The p-Adic Numbers

Evan P. Dummit Northeastern University

Northeastern Math Club November 4th, 2022

Outline of Talk

I will start by motivating the p-adic numbers with some curious, and totally illegal, infinite sum calculations.

Then I will give the actual definition of the p-adic numbers, and illustrate various kinds of calculations with them.

Next, I will talk about some of the unusual and neat analytical and topological properties of the p-adic numbers.

Finally, time permitting, I will try to describe some uses of the p-adic numbers in number theory.

Consider the geometric series

$$
S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots.
$$

As we all presumably remember, this series converges and its sum is 2. To (re)determine this, just note that

$$
\frac{1}{2}S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots
$$

and so subtracting and cancelling common terms yields

$$
S-\frac{1}{2}S=1
$$

from which we see $S = 2$.

The same approach works for the more general geometric series

$$
S=1+r+r^2+r^3+\cdots
$$

Namely, just multiply it by r and then subtract from the original. Explicitly, we have

$$
S = 1 + r + r2 + r3 + r4 + \cdots
$$

\n
$$
rS = r + r2 + r3 + r4 + \cdots
$$

and so subtracting and cancelling yields $S - rS = 1$ from which $S = 1/(1 - r)$.

How To Sum Geometric Series, III

Of course, these manipulations are only valid under the assumption that the original series

$$
S=1+r+r^2+r^3+\cdots
$$

converges 1 .

- Since (as one may check) the geometric series S only converges when $|r| < 1$, the derivation of the formula $1+r+r^2+r^3+\cdots = 1/(1-r)$ is only valid for $|r| < 1.$
- In particular, it is completely illegal to do something like setting $r = 2$, or $r = 10$, in that formula.

 1 Actually, to do the cancellations without changing the value requires absolute convergence, but geometric series converge only when they converge absolutely, so it's fine.

So let's set $r = 2$ in that formula: it yields

$$
1+2+4+8+16+\cdots = 1/(1-2) = -1.
$$

[Pause here for the audience to express shock and horror.]

So let's set $r = 2$ in that formula: it yields

$$
1+2+4+8+16+\cdots = 1/(1-2) = -1.
$$

[Pause here for the audience to express shock and horror.]

- This is clearly nonsense for several reasons: first, the left-hand side is a sum of a bunch of positive integers (which goes to $+\infty$) while the right-hand side is negative!
- Completely ridiculous! There is absolutely no scenario in which this calculation could possibly be correct.

So let's set $r = 2$ in that formula: it yields

$$
1+2+4+8+16+\cdots = 1/(1-2) = -1.
$$

[Pause here for the audience to express shock and horror.]

- This is clearly nonsense for several reasons: first, the left-hand side is a sum of a bunch of positive integers (which goes to $+\infty$) while the right-hand side is negative!
- Completely ridiculous! There is absolutely no scenario in which this calculation could possibly be correct.
- Except... the whole point of this talk is to demonstrate how this calculation can be made meaningful and valid.

To give some motivation, let's instead take $r = 10$: it yields

 $1 + 10 + 100 + 1000 + 10000 + \cdots = 1/(1 - 10) = -1/9.$

[Pause here for audience to express slightly more shock and horror.]

To give some motivation, let's instead take $r = 10$: it yields

 $1 + 10 + 100 + 1000 + 10000 + \cdots = 1/(1 - 10) = -1/9.$

[Pause here for audience to express slightly more shock and horror.]

- This one is even worse than the one with $r = 2$, because now the right-hand side isn't even an integer.
- Somehow, that seems even less reasonable than the sum coming out to be negative. To fix that, let's multiply it by 9. That gives

 $9 + 90 + 900 + 9000 + 90000 + \cdots = -1.$

So let's see if we can make any sense out of

```
9 + 90 + 900 + 9000 + 90000 + \cdots = -1.
```
- Being as charitable as possible, try imagining that the sum on the left actually makes sense. If we just add up a few terms, we get numbers like 9, 99, 999, 9999, 99999,
- So the limit would then be a number whose base-10 expansion (all 9s) just keeps going, like this:

So let's see if we can make any sense out of

```
9 + 90 + 900 + 9000 + 90000 + \cdots = -1.
```
- Being as charitable as possible, try imagining that the sum on the left actually makes sense. If we just add up a few terms, we get numbers like 9, 99, 999, 9999, 99999,
- So the limit would then be a number whose base-10 expansion (all 9s) just keeps going, like this:

. . . 999

• Now, the ludicrous claim is that this weird number equals -1 . So let's try adding 1 to it.

Here we go, adding:

. . . 999999999999999999999999999999

 $+$ 1

Here we go, adding:

Here we go, adding:

Here we go, adding:

Let's jump ahead about ten steps:

The pattern is pretty clear, right? Just keep going forever:

So what does this tell us?

- \bullet It sure looks like if we add 1 to the number . . . 99999999999999, we get the number . . . 00000000000000.
- And if a string of a bunch of zeroes means anything, that last number is just 0.
- So to summarize, if we add 1 to $9 + 90 + 900 + 9000 + 90000 + \cdots$, we get 0.
- Thus subtracting 1 yields the conclusion $9 + 90 + 900 + 9000 + 90000 + \cdots = -1$, as claimed.

So what does this tell us?

- \bullet It sure looks like if we add 1 to the number . . . 99999999999999, we get the number . . . 00000000000000.
- And if a string of a bunch of zeroes means anything, that last number is just 0.
- So to summarize, if we add 1 to $9 + 90 + 900 + 9000 + 90000 + \cdots$, we get 0.
- Thus subtracting 1 yields the conclusion $9 + 90 + 900 + 9000 + 90000 + \cdots = -1$, as claimed.

Mental exercise for you: redo this calculation but with base-2 expansions to "explain" why $1 + 2 + 4 + 8 + 16 + \cdots = -1$.

In order to make calculations like the ones we just did meaningful, we need to describe a place in which the infinite sum $1 + 2 + 4 + 8 + 16 + \cdots$, actually converges in a meaningful way.

- Going with this idea, recall² that an infinite series can converge only if its terms eventually become small.
- So we are looking for a way to measure the "size" of an integer, in such a way that the powers of 2 become small in size as we take higher and higher powers of 2.
- Of course, we could just define an arbitrary "size" function on integers, but we want this size function to behave nicely.
- So, what conditions do we want?

²More formally, this is sometimes called the "nth term test for divergence": if the terms a_n do not have limit zero as $n \to \infty$, then the infinite sum $a_1 + a_2 + a_3 + \cdots$ cannot converge.

We can take some cues from a size function that already exists: the usual absolute value $|n|$.

- Of course, this absolute value doesn't have the property that powers of 2 have small size, since $|2^n|=2^n$ grows large as $n \to \infty$, rather than going to 0.
- But it does have lots of other nice properties. Here are some particularly good ones:
	- (1) The absolute value is positive except at 0: $|a| \ge 0$ with equality only for $a = 0$.
	- (2) The absolute value is multiplicative: $|ab| = |a||b|$ for any integers a and b.
	- (3) The absolute value satisfies the triangle inequality: $|a + b| < |a| + |b|$ for any integers a and b.

So, let's see if we can cook up an absolute-value-like function $|\cdot|_2$ on integers that has those same three properties

(1)
$$
|a|_2 \ge 0
$$
 with equality only for $a = 0$.

(2)
$$
|ab|_2 = |a|_2|b|_2
$$
 for any integers *a* and *b*.

(3) $|a + b|_2 \le |a|_2 + |b|_2$ for any integers a and b.

and also has the property that $|2^n|\to 0$ as $n\to\infty$.

So, let's see if we can cook up an absolute-value-like function $|\cdot|_2$ on integers that has those same three properties

- (1) $|a|_2 \geq 0$ with equality only for $a = 0$.
- (2) $|ab|_2 = |a|_2|b|_2$ for any integers a and b.
- (3) $|a + b|_2 \le |a|_2 + |b|_2$ for any integers a and b.

and also has the property that $|2^n|\to 0$ as $n\to\infty$.

- Since the absolute value is multiplicative, to make $|2^n|_2 \to 0$ as $n \to \infty$, we want to have $|2|_2 < 1$.
- So let's try, arbitrarily, taking $|2|_2 = 1/2$. Then $|2^n|_2$ would be $1/2^n$, which certainly goes to zero very fast.
- But what should we do with the other integers? By thinking about prime factorizations, it's enough to decide what to do with the other prime numbers.

Here's a really lazy idea: take $|p|_2 = 1$ for all of the other prime numbers aside from $p = 2$.

[Pause to allow audience to appreciate the laziness.]

Here's a really lazy idea: take $|p|_2 = 1$ for all of the other prime numbers aside from $p = 2$.

[Pause to allow audience to appreciate the laziness.]

• Using multiplicativity, if $n = 2^k q$ where q is odd, then we are defining $|n|=1/2^k$, and also $|0|_2=0$. Certainly it has a simplicity to it, but does it satisfy our requirements?

(1)
$$
|a|_2 \ge 0
$$
 with equality only for $a = 0$.

- (2) $|ab|_2 = |a|_2|b|_2$ for any integers a and b.
- (3) $|a + b|_2 < |a|_2 + |b|_2$ for any integers a and b.
	- Certainly (1) and (2) are fine, but what about (3) ? Let's try some examples to check.

With our absolute value $|n|=1/2^k$ for $n=2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 \le |a|_2 + |b|_2$:

• $a = 1, b = 3$

- $a = 1$, $b = 3$: then $|a + b| = 1/4$ and $|a| = 1$, $|b| = 1$.
- $a = 2, b = 7$

- $a = 1$, $b = 3$: then $|a + b| = 1/4$ and $|a| = 1$, $|b| = 1$.
- $a = 2$, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$.
- $a = 2, b = 4$

- $a = 1$, $b = 3$: then $|a + b| = 1/4$ and $|a| = 1$, $|b| = 1$.
- $a = 2$, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$.
- $a = 2$, $b = 4$: then $|a + b| = 1/2$ and $|a| = 1/2$, $|b| = 1/4$.
- $a = 4, b = 4$

- $a = 1$, $b = 3$: then $|a + b| = 1/4$ and $|a| = 1$, $|b| = 1$.
- $a = 2$, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$.
- $a = 2$, $b = 4$: then $|a + b| = 1/2$ and $|a| = 1/2$, $|b| = 1/4$.
- $a = 4$, $b = 4$: then $|a + b| = 1/8$ and $|a| = 1/4$, $|b| = 1/4$. • $a = 4, b = 12$

With our absolute value $|n|=1/2^k$ for $n=2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 < |a|_2 + |b|_2$:

• $a = 1$, $b = 3$: then $|a + b| = 1/4$ and $|a| = 1$, $|b| = 1$.

•
$$
a = 2
$$
, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$.

•
$$
a = 2
$$
, $b = 4$: then $|a + b| = 1/2$ and $|a| = 1/2$, $|b| = 1/4$.

•
$$
a = 4
$$
, $b = 4$: then $|a + b| = 1/8$ and $|a| = 1/4$, $|b| = 1/4$.

•
$$
a = 4
$$
, $b = 12$: then $|a + b| = 1/16$, $|a| = 1/4$, $|b| = 1/4$.

•
$$
a = 8, b = 8
$$

With our absolute value $|n|=1/2^k$ for $n=2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 < |a|_2 + |b|_2$:

• $a = 1$, $b = 3$: then $|a + b| = 1/4$ and $|a| = 1$, $|b| = 1$.

•
$$
a = 2
$$
, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$.

•
$$
a = 2
$$
, $b = 4$: then $|a + b| = 1/2$ and $|a| = 1/2$, $|b| = 1/4$.

•
$$
a = 4
$$
, $b = 4$: then $|a + b| = 1/8$ and $|a| = 1/4$, $|b| = 1/4$.

•
$$
a = 4
$$
, $b = 12$: then $|a + b| = 1/16$, $|a| = 1/4$, $|b| = 1/4$.

•
$$
a = 8
$$
, $b = 8$: then $|a + b| = 1/16$, $|a| = 1/8$, $|b| = 1/8$.

•
$$
a = 40, b = 80
$$

With our absolute value $|n|=1/2^k$ for $n=2^k q$ where q is odd, let's try out the triangle inequality $|a + b|_2 < |a|_2 + |b|_2$:

• $a = 1$, $b = 3$: then $|a + b| = 1/4$ and $|a| = 1$, $|b| = 1$.

•
$$
a = 2
$$
, $b = 7$: then $|a + b| = 1$ and $|a| = 1/2$, $|b| = 1$.

• $a = 2$, $b = 4$: then $|a + b| = 1/2$ and $|a| = 1/2$, $|b| = 1/4$.

•
$$
a = 4
$$
, $b = 4$: then $|a + b| = 1/8$ and $|a| = 1/4$, $|b| = 1/4$.

•
$$
a = 4
$$
, $b = 12$: then $|a + b| = 1/16$, $|a| = 1/4$, $|b| = 1/4$.

• $a = 8$, $b = 8$: then $|a + b| = 1/16$, $|a| = 1/8$, $|b| = 1/8$.

• $a = 40$, $b = 80$: $|a + b| = 1/8$, $|a| = 1/8$, $|b| = 1/16$. \checkmark

It looks like it always works. In fact, an even stronger statement seems to hold: $|a + b|_2$ is always less than or equal to the maximum of $|a|_2$ and $|b|_2$.

Let's prove that:

Proposition

Suppose that $|n|_2 = 1/2^k$ for $n = 2^k q$ where q is odd. Then for any integers a and b we have $|a + b|_2 \leq \max(|a|_2, |b|_2)$.

Let's prove that:

Proposition

Suppose that $|n|_2 = 1/2^k$ for $n = 2^k q$ where q is odd. Then for any integers a and b we have $|a + b|_2 \leq \max(|a|_2, |b|_2)$.

Proof:

- If $a = 0$ or $b = 0$ the result is trivial.
- Now suppose $a = 2^{k_a} q_a$ and $b = 2^{k_b} q_b$ where q_a, q_b are odd. By swapping a, b if necessary, suppose $k_a \leq k_b$.
- Then $|a|=2^{-k_a}$ and $|b|=2^{-k_b}$ so max $(|a|_2,|b|_2)=2^{-k_a}$.
- Also $a + b = 2^{k_a}(q_a + 2^{k_b k_a}q_b)$, so we see that the power of 2 dividing $a + b$ is at least 2^{k_a} . This means $|a + b|_2 \le 2^{-k_a} = \max(|a|_2, |b|_2)$ as desired.

So what was the point of all this?

- The point was to show that we can define an alternate absolute value function on integers with the property that increasing powers of 2 have absolute values tending to 0 (in fact, tending to 0 exponentially).
- The plan now is to use this absolute value to make sense of this infinite series $1+2+4+8+16+\cdots$.

But before we do that, I want to observe that nothing here was specific to the prime 2.

- If we replace 2 with some other prime p (e.g., 3, or 5, or 2027) we can define a similar absolute value function: for $n=p^kq$ where q is not divisible by p , define $|n|_p=1/p^k.$
- Then by the same argument, this absolute value function satisfies all three of our desired properties:

(1)
$$
|a|_p \ge 0
$$
 with equality only for $a = 0$.

- (2) $|ab|_p = |a|_p |b|_p$ for any integers a and b.
- (3) $|a + b|_p \leq |a|_p + |b|_p$ for any integers a and b.
- This function $|n|_p$ is called the p-adic absolute value. In fact we have a stronger property:

(3') $|a + b|_{p} \leq \max(|a|_{p}, |b|_{p})$ for any integers a and b.

In fact, here's a much more interesting fact:

Theorem (Ostrowski's Theorem)

Suppose $|\cdot|$ is a nontrivial³ absolute value on the integers, meaning that

(1)
$$
|a| \ge 0
$$
 with equality only for $a = 0$.

(2)
$$
|ab| = |a||b|
$$
 for any integers a and b.

(3) $|a + b| \le |a| + |b|$ for any integers a and b.

Then $|\cdot|$ is a either a power of the usual absolute value or a power of the p-adic absolute value for some prime p.

So what this means is: up to normalizing, these are the only possible nontrivial³ absolute value functions on $\mathbb Z.$

³The trivial absolute value is the one with $|0| = 0$ and $|n| = 1$ for all $n \neq 0$.

The p-adic Metric, I

So, now that we have the p-adic absolute value $|\cdot|_p$, we can use it to make sense of sequences.

The idea is that we can use it to define a distance metric on integers by setting $d_p(a, b) = |a - b|_p$.

The p-adic Metric, I

So, now that we have the p-adic absolute value $|\cdot|_p$, we can use it to make sense of sequences.

- The idea is that we can use it to define a distance metric on integers by setting $d_p(a, b) = |a - b|_p$.
- \bullet This p-adic distance function makes $\mathbb Z$ into a metric space:
	- 1. First, $d_p(a, a) = |a a|_p = 0$.
	- 2. Second, $d_p(a, b) = |a b|_p = |b a|_p = d_p(b, a)$ since $|-1|_{p}=1.$
	- 3. Finally, $d_p(a, b) + d_p(b, c) = |a b|_p + |b c|_p <$ $|(a - b) + (b - c)|_{p} = |a - c|_{p} = d_{p}(a, c)$ by applying the triangle inequality for the p-adic absolute value.

The main purpose of having this distance metric is to talk about convergent sequences.

The p-adic Metric, II

If ${a_n}_{n\geq 1}$ is a sequence in a metric space with distance function d , we say that the sequence converges to a limit L when $d(a_n, L) \rightarrow 0$ as $n \rightarrow \infty$.

 \bullet Inside $\mathbb R$ with the usual absolute value distance $d(a, b) = |a - b|$, this is just the usual notion of a convergent sequence of real numbers.

The p-adic Metric, II

If ${a_n}_{n\geq 1}$ is a sequence in a metric space with distance function d , we say that the sequence converges to a limit L when $d(a_n, L) \rightarrow 0$ as $n \rightarrow \infty$.

- \bullet Inside $\mathbb R$ with the usual absolute value distance $d(a, b) = |a - b|$, this is just the usual notion of a convergent sequence of real numbers.
- \bullet The exciting part is to work instead inside $\mathbb Z$ with the p-adic metric d_n .
- Here's a nontrivial example: under the 2-adic metric, the sequence with $a_n = 2^n$ converges to $L = 0$ as $n \to \infty$, since $d_2(a_n, 0) = |2^n - 0|_2 = 1/2^n$ tends to 0 as *n* grows.
- This is encouraging, since the whole point was to find a place where higher powers of 2 become smaller and smaller.

The p-adic Metric, III

Our original interest was in trying to understand the sum $1 + 2 + 4 + 8 + 16 + \cdots$, which our illegal use of the geometric series formula told us was equal to -1 .

- Let's see what happens with the 2-adic metric.
- If we take the nth partial sum $a_n = 1 + 2 + 4 + 8 + \cdots + 2^{n-1}$ of this sequence, then we can just check the formula $a_n = 2^n - 1$ (e.g., by induction).
- Therefore, under the 2-adic metric d_2 , we have $d_2(a_n, -1) = |a_n + 1|_2 = |(2^n - 1) + 1|_n = |2^n|_n = 1/2^n$.
- Hence under the 2-adic metric, the sequence of partial sums converges to $-1!$

The p-adic Metric, IV

So, if we (very reasonably) define the expression $1 + 2 + 4 + 8 + 16 + \cdots$ to be the limit of its partial sums, then under the 2-adic metric, the statement $1 + 2 + 4 + 8 + 16 + \cdots = -1$ is now completely, 100% correct!

[Pause to allow the audience to feel the amazement of this fact.]

The p-adic Metric, IV

So, if we (very reasonably) define the expression $1 + 2 + 4 + 8 + 16 + \cdots$ to be the limit of its partial sums, then under the 2-adic metric, the statement $1 + 2 + 4 + 8 + 16 + \cdots = -1$ is now completely, 100% correct!

[Pause to allow the audience to feel the amazement of this fact.]

- We can do a similar calculation to see that $9 + 90 + 900 + 9000 + \cdots$ also converges 2-adically to -1 .
- Explicitly, for $a_n = 9 + 90 + \cdots + 9 \cdot 10^{n-1} = 10^n 1$ we see $d_2(a_n, -1) = |a_n + 1|_2 = |10^n|_2 = 1/2^n \to 0$ as $n \to \infty$.
- Hence under the 2-adic metric, we have $9 + 90 + 900 + 9000 + \cdots = -1.$
- In fact, this statement is also true under the 5-adic metric, since $|10^n|_5 = 1/5^n$ also tends to zero.

The p-adic Metric, V

So, we see that under the 2-adic metric, we have $9 + 90 + 900 + 9000 + \cdots = -1$.

- But the original sum we were after was $1 + 10 + 100 + 1000 + \cdots$, which was supposed to equal $-1/9$.
- Obviously, we cannot make a valid statement like that inside the integers, since $-1/9$ is not an integer.
- The question still remains, however: does the sum $1 + 10 + 100 + 1000 + \cdots$ converge under the 2-adic metric?
- The direct answer is: it cannot converge to an integer (since if it did, multiplying that integer by 9 would yield -1 , but there is no such integer).
- But what if we take a different notion of convergence?

The p-adic Metric, VI

Another way to decide if a sequence of real numbers converges is to test whether it is a Cauchy sequence.

- A sequence ${a_n}_{n\geq 1}$ is Cauchy if for any $\epsilon > 0$ there exists N such that $d(a_m, a_n) < \epsilon$ whenever $m, n \geq N$.
- Intuitively, the terms in a Cauchy sequence all get (and stay) arbitrarily close as we go far out in the sequence.
- Cauchy sequences are used in constructing the real numbers starting from the rational numbers, since every real number is the limit of a Cauchy sequence of rational numbers.
- More precisely, if we define two Cauchy sequences $\{a_n\}$ and ${b_n}$ to be equivalent if $d(a_n, b_n) \rightarrow 0$ as $n \rightarrow \infty$, then the real numbers are obtained as the equivalence classes of Cauchy sequences of rational numbers under the usual distance.

The p-adic Integers, I

We can perform an analogous completion procedure on the integers under the p-adic metric to obtain a place where all of our Cauchy sequences actually converge.

Definition

The p-adic integers, denoted \mathbb{Z}_p , consist of all equivalence classes of Cauchy sequences of integers under the p-adic metric.

- This is a fairly opaque definition since it relies on Cauchy sequences.
- Fortunately, there is a much more concrete description of the elements of \mathbb{Z}_p , and in fact, the elements look just like the kinds of sums we have been considering.

The p-adic Integers, II

Explicitly, the elements of \mathbb{Z}_p are all uniquely given as "infinite base-p expansions", of the form $a_0 + a_1 p + a_2 p^2 + a_3 p^3 + a_4 p^4 + \cdots$, where each a_i has $0 \le a_i \le p-1$.

- \bullet In base p, we would write such a number as ... $a_4a_3a_2a_1a_0$.
- It is not hard to see that the partial sums of any such expansion are a Cauchy sequence under the p-adic metric (since for $m > n$, the difference between the mth and nth has all terms with at least p^n in them).
- It is a bit more work to show that every Cauchy sequence is equivalent to one of these, and that all of these sequences are inequivalent. (But it's true.)

The p-adic Integers, III

What is even nicer is that we can add, subtract, and multiply p-adic integers as well.

- Intuitively, they behave like power series in p , but with carrying: we just add, subtract, or multiply as appropriate, keeping track of carries as we go.
- If we want to write down the terms up to p^n , we can just do the calculations with the terms up to p^n .
- For example, with $p = 5$, if we want to add $1 + p + p^2 + p^3 + p^4 + \cdots$ to $1 + 4p + 2p^2 + 0p^3 + 0p^4 + \cdots$, we just add term-by-term to get $1+5p+3p^2+p^3+p^4+\cdots$ and then resolve the carry in the *p*-coefficient to get $1 + 0p + 4p^2 + p^3 + p^4 + \cdots$
- Multiplication is similar: just use the distributive law and then resolve all of the carries at the end.

The p-adic Integers, IV

Multiplication is similar: just use the distributive law and then resolve all of the carries at the end.

• For example, with $p = 5$, if we want to multiply $1+2p+3p^2+\cdots$ with $1+4p+2p^2+\cdots$, we distribute, collect terms, and then resolve carries to get $(1+2p+3p^2+\cdots)(1+4p+2p^2+\cdots)$ $= 1(1+4p+2p^2+\cdots)+2p(1+4p+2p^2+\cdots)+3p^2(1+4p+2p^2+\cdots)$ $= (1 + 4p + 2p^2 + \cdots) + (2p + 8p^2 + 4p^3 + \cdots) + (3p^2 + 12p^3 + 6p^4 + \cdots)$ $= 1 + 6p + 13p^2 + \cdots$ $= 1 + p + 4p^2 + \cdots$

The p-adic Integers, V

In many situations, we can even find multiplicative inverses of elements of \mathbb{Z}_p , which in turn allows us to do division.

• For example, in
$$
\mathbb{Z}_p
$$
 we have the product
\n
$$
(1-p)(1+p+p^2+p^3+p^4+\cdots)
$$
\n
$$
= (1+p+p^2+p^3+\cdots)+(-p)(1+p+p^2+p^3+\cdots)
$$
\n
$$
= (1+p+p^2+p^3+\cdots)+(-p-p^2-p^3\cdots) = 1.
$$

- That means $1 p$ has a multiplicative inverse in \mathbb{Z}_p , namely, $1 + p + p^2 + p^3 + p^4 + \cdots$
- Or, written differently: $1/(1-p) = 1 + p + p^2 + p^3 + p^4 + \cdots$. Precisely our geometric series formula!

More generally, an element $a_0 + a_1 p + a_2 p^2 + a_3 p^3 + a_4 p^4 + \cdots$ will have a multiplicative inverse precisely when $a_0 \neq 0$.

Historically, the motivation for constructing and studying the p-adic integers came from studying solutions to polynomial equations modulo primes and prime powers.

- A natural way to try to solve a polynomial equation modulo a prime power p^n is first to solve it mod p , then solve it mod p^2 , then solve it mod p^3 , and so forth.
- The reason this is a good idea is that any solution mod p^2 must reduce to one of the solutions found mod p , so one can just test the solutions mod p plus multiples of p to get the solutions mod p^2 .
- The same idea works to solve the equation mod p^3 given the solutions mod ρ^2 : a solution mod ρ^3 must reduce to one mod p^2 , so just test the solutions mod p^2 plus multiples of p^2 .

To illustrate, let's solve the very simple equation $x + 1 = 0$ modulo powers of 2.

First, solve it mod 2^1 : obviously we have one solution $x \equiv 1$ (mod 2).

To illustrate, let's solve the very simple equation $x + 1 = 0$ modulo powers of 2.

- First, solve it mod 2^1 : obviously we have one solution $x \equiv 1$ (mod 2).
- Next, solve it mod 2^2 . It reduces to the solution above mod 2, so it is of the form $x \equiv 1 + 2a$ (mod 4) for some $a = 0, 1$. Testing possible a gives only $a = 1$, so that $x = 1 + 2$ (mod 4).

To illustrate, let's solve the very simple equation $x + 1 = 0$ modulo powers of 2.

- First, solve it mod 2^1 : obviously we have one solution $x \equiv 1$ (mod 2).
- Next, solve it mod 2^2 . It reduces to the solution above mod 2, so it is of the form $x \equiv 1 + 2a$ (mod 4) for some $a = 0, 1$. Testing possible a gives only $a = 1$, so that $x = 1 + 2$ (mod 4).
- Next, solve it mod 2^3 . It reduces to the solution above mod 4, so it is of the form $x \equiv 1 + 2 + 4a$ (mod 4) for some $a = 0, 1$. Testing possible a gives only $a = 1$, so that $x = 1 + 2 + 4$ (mod 8).

To illustrate, let's solve the very simple equation $x + 1 = 0$ modulo powers of 2.

- First, solve it mod 2^1 : obviously we have one solution $x \equiv 1$ (mod 2).
- Next, solve it mod 2^2 . It reduces to the solution above mod 2, so it is of the form $x \equiv 1 + 2a$ (mod 4) for some $a = 0, 1$. Testing possible a gives only $a = 1$, so that $x = 1 + 2$ (mod 4).
- Next, solve it mod 2^3 . It reduces to the solution above mod 4, so it is of the form $x \equiv 1 + 2 + 4a$ (mod 4) for some $a = 0, 1$. Testing possible a gives only $a = 1$, so that $x = 1 + 2 + 4$ (mod 8).
- Repeating this process yields a unique solution each time, namely $x = 1 + 2 + 4 + 8 + \cdots + 2^{n-1}$ (mod 2ⁿ).
- Of course, this is just -1 mod $2ⁿ$, the actual integer solution of the equation.

The 2-adic equality $1 + 2 + 4 + 8 + \cdots = -1$ encapsulates all of these calculations at once, and reflects that the original equation $x + 1 = 0$ actually has an integer solution $x = -1$.

This lifting procedure works for most polynomial equation too, as first shown explicitly by Hensel:

Theorem (Hensel's Lemma)

Suppose $q(x)$ is a polynomial with integer coefficients. If $q(a) \equiv 0$ (mod p^d) and $q'(a) \neq 0$ (mod p), then there is a unique k modulo p such that $q(a+kp^d)\equiv 0$ (mod $p^{d+1}.$ Explicitly, this value is $k = -\frac{1}{4}$ $\frac{1}{q'(a)} \cdot \frac{q(a)}{p^d}$ $\frac{p^{d}}{p^{d}}$.

This result says if $x = a$ is a root of $q(x)$ mod p , and $q'(a) \neq 0$ (mod p), then it lifts to a unique root of the polynomial mod p^2 , mod p^3 , mod p^4 , ...: and in fact, in \mathbb{Z}_p .

Although the expression in Hensel's lemma may look very unpleasant, the iteration procedure is actually quite nice.

- From the description, the new root $a' = a + kp^d$ is given by $a' = a - \frac{q(a)}{d(a)}$ $\frac{\partial}{\partial q'}$, and this is precisely the same as the iteration procedure used in Newton's method for finding a zero of a differentiable function $q(x)$.
- What this means is: this procedure is really just applying Newton's method inside the p -adic integers to compute a root of the polynomial $q(x)$.

Some Other Facts About \mathbb{Z}_p

There is so very much more to say about the p-adic numbers, but since I don't want to take way too much time, let me just say a few of the really neat facts:

- \bullet \mathbb{Z}_p has very interesting topological properties. For example, \mathbb{Z}_p is compact, locally compact, and totally disconnected.
- The only closed subgroups of \mathbb{Z}_p are the sets $p^n\mathbb{Z}_p$, which has finite index p^n . As a consequence, every closed subgroup of \mathbb{Z}_p is open.
- \bullet An infinite series of p-adic integers converges if and only if the terms have norms tending to zero.
- A function defined by a power series $f(x) = \sum_{n=0}^{\infty} a_n x^n$ will converge for all $x \in \mathbb{Z}_p$ with $|x|_p < r$ for an appropriate radius of convergence r determined by the p -adic valuations of the coefficients. In particular, if the coefficients are integers, then the series converges for all $|x|_p < 1$.

A Mind-Bending Calculation

By manipulating the series appropriately, one can show that the usual binomial expansion for the square root function µ $\overline{1+x} = \sum_{n=0}^{\infty}$ $(1/2)(1/2-1)(1/2-2)(1/2-n+1)$ $\frac{(n/2-2)(1/2-n+1)}{n!}$ xⁿ, when squared, actually produces the value $1 + x$ in \mathbb{Z}_p as long as $|x|_p < 1$.

- Setting $x = 7/9$, which has $|x| < 1$ and $|x|< 1$, gives $\sum_{n=0}^{\infty}$ $(1/2)(1/2-1)\cdots(1/2-n+1)$ $\frac{1}{n!}$ $\frac{(1/2-n+1)}{2}$ $(7/9)^n = 1 + \frac{1}{2} \cdot \frac{7}{9} - \frac{1}{4}$ $rac{1}{4}$ $(\frac{7}{9})$ $(\frac{7}{9})^2 + \cdots$.
- Over the real numbers, this sum converges to the value $\sqrt{16/9} = 4/3.$
- However, 7-adically, this sum is congruent to 1 modulo 7 (since all of the terms after the "1" have a factor of 7 in them). But $x = 4/3$ is congruent to -1 modulo 7 (since $1/3 \equiv -2$ (mod 7), and so in fact the 7-adic series converges to $-4/3$.
- So: the exact same series converges to different roots of the polynomial $x^2-16/9$ over the real numbers and in $\mathbb{Z}_7!$

Thanks!

Thanks to Sam Lowe and the other math club organizers for providing me the opportunity to speak here today!

I hope you enjoyed my talk, and I'd like to thank you for attending! Enjoy your weekend!