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The p-Adic Numbers

Outline of Talk

I will start by motivating the p-adic numbers with some curious,
and totally illegal, infinite sum calculations.

Then I will give the actual definition of the p-adic numbers, and
illustrate various kinds of calculations with them.

Next, I will talk about some of the unusual and neat analytical and
topological properties of the p-adic numbers.

Finally, time permitting, I will try to describe some uses of the
p-adic numbers in number theory.
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How To Sum Geometric Series, I

Consider the geometric series

S = 1 +
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+ · · · .

As we all presumably remember, this series converges and its
sum is 2. To (re)determine this, just note that
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and so subtracting and cancelling common terms yields

S − 1

2
S = 1

from which we see S = 2.
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How To Sum Geometric Series, II

The same approach works for the more general geometric series

S = 1 + r + r2 + r3 + · · ·

Namely, just multiply it by r and then subtract from the original.
Explicitly, we have

S = 1 + r + r2 + r3 + r4 + · · ·
rS = r + r2 + r3 + r4 + · · ·

and so subtracting and cancelling yields S − rS = 1 from which
S = 1/(1− r).
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How To Sum Geometric Series, III

Of course, these manipulations are only valid under the assumption
that the original series

S = 1 + r + r2 + r3 + · · ·

converges1.

Since (as one may check) the geometric series S only
converges when |r | < 1, the derivation of the formula
1 + r + r2 + r3 + · · · = 1/(1− r) is only valid for |r | < 1.

In particular, it is completely illegal to do something like
setting r = 2, or r = 10, in that formula.

1Actually, to do the cancellations without changing the value requires
absolute convergence, but geometric series converge only when they converge
absolutely, so it’s fine.
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How NOT To Sum Geometric Series, I

So let’s set r = 2 in that formula: it yields

1 + 2 + 4 + 8 + 16 + · · · = 1/(1− 2) = −1.

[Pause here for the audience to express shock and horror.]

This is clearly nonsense for several reasons: first, the left-hand
side is a sum of a bunch of positive integers (which goes to
+∞) while the right-hand side is negative!

Completely ridiculous! There is absolutely no scenario in
which this calculation could possibly be correct.

Except... the whole point of this talk is to demonstrate how
this calculation can be made meaningful and valid.
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How NOT To Sum Geometric Series, II

To give some motivation, let’s instead take r = 10: it yields

1 + 10 + 100 + 1000 + 10000 + · · · = 1/(1− 10) = −1/9.

[Pause here for audience to express slightly more shock and

horror.]

This one is even worse than the one with r = 2, because now
the right-hand side isn’t even an integer.

Somehow, that seems even less reasonable than the sum
coming out to be negative. To fix that, let’s multiply it by 9.
That gives

9 + 90 + 900 + 9000 + 90000 + · · · = −1.
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How NOT To Sum Geometric Series, III

So let’s see if we can make any sense out of

9 + 90 + 900 + 9000 + 90000 + · · · = −1.

Being as charitable as possible, try imagining that the sum on
the left actually makes sense. If we just add up a few terms,
we get numbers like 9, 99, 999, 9999, 99999, ....

So the limit would then be a number whose base-10 expansion
(all 9s) just keeps going, like this:

. . . 999999999999999999999999999999999999999999999999999999999999999

Now, the ludicrous claim is that this weird number equals −1.
So let’s try adding 1 to it.
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How NOT To Sum Geometric Series, IV

Here we go, adding:

. . . 999999999999999999999999999999
+ 1
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How NOT To Sum Geometric Series, IV

Here we go, adding:

1
. . . 999999999999999999999999999999
+ 1

0
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Here we go, adding:

11
. . . 999999999999999999999999999999
+ 1

00
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How NOT To Sum Geometric Series, IV

Here we go, adding:

111
. . . 999999999999999999999999999999
+ 1

000
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How NOT To Sum Geometric Series, IV

Let’s jump ahead about ten steps:

1111111111111
. . . 999999999999999999999999999999
+ 1

0000000000000
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How NOT To Sum Geometric Series, IV

The pattern is pretty clear, right? Just keep going forever:

11111111111111111111111111111
. . . 999999999999999999999999999999
+ 1

. . . 000000000000000000000000000000
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How NOT To Sum Geometric Series, V

So what does this tell us?

It sure looks like if we add 1 to the number
. . . 99999999999999, we get the number . . . 00000000000000.

And if a string of a bunch of zeroes means anything, that last
number is just 0.

So to summarize, if we add 1 to
9 + 90 + 900 + 9000 + 90000 + · · · , we get 0.

Thus subtracting 1 yields the conclusion
9 + 90 + 900 + 9000 + 90000 + · · · = −1, as claimed.

Mental exercise for you: redo this calculation but with base-2
expansions to “explain” why 1 + 2 + 4 + 8 + 16 + · · · = −1.
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Towards the p-adics, I

In order to make calculations like the ones we just did meaningful,
we need to describe a place in which the infinite sum
1 + 2 + 4 + 8 + 16 + · · · , actually converges in a meaningful way.

Going with this idea, recall2 that an infinite series can
converge only if its terms eventually become small.

So we are looking for a way to measure the “size” of an
integer, in such a way that the powers of 2 become small in
size as we take higher and higher powers of 2.

Of course, we could just define an arbitrary “size” function on
integers, but we want this size function to behave nicely.

So, what conditions do we want?

2More formally, this is sometimes called the “nth term test for divergence”:
if the terms an do not have limit zero as n→∞, then the infinite sum
a1 + a2 + a3 + · · · cannot converge.
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Towards the p-adics, II

We can take some cues from a size function that already exists:
the usual absolute value |n|.

Of course, this absolute value doesn’t have the property that
powers of 2 have small size, since |2n| = 2n grows large as
n→∞, rather than going to 0.

But it does have lots of other nice properties. Here are some
particularly good ones:

(1) The absolute value is positive except at 0: |a| ≥ 0 with
equality only for a = 0.

(2) The absolute value is multiplicative: |ab| = |a||b| for any
integers a and b.

(3) The absolute value satisfies the triangle inequality:
|a + b| ≤ |a|+ |b| for any integers a and b.
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Towards the p-adics, III

So, let’s see if we can cook up an absolute-value-like function | · |2
on integers that has those same three properties

(1) |a|2 ≥ 0 with equality only for a = 0.

(2) |ab|2 = |a|2|b|2 for any integers a and b.

(3) |a + b|2 ≤ |a|2 + |b|2 for any integers a and b.

and also has the property that |2n| → 0 as n→∞.

Since the absolute value is multiplicative, to make |2n|2 → 0
as n→∞, we want to have |2|2 < 1.

So let’s try, arbitrarily, taking |2|2 = 1/2. Then |2n|2 would be
1/2n, which certainly goes to zero very fast.

But what should we do with the other integers? By thinking
about prime factorizations, it’s enough to decide what to do
with the other prime numbers.
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Towards the p-adics, IV

Here’s a really lazy idea: take |p|2 = 1 for all of the other prime
numbers aside from p = 2.

[Pause to allow audience to appreciate the laziness.]

Using multiplicativity, if n = 2kq where q is odd, then we are
defining |n| = 1/2k , and also |0|2 = 0. Certainly it has a
simplicity to it, but does it satisfy our requirements?

(1) |a|2 ≥ 0 with equality only for a = 0.

(2) |ab|2 = |a|2|b|2 for any integers a and b.

(3) |a + b|2 ≤ |a|2 + |b|2 for any integers a and b.

Certainly (1) and (2) are fine, but what about (3)? Let’s try
some examples to check.
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Towards the p-adics, V

With our absolute value |n| = 1/2k for n = 2kq where q is odd,
let’s try out the triangle inequality |a + b|2 ≤ |a|2 + |b|2:

a = 1, b = 3

: then |a + b| = 1/4 and |a| = 1, |b| = 1. X

a = 2, b = 7: then |a + b| = 1 and |a| = 1/2, |b| = 1. X

a = 2, b = 4: then |a + b| = 1/2 and |a| = 1/2, |b| = 1/4. X

a = 4, b = 4: then |a + b| = 1/8 and |a| = 1/4, |b| = 1/4. X

a = 4, b = 12: then |a + b| = 1/16, |a| = 1/4, |b| = 1/4. X

a = 8, b = 8: then |a + b| = 1/16, |a| = 1/8, |b| = 1/8. X

a = 40, b = 80: |a + b| = 1/8, |a| = 1/8, |b| = 1/16. X

It looks like it always works. In fact, an even stronger statement
seems to hold: |a + b|2 is always less than or equal to the
maximum of |a|2 and |b|2.
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Towards the p-adics, VI

Let’s prove that:

Proposition

Suppose that |n|2 = 1/2k for n = 2kq where q is odd. Then for
any integers a and b we have |a + b|2 ≤ max(|a|2, |b|2).

Proof:

If a = 0 or b = 0 the result is trivial.

Now suppose a = 2kaqa and b = 2kbqb where qa, qb are odd.
By swapping a, b if necessary, suppose ka ≤ kb.

Then |a| = 2−ka and |b| = 2−kb so max(|a|2, |b|2) = 2−ka .

Also a + b = 2ka(qa + 2kb−kaqb), so we see that the power of
2 dividing a + b is at least 2ka . This means
|a + b|2 ≤ 2−ka = max(|a|2, |b|2) as desired.
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Towards the p-adics, VII

So what was the point of all this?

The point was to show that we can define an alternate
absolute value function on integers with the property that
increasing powers of 2 have absolute values tending to 0 (in
fact, tending to 0 exponentially).

The plan now is to use this absolute value to make sense of
this infinite series 1 + 2 + 4 + 8 + 16 + · · · .
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Towards the p-adics, VIII

But before we do that, I want to observe that nothing here was
specific to the prime 2.

If we replace 2 with some other prime p (e.g., 3, or 5, or
2027) we can define a similar absolute value function: for
n = pkq where q is not divisible by p, define |n|p = 1/pk .

Then by the same argument, this absolute value function
satisfies all three of our desired properties:

(1) |a|p ≥ 0 with equality only for a = 0.
(2) |ab|p = |a|p|b|p for any integers a and b.
(3) |a + b|p ≤ |a|p + |b|p for any integers a and b.

This function |n|p is called the p-adic absolute value. In fact
we have a stronger property:

(3’) |a + b|p ≤ max(|a|p, |b|p) for any integers a and b.
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Towards the p-adics, IX

In fact, here’s a much more interesting fact:

Theorem (Ostrowski’s Theorem)

Suppose | · | is a nontrivial 3 absolute value on the integers,
meaning that

(1) |a| ≥ 0 with equality only for a = 0.

(2) |ab| = |a||b| for any integers a and b.

(3) |a + b| ≤ |a|+ |b| for any integers a and b.

Then | · | is a either a power of the usual absolute value or a power
of the p-adic absolute value for some prime p.

So what this means is: up to normalizing, these are the only
possible nontrivial3 absolute value functions on Z.

3The trivial absolute value is the one with |0| = 0 and |n| = 1 for all n 6= 0.
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The p-adic Metric, I

So, now that we have the p-adic absolute value | · |p, we can use it
to make sense of sequences.

The idea is that we can use it to define a distance metric on
integers by setting dp(a, b) = |a− b|p.

This p-adic distance function makes Z into a metric space:

1. First, dp(a, a) = |a− a|p = 0.
2. Second, dp(a, b) = |a− b|p = |b − a|p = dp(b, a) since
| − 1|p = 1.

3. Finally, dp(a, b) + dp(b, c) = |a− b|p + |b − c |p ≤
|(a− b) + (b − c)|p = |a− c |p = dp(a, c) by applying the
triangle inequality for the p-adic absolute value.

The main purpose of having this distance metric is to talk about
convergent sequences.
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The p-adic Metric, II

If {an}n≥1 is a sequence in a metric space with distance function
d , we say that the sequence converges to a limit L when
d(an, L)→ 0 as n→∞.

Inside R with the usual absolute value distance
d(a, b) = |a− b|, this is just the usual notion of a convergent
sequence of real numbers.

The exciting part is to work instead inside Z with the p-adic
metric dp.

Here’s a nontrivial example: under the 2-adic metric, the
sequence with an = 2n converges to L = 0 as n→∞, since
d2(an, 0) = |2n − 0|2 = 1/2n tends to 0 as n grows.

This is encouraging, since the whole point was to find a place
where higher powers of 2 become smaller and smaller.
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The p-adic Metric, III

Our original interest was in trying to understand the sum
1 + 2 + 4 + 8 + 16 + · · · , which our illegal use of the geometric
series formula told us was equal to −1.

Let’s see what happens with the 2-adic metric.

If we take the nth partial sum an = 1 + 2 + 4 + 8 + · · ·+ 2n−1

of this sequence, then we can just check the formula
an = 2n − 1 (e.g., by induction).

Therefore, under the 2-adic metric d2, we have
d2(an,−1) = |an + 1|2 = |(2n − 1) + 1|n = |2n|n = 1/2n.

Hence under the 2-adic metric, the sequence of partial sums
converges to −1!
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The p-adic Metric, IV

So, if we (very reasonably) define the expression
1 + 2 + 4 + 8 + 16 + · · · to be the limit of its partial sums, then
under the 2-adic metric, the statement
1 + 2 + 4 + 8 + 16 + · · · = −1 is now completely, 100% correct!

[Pause to allow the audience to feel the amazement of this fact.]

We can do a similar calculation to see that
9 + 90 + 900 + 9000 + · · · also converges 2-adically to −1.

Explicitly, for an = 9 + 90 + · · ·+ 9 · 10n−1 = 10n − 1 we see
d2(an,−1) = |an + 1|2 = |10n|2 = 1/2n → 0 as n→∞.

Hence under the 2-adic metric, we have
9 + 90 + 900 + 9000 + · · · = −1.

In fact, this statement is also true under the 5-adic metric,
since |10n|5 = 1/5n also tends to zero.
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The p-adic Metric, V

So, we see that under the 2-adic metric, we have
9 + 90 + 900 + 9000 + · · · = −1.

But the original sum we were after was
1 + 10 + 100 + 1000 + · · · , which was supposed to equal −1/9.

Obviously, we cannot make a valid statement like that inside
the integers, since −1/9 is not an integer.

The question still remains, however: does the sum
1 + 10 + 100 + 1000 + · · · converge under the 2-adic metric?

The direct answer is: it cannot converge to an integer (since if
it did, multiplying that integer by 9 would yield −1, but there
is no such integer).

But what if we take a different notion of convergence?
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The p-adic Metric, VI

Another way to decide if a sequence of real numbers converges is
to test whether it is a Cauchy sequence.

A sequence {an}n≥1 is Cauchy if for any ε > 0 there exists N
such that d(am, an) < ε whenever m, n ≥ N.

Intuitively, the terms in a Cauchy sequence all get (and stay)
arbitrarily close as we go far out in the sequence.

Cauchy sequences are used in constructing the real numbers
starting from the rational numbers, since every real number is
the limit of a Cauchy sequence of rational numbers.

More precisely, if we define two Cauchy sequences {an} and
{bn} to be equivalent if d(an, bn)→ 0 as n→∞, then the
real numbers are obtained as the equivalence classes of Cauchy
sequences of rational numbers under the usual distance.
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The p-adic Integers, I

We can perform an analogous completion procedure on the
integers under the p-adic metric to obtain a place where all of our
Cauchy sequences actually converge.

Definition

The p-adic integers, denoted Zp, consist of all equivalence classes
of Cauchy sequences of integers under the p-adic metric.

This is a fairly opaque definition since it relies on Cauchy
sequences.

Fortunately, there is a much more concrete description of the
elements of Zp, and in fact, the elements look just like the
kinds of sums we have been considering.
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The p-adic Integers, II

Explicitly, the elements of Zp are all uniquely given as “infinite
base-p expansions”, of the form
a0 + a1p + a2p2 + a3p3 + a4p4 + · · · , where each ai has
0 ≤ ai ≤ p − 1.

In base p, we would write such a number as . . . a4a3a2a1a0.

It is not hard to see that the partial sums of any such
expansion are a Cauchy sequence under the p-adic metric
(since for m > n, the difference between the mth and nth has
all terms with at least pn in them).

It is a bit more work to show that every Cauchy sequence is
equivalent to one of these, and that all of these sequences are
inequivalent. (But it’s true.)
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The p-adic Integers, III

What is even nicer is that we can add, subtract, and multiply
p-adic integers as well.

Intuitively, they behave like power series in p, but with
carrying: we just add, subtract, or multiply as appropriate,
keeping track of carries as we go.

If we want to write down the terms up to pn, we can just do
the calculations with the terms up to pn.

For example, with p = 5, if we want to add
1 + p + p2 + p3 + p4 + · · · to 1 + 4p + 2p2 + 0p3 + 0p4 + · · · ,
we just add term-by-term to get 1 + 5p + 3p2 + p3 + p4 + · · ·
and then resolve the carry in the p-coefficient to get
1 + 0p + 4p2 + p3 + p4 + · · · .
Multiplication is similar: just use the distributive law and then
resolve all of the carries at the end.
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The p-adic Integers, IV

Multiplication is similar: just use the distributive law and then
resolve all of the carries at the end.

For example, with p = 5, if we want to multiply
1 + 2p + 3p2 + · · · with 1 + 4p + 2p2 + · · · , we distribute,
collect terms, and then resolve carries to get

(1 + 2p + 3p2 + · · · )(1 + 4p + 2p2 + · · · )
= 1(1 + 4p + 2p2 + · · · ) + 2p(1 + 4p + 2p2 + · · · ) + 3p2(1 + 4p + 2p2 + · · · ) + · · ·
= (1 + 4p + 2p2 + · · · ) + (2p + 8p2 + 4p3 + · · · ) + (3p2 + 12p3 + 6p4 + · · · )
= 1 + 6p + 13p2 + · · ·
= 1 + p + 4p2 + · · ·
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The p-adic Integers, V

In many situations, we can even find multiplicative inverses of
elements of Zp, which in turn allows us to do division.

For example, in Zp we have the product
(1− p)(1 + p + p2 + p3 + p4 + · · · )
= (1 + p + p2 + p3 + · · · ) + (−p)(1 + p + p2 + p3 + · · · )
= (1 + p + p2 + p3 + · · · ) + (−p − p2 − p3 · · · ) = 1.

That means 1− p has a multiplicative inverse in Zp, namely,
1 + p + p2 + p3 + p4 + · · · .
Or, written differently: 1/(1−p) = 1 + p + p2 + p3 + p4 + · · · .
Precisely our geometric series formula!

More generally, an element a0 + a1p + a2p2 + a3p3 + a4p4 + · · ·
will have a multiplicative inverse precisely when a0 6= 0.
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Solving Equations Mod pn, I

Historically, the motivation for constructing and studying the
p-adic integers came from studying solutions to polynomial
equations modulo primes and prime powers.

A natural way to try to solve a polynomial equation modulo a
prime power pn is first to solve it mod p, then solve it mod
p2, then solve it mod p3, and so forth.

The reason this is a good idea is that any solution mod p2

must reduce to one of the solutions found mod p, so one can
just test the solutions mod p plus multiples of p to get the
solutions mod p2.

The same idea works to solve the equation mod p3 given the
solutions mod p2: a solution mod p3 must reduce to one mod
p2, so just test the solutions mod p2 plus multiples of p2.
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Solving Equations Mod pn, II

To illustrate, let’s solve the very simple equation x + 1 = 0 modulo
powers of 2.

First, solve it mod 21: obviously we have one solution x ≡ 1
(mod 2).

Next, solve it mod 22. It reduces to the solution above mod 2,
so it is of the form x ≡ 1 + 2a (mod 4) for some a = 0, 1.
Testing possible a gives only a = 1, so that x = 1 + 2 (mod 4).

Next, solve it mod 23. It reduces to the solution above mod 4,
so it is of the form x ≡ 1 + 2 + 4a (mod 4) for some a = 0, 1.
Testing possible a gives only a = 1, so that x = 1 + 2 + 4
(mod 8).

Repeating this process yields a unique solution each time,
namely x = 1 + 2 + 4 + 8 + · · ·+ 2n−1 (mod 2n).

Of course, this is just −1 mod 2n, the actual integer solution
of the equation.
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Solving Equations Mod pn, III

The 2-adic equality 1 + 2 + 4 + 8 + · · · = −1 encapsulates all of
these calculations at once, and reflects that the original equation
x + 1 = 0 actually has an integer solution x = −1.

This lifting procedure works for most polynomial equation too,
as first shown explicitly by Hensel:

Theorem (Hensel’s Lemma)

Suppose q(x) is a polynomial with integer coefficients. If q(a) ≡ 0
(mod pd) and q′(a) 6= 0 (mod p), then there is a unique k modulo
p such that q(a + kpd) ≡ 0 (mod pd+1. Explicitly, this value is

k = − 1

q′(a)
· q(a)

pd
.

This result says if x = a is a root of q(x) mod p, and q′(a) 6= 0
(mod p), then it lifts to a unique root of the polynomial mod p2,
mod p3, mod p4, ...: and in fact, in Zp.
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Solving Equations Mod pn, IV

Although the expression in Hensel’s lemma may look very
unpleasant, the iteration procedure is actually quite nice.

From the description, the new root a′ = a + kpd is given by

a′ = a− q(a)

q′(a)
, and this is precisely the same as the iteration

procedure used in Newton’s method for finding a zero of a
differentiable function q(x).

What this means is: this procedure is really just applying
Newton’s method inside the p-adic integers to compute a root
of the polynomial q(x).
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Some Other Facts About Zp

There is so very much more to say about the p-adic numbers, but
since I don’t want to take way too much time, let me just say a
few of the really neat facts:

Zp has very interesting topological properties. For example,
Zp is compact, locally compact, and totally disconnected.

The only closed subgroups of Zp are the sets pnZp, which has
finite index pn. As a consequence, every closed subgroup of
Zp is open.

An infinite series of p-adic integers converges if and only if the
terms have norms tending to zero.

A function defined by a power series f (x) =
∑∞

n=0 anxn will
converge for all x ∈ Zp with |x |p < r for an appropriate radius
of convergence r determined by the p-adic valuations of the
coefficients. In particular, if the coefficients are integers, then
the series converges for all |x |p < 1.
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A Mind-Bending Calculation

By manipulating the series appropriately, one can show that the
usual binomial expansion for the square root function√

1 + x =
∑∞

n=0
(1/2)(1/2−1)(1/2−2)(1/2−n+1)

n! xn, when squared,
actually produces the value 1 + x in Zp as long as |x |p < 1.

Setting x = 7/9, which has |x | < 1 and |x |7 < 1, gives∑∞
n=0

(1/2)(1/2−1)···(1/2−n+1)
n! (7/9)n = 1 + 1

2 ·
7
9 −

1
4(79)2 + · · · .

Over the real numbers, this sum converges to the value√
16/9 = 4/3.

However, 7-adically, this sum is congruent to 1 modulo 7
(since all of the terms after the “1” have a factor of 7 in
them). But x = 4/3 is congruent to −1 modulo 7 (since
1/3 ≡ −2 (mod 7), and so in fact the 7-adic series converges
to −4/3.

So: the exact same series converges to different roots of the
polynomial x2 − 16/9 over the real numbers and in Z7!
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Thanks!

Thanks to Sam Lowe and the other math club organizers for
providing me the opportunity to speak here today!

I hope you enjoyed my talk, and I’d like to thank you for attending!
Enjoy your weekend!


