Let's prove that:

Proposition

Suppose that $|n|_2 = 1/2^k$ for $n = 2^k q$ where q is odd. Then for any integers a and b we have $|a + b|_2 \le \max(|a|_2, |b|_2)$.

Proof:

- If a = 0 or b = 0 the result is trivial.
- Now suppose a = 2^{k_a}q_a and b = 2^{k_b}q_b where q_a, q_b are odd. By swapping a, b if necessary, suppose k_a ≤ k_b.
- Then $|a| = 2^{-k_a}$ and $|b| = 2^{-k_b}$ so $\max(|a|_2, |b|_2) = 2^{-k_a}$.
- Also $a + b = 2^{k_a}(q_a + 2^{k_b k_a}q_b)$, so we see that the power of 2 dividing a + b is at least 2^{k_a} . This means $|a + b|_2 \le 2^{-k_a} = \max(|a|_2, |b|_2)$ as desired.

So what was the point of all this?

- The point was to show that we can define an alternate absolute value function on integers with the property that increasing powers of 2 have absolute values tending to 0 (in fact, tending to 0 exponentially).
- The plan now is to use this absolute value to make sense of this infinite series $1 + 2 + 4 + 8 + 16 + \cdots$.

But before we do that, I want to observe that nothing here was specific to the prime 2.

- If we replace 2 with some other prime p (e.g., 3, or 5, or 2027) we can define a similar absolute value function: for $n = p^k q$ where q is not divisible by p, define $|n|_p = 1/p^k$.
- Then by the same argument, this absolute value function satisfies all three of our desired properties:

(1)
$$|a|_p \ge 0$$
 with equality only for $a = 0$.

- (2) $|ab|_p = |a|_p |b|_p$ for any integers a and b.
- (3) $|a+b|_p \le |a|_p + |b|_p$ for any integers a and b.
- This function $|n|_p$ is called the <u>p-adic absolute value</u>. In fact we have a stronger property:

(3') $|a+b|_{p} \leq \max(|a|_{p}, |b|_{p})$ for any integers a and b.

In fact, here's a much more interesting fact:

Theorem (Ostrowski's Theorem)

Suppose $|\cdot|$ is a nontrivial ³ absolute value on the integers, meaning that

(1)
$$|a| \ge 0$$
 with equality only for $a = 0$.

(2)
$$|ab| = |a||b|$$
 for any integers a and b.

(3) $|a+b| \le |a|+|b|$ for any integers a and b.

Then $|\cdot|$ is a either a power of the usual absolute value or a power of the p-adic absolute value for some prime p.

So what this means is: up to normalizing, these are the <u>only</u> possible nontrivial³ absolute value functions on \mathbb{Z} .

³The trivial absolute value is the one with |0| = 0 and |n| = 1 for all $n \neq 0$.

The *p*-adic Metric, I

So, now that we have the *p*-adic absolute value $|\cdot|_p$, we can use it to make sense of sequences.

 The idea is that we can use it to define a distance metric on integers by setting d_p(a, b) = |a − b|_p.

The *p*-adic Metric, I

So, now that we have the *p*-adic absolute value $|\cdot|_p$, we can use it to make sense of sequences.

- The idea is that we can use it to define a distance metric on integers by setting d_p(a, b) = |a − b|_p.
- This *p*-adic distance function makes \mathbb{Z} into a metric space:
 - First, d_p(a, a) = |a a|_p = 0.
 Second, d_p(a, b) = |a b|_p = |b a|_p = d_p(b, a) since | - 1|_p = 1.
 Finally, d_p(a, b) + d_p(b, c) = |a - b|_p + |b - c|_p ≤
 - $|(a-b) + (b-c)|_p = |a-c|_p = d_p(a,c)$ by applying the triangle inequality for the *p*-adic absolute value.

The main purpose of having this distance metric is to talk about convergent sequences.

The *p*-adic Metric, II

If $\{a_n\}_{n\geq 1}$ is a sequence in a metric space with distance function d, we say that the sequence converges to a limit L when $d(a_n, L) \to 0$ as $n \to \infty$.

Inside ℝ with the usual absolute value distance
 d(a, b) = |a - b|, this is just the usual notion of a convergent sequence of real numbers.

The *p*-adic Metric, II

If $\{a_n\}_{n\geq 1}$ is a sequence in a metric space with distance function d, we say that the sequence converges to a limit L when $d(a_n, L) \to 0$ as $n \to \infty$.

- Inside ℝ with the usual absolute value distance
 d(a, b) = |a b|, this is just the usual notion of a convergent
 sequence of real numbers.
- The exciting part is to work instead inside Z with the *p*-adic metric *d_p*.
- Here's a nontrivial example: under the 2-adic metric, the sequence with a_n = 2ⁿ converges to L = 0 as n → ∞, since d₂(a_n, 0) = |2ⁿ 0|₂ = 1/2ⁿ tends to 0 as n grows.
- This is encouraging, since the whole point was to find a place where higher powers of 2 become smaller and smaller.

The *p*-adic Metric, III

Our original interest was in trying to understand the sum $1+2+4+8+16+\cdots$, which our illegal use of the geometric series formula told us was equal to -1.

- Let's see what happens with the 2-adic metric.
- If we take the *n*th partial sum a_n = 1 + 2 + 4 + 8 + ··· + 2ⁿ⁻¹ of this sequence, then we can just check the formula a_n = 2ⁿ − 1 (e.g., by induction).
- Therefore, under the 2-adic metric d_2 , we have $d_2(a_n, -1) = |a_n + 1|_2 = |(2^n - 1) + 1|_n = |2^n|_n = 1/2^n.$
- Hence under the 2-adic metric, the sequence of partial sums converges to -1!

The *p*-adic Metric, IV

So, if we (very reasonably) define the expression $1+2+4+8+16+\cdots$ to be the limit of its partial sums, then under the 2-adic metric, the statement $1+2+4+8+16+\cdots = -1$ is now completely, 100% correct!

[Pause to allow the audience to feel the amazement of this fact.]

The *p*-adic Metric, IV

So, if we (very reasonably) define the expression $1+2+4+8+16+\cdots$ to be the limit of its partial sums, then under the 2-adic metric, the statement $1+2+4+8+16+\cdots = -1$ is now completely, 100% correct!

[Pause to allow the audience to feel the amazement of this fact.]

- We can do a similar calculation to see that $9 + 90 + 900 + 9000 + \cdots$ also converges 2-adically to -1.
- Explicitly, for $a_n = 9 + 90 + \dots + 9 \cdot 10^{n-1} = 10^n 1$ we see $d_2(a_n, -1) = |a_n + 1|_2 = |10^n|_2 = 1/2^n \to 0$ as $n \to \infty$.
- Hence under the 2-adic metric, we have $9 + 90 + 900 + 9000 + \cdots = -1$.
- In fact, this statement is also true under the 5-adic metric, since $|10^n|_5 = 1/5^n$ also tends to zero.

The *p*-adic Metric, V

So, we see that under the 2-adic metric, we have $9+90+900+9000+\cdots=-1.$

- But the original sum we were after was $1+10+100+1000+\cdots$, which was supposed to equal -1/9.
- Obviously, we cannot make a valid statement like that inside the integers, since -1/9 is not an integer.
- The question still remains, however: does the sum $1 + 10 + 100 + 1000 + \cdots$ converge under the 2-adic metric?
- The direct answer is: it cannot converge to an integer (since if it did, multiplying that integer by 9 would yield −1, but there is no such integer).
- But what if we take a different notion of convergence?

The *p*-adic Metric, VI

Another way to decide if a sequence of real numbers converges is to test whether it is a Cauchy sequence.

- A sequence {a_n}_{n≥1} is Cauchy if for any ε > 0 there exists N such that d(a_m, a_n) < ε whenever m, n ≥ N.
- Intuitively, the terms in a Cauchy sequence all get (and stay) arbitrarily close as we go far out in the sequence.
- Cauchy sequences are used in constructing the real numbers starting from the rational numbers, since every real number is the limit of a Cauchy sequence of rational numbers.
- More precisely, if we define two Cauchy sequences $\{a_n\}$ and $\{b_n\}$ to be equivalent if $d(a_n, b_n) \rightarrow 0$ as $n \rightarrow \infty$, then the real numbers are obtained as the equivalence classes of Cauchy sequences of rational numbers under the usual distance.

The *p*-adic Integers, I

We can perform an analogous <u>completion</u> procedure on the integers under the *p*-adic metric to obtain a place where all of our Cauchy sequences actually converge.

Definition

The <u>p-adic integers</u>, denoted \mathbb{Z}_p , consist of all equivalence classes of Cauchy sequences of integers under the p-adic metric.

- This is a fairly opaque definition since it relies on Cauchy sequences.
- Fortunately, there is a much more concrete description of the elements of Z_p, and in fact, the elements look just like the kinds of sums we have been considering.

The *p*-adic Integers, II

Explicitly, the elements of \mathbb{Z}_p are all uniquely given as "infinite base-*p* expansions", of the form $a_0 + a_1p + a_2p^2 + a_3p^3 + a_4p^4 + \cdots$, where each a_i has $0 \le a_i \le p - 1$.

- In base p, we would write such a number as $\ldots a_4 a_3 a_2 a_1 a_0$.
- It is not hard to see that the partial sums of any such expansion are a Cauchy sequence under the *p*-adic metric (since for m > n, the difference between the *m*th and *n*th has all terms with at least p^n in them).
- It is a bit more work to show that every Cauchy sequence is equivalent to one of these, and that all of these sequences are inequivalent. (But it's true.)

The *p*-adic Integers, III

What is even nicer is that we can add, subtract, and multiply *p*-adic integers as well.

- Intuitively, they behave like power series in *p*, but with carrying: we just add, subtract, or multiply as appropriate, keeping track of carries as we go.
- If we want to write down the terms up to pⁿ, we can just do the calculations with the terms up to pⁿ.
- For example, with p = 5, if we want to add $1 + p + p^2 + p^3 + p^4 + \cdots$ to $1 + 4p + 2p^2 + 0p^3 + 0p^4 + \cdots$, we just add term-by-term to get $1 + 5p + 3p^2 + p^3 + p^4 + \cdots$ and then resolve the carry in the *p*-coefficient to get $1 + 0p + 4p^2 + p^3 + p^4 + \cdots$.
- Multiplication is similar: just use the distributive law and then resolve all of the carries at the end.

The *p*-adic Integers, IV

Multiplication is similar: just use the distributive law and then resolve all of the carries at the end.

• For example, with p = 5, if we want to multiply $1 + 2p + 3p^2 + \cdots$ with $1 + 4p + 2p^2 + \cdots$, we distribute, collect terms, and then resolve carries to get $(1 + 2p + 3p^2 + \cdots)(1 + 4p + 2p^2 + \cdots)$ $= 1(1 + 4p + 2p^2 + \cdots) + 2p(1 + 4p + 2p^2 + \cdots) + 3p^2(1 + 4p + 2p^2 + \cdots)$ $= (1 + 4p + 2p^2 + \cdots) + (2p + 8p^2 + 4p^3 + \cdots) + (3p^2 + 12p^3 + 6p^4 + \cdots)$ $= 1 + 6p + 13p^2 + \cdots$ $= 1 + p + 4p^2 + \cdots$

The *p*-adic Integers, V

In many situations, we can even find multiplicative inverses of elements of \mathbb{Z}_p , which in turn allows us to do division.

• For example, in
$$\mathbb{Z}_p$$
 we have the product
 $(1-p)(1+p+p^2+p^3+p^4+\cdots)$
 $=(1+p+p^2+p^3+\cdots)+(-p)(1+p+p^2+p^3+\cdots)$
 $=(1+p+p^2+p^3+\cdots)+(-p-p^2-p^3\cdots)=1.$

- That means 1 p has a multiplicative inverse in \mathbb{Z}_p , namely, $1 + p + p^2 + p^3 + p^4 + \cdots$.
- Or, written differently: $1/(1-p) = 1 + p + p^2 + p^3 + p^4 + \cdots$. Precisely our geometric series formula!

More generally, an element $a_0 + a_1p + a_2p^2 + a_3p^3 + a_4p^4 + \cdots$ will have a multiplicative inverse precisely when $a_0 \neq 0$.

Historically, the motivation for constructing and studying the *p*-adic integers came from studying solutions to polynomial equations modulo primes and prime powers.

- A natural way to try to solve a polynomial equation modulo a prime power pⁿ is first to solve it mod p, then solve it mod p², then solve it mod p³, and so forth.
- The reason this is a good idea is that any solution mod p^2 must reduce to one of the solutions found mod p, so one can just test the solutions mod p plus multiples of p to get the solutions mod p^2 .
- The same idea works to solve the equation mod p³ given the solutions mod p²: a solution mod p³ must reduce to one mod p², so just test the solutions mod p² plus multiples of p².

To illustrate, let's solve the very simple equation x + 1 = 0 modulo powers of 2.

 First, solve it mod 2¹: obviously we have one solution x ≡ 1 (mod 2).

To illustrate, let's solve the very simple equation x + 1 = 0 modulo powers of 2.

- First, solve it mod 2¹: obviously we have one solution x ≡ 1 (mod 2).
- Next, solve it mod 2². It reduces to the solution above mod 2, so it is of the form x = 1 + 2a (mod 4) for some a = 0, 1. Testing possible a gives only a = 1, so that x = 1 + 2 (mod 4).

To illustrate, let's solve the very simple equation x + 1 = 0 modulo powers of 2.

- First, solve it mod 2¹: obviously we have one solution x ≡ 1 (mod 2).
- Next, solve it mod 2². It reduces to the solution above mod 2, so it is of the form x = 1 + 2a (mod 4) for some a = 0, 1. Testing possible a gives only a = 1, so that x = 1 + 2 (mod 4).
- Next, solve it mod 2³. It reduces to the solution above mod 4, so it is of the form x = 1 + 2 + 4a (mod 4) for some a = 0, 1. Testing possible a gives only a = 1, so that x = 1 + 2 + 4 (mod 8).

To illustrate, let's solve the very simple equation x + 1 = 0 modulo powers of 2.

- First, solve it mod 2¹: obviously we have one solution x ≡ 1 (mod 2).
- Next, solve it mod 2². It reduces to the solution above mod 2, so it is of the form x = 1 + 2a (mod 4) for some a = 0, 1. Testing possible a gives only a = 1, so that x = 1 + 2 (mod 4).
- Next, solve it mod 2³. It reduces to the solution above mod 4, so it is of the form x = 1 + 2 + 4a (mod 4) for some a = 0, 1. Testing possible a gives only a = 1, so that x = 1 + 2 + 4 (mod 8).
- Repeating this process yields a unique solution each time, namely x = 1 + 2 + 4 + 8 + ··· + 2ⁿ⁻¹ (mod 2ⁿ).
- Of course, this is just $-1 \mod 2^n$, the actual integer solution of the equation.

The 2-adic equality $1 + 2 + 4 + 8 + \cdots = -1$ encapsulates all of these calculations at once, and reflects that the original equation x + 1 = 0 actually has an integer solution x = -1.

• This lifting procedure works for most polynomial equation too, as first shown explicitly by Hensel:

Theorem (Hensel's Lemma)

Suppose q(x) is a polynomial with integer coefficients. If $q(a) \equiv 0$ (mod p^d) and $q'(a) \neq 0$ (mod p), then there is a unique k modulo p such that $q(a + kp^d) \equiv 0$ (mod p^{d+1} . Explicitly, this value is $k = -\frac{1}{q'(a)} \cdot \frac{q(a)}{p^d}$.

This result says if x = a is a root of $q(x) \mod p$, and $q'(a) \neq 0$ (mod p), then it lifts to a unique root of the polynomial mod p^2 , mod p^3 , mod p^4 , ...: and in fact, in \mathbb{Z}_p .

Although the expression in Hensel's lemma may look very unpleasant, the iteration procedure is actually quite nice.

- From the description, the new root $a' = a + kp^d$ is given by $a' = a \frac{q(a)}{q'(a)}$, and this is precisely the same as the iteration procedure used in Newton's method for finding a zero of a differentiable function q(x).
- What this means is: this procedure is really just applying Newton's method inside the *p*-adic integers to compute a root of the polynomial q(x).

Some Other Facts About \mathbb{Z}_p

There is so very much more to say about the *p*-adic numbers, but since I don't want to take way too much time, let me just say a few of the really neat facts:

- Z_p has very interesting topological properties. For example,
 Z_p is compact, locally compact, and totally disconnected.
- The only closed subgroups of Z_p are the sets pⁿZ_p, which has finite index pⁿ. As a consequence, every closed subgroup of Z_p is open.
- An infinite series of *p*-adic integers converges if and only if the terms have norms tending to zero.
- A function defined by a power series f(x) = ∑_{n=0}[∞] a_nxⁿ will converge for all x ∈ Z_p with |x|_p < r for an appropriate radius of convergence r determined by the p-adic valuations of the coefficients. In particular, if the coefficients are integers, then the series converges for all |x|_p < 1.

A Mind-Bending Calculation

By manipulating the series appropriately, one can show that the usual binomial expansion for the square root function $\sqrt{1+x} = \sum_{n=0}^{\infty} \frac{(1/2)(1/2-1)(1/2-2)(1/2-n+1)}{n!} x^n$, when squared, actually produces the value 1 + x in \mathbb{Z}_p as long as $|x|_p < 1$.

- Setting x = 7/9, which has |x| < 1 and $|x|_7 < 1$, gives $\sum_{n=0}^{\infty} \frac{(1/2)(1/2-1)\cdots(1/2-n+1)}{n!} (7/9)^n = 1 + \frac{1}{2} \cdot \frac{7}{9} - \frac{1}{4} (\frac{7}{9})^2 + \cdots.$
- Over the real numbers, this sum converges to the value $\sqrt{16/9} = 4/3$.
- However, 7-adically, this sum is congruent to 1 modulo 7 (since all of the terms after the "1" have a factor of 7 in them). But x = 4/3 is congruent to -1 modulo 7 (since $1/3 \equiv -2 \pmod{7}$, and so in fact the 7-adic series converges to -4/3.
- So: the exact same series converges to different roots of the polynomial x² − 16/9 over the real numbers and in Z₇!

Thanks!

Thanks to Sam Lowe and the other math club organizers for providing me the opportunity to speak here today!

I hope you enjoyed my talk, and I'd like to thank you for attending! Enjoy your weekend!