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Factoring Integers Using Elliptic Curves

Outline of Talk

I will start with a brief discussion of the problem of factoring large
arbitrary integers.

I will then introduce elliptic curves and discuss the addition law on
elliptic curves.

Next, we will talk a bit about the addition law on elliptic curves
modulo a prime p, and more generally modulo an integer n.

Finally, I will discuss how we can use the addition law on elliptic
curves to factor integers – and then we will factor some integers.
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Factoring Is Hard, I

As most of us learn at some point in elementary school, every
positive integer has a prime factorization, and, more interestingly,
the prime factorization is unique up to rearranging the terms.

In fact, the existence of unique factorization is a very
interesting subject in its own right (please take Math 35271,
and then Math 45272, if you want to learn all about that!)

But we’re interested in actually computing factorizations.

As it turns out, there are quick ways to show that large integers
are composite without actually finding a factorization.

1Math 3527 = Number Theory 1, typically runs in Spring and Summer
2Math 4527 = Number Theory 2, typically runs whenever I have room in

my schedule to teach it
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Factoring Is Hard, II

Proposition (Fermat Compositeness Test)

Suppose m is a positive integer. If there exists a positive integer a
such that am − a is not divisible by m, then m must be composite.

Proof: We show the contrapositive of this statement: if p is a
prime number, then ap − a is always divisible by p for all
positive integers a. For this, induct on a.

The base case a = 1 is easy, since 1p − 1 = 0 is divisible by p.

For the inductive step, suppose ap − a is divisible by p. Then
(a + 1)p − (a + 1) =
(ap + pap−1 +

(p
2

)
ap−2 + · · ·+

( p
p−1
)
a + 1)− (a + 1) = (ap− a)

plus a multiple of p, because all of the binomial coefficients
are divisible by p.

So by the inductive hypothesis, we see immediately that
(a + 1)p − (a + 1) is also a multiple of p, as desired.
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Factoring Is Hard, III

For large m we can quickly determine whether am − a is divisible
by m by reducing modulo m (i.e., taking the remainder upon
dividing by m) as we compute the power am, which can be done
very quickly.

As an example, with m = 401, 908, 261, my 13-year-old
desktop computer (yes, really) reports taking 0.0000
milliseconds to compute the remainder when 2m − 2 is divided
by m.

Since this remainder comes out as 72, 531, 146, which is not
zero, that tells us this number m = 401, 908, 261 is composite.
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Factoring Is Hard, IV

Okay... so now, what’s the prime factorization of the composite
number m = 401, 908, 261?
(I’ll wait. No calculators!)

Right, so, even though we know for sure this number is
composite, how do we actually find a factorization?

One way: just test all possible prime factors up to m. One of
them has to divide m, and once we find it, we’ve gotten a
factorization.

In fact we don’t even need to go all the way up to m, since
the smallest prime factor of m is at most

√
m when m is

composite. (Why?)

Sadly, however, this is going to take a while, because there are
2, 267 primes less than

√
m.

I don’t want to check all of them... do you?
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Factoring Is Hard, V

We would like a better way to find a factor of m.

There are lots of different factoring algorithms that have been
developed over the millennia (!) that mathematicians and
others have been investigating number theory.

Most of the good ones have come onto the scene only in the
last 100 years or so, when the advent of effective calculation
technology made the necessary computations feasible to
perform efficiently.

So now I will tell you one that relies on some properties of elliptic
curves.
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Elliptic Curves, I

Definition

An elliptic curve E is a curve having an equation of the form

y2 = x3 + Ax + B

for some A and B. This expression is called the
reduced Weierstrass form of E .

For us, A and B will be integers. Our interest will be in the set of
points (x , y) satisfying the equation y2 = x3 + Ax + B.
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Elliptic Curves, II

We can draw graphs to visualize elliptic curves. Here is the graph
of y2 = x3 + 1:
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Elliptic Curves, V

Here is the graph of y2 = x3 − 2x + 1:
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Elliptic Curves, VI

Let’s now make a few observations.

Observation

The graph of an elliptic curve y2 = x3 + Ax + B will always be
symmetric about the x-axis.

This is easy to see because if (x , y) satisfies the equation then
so does (x ,−y).
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Elliptic Curves, VII

Observation

Elliptic curves are not ellipses.

The reason for the similar name is that if you want to
compute the arclength of an ellipse (an elliptic integral), a few
changes of variable will transform the resulting integral into

one of the general form

∫
1√

x3 + Ax + B
dx .

Upon setting y =
√

x3 + Ax + B, we see that this elliptic
integral is rather naturally related to the curve
y2 = x3 + Ax + B.

In fact, studying elliptic integrals was one of the two ways
mathematicians discovered that elliptic curves were so
interesting! (The other is on the next slide.)
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The Addition Law, I

The key property of elliptic curves that makes them so useful is the
following algebraic and/or geometric observation:

Observation

If we have two points that lie on an elliptic curve, we can use them
to construct a third point on the curve.

How do we do this? Simply take the line through the two given
points, and find the other intersection point with the elliptic curve.

Clearly, this always works[citation needed].
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The Addition Law, II

Here is an interactive “proof”3 by picture (you pick two points and
I’ll give you a third one):

3This proof technique is not valid in mathematics. Your experience in other
disciplines (physics, philosophy) may vary.



Factoring Integers Using Elliptic Curves

The Addition Law, III

Here’s a proof by example4:

Consider the elliptic curve E : y2 = x3 − 7x + 10 with the two
points P1 = (−3, 2) and P2 = (1,−2) on E .

The equation of the line joining these points is y = −x − 1.

Plugging this into the equation for E yields
(−x − 1)2 = x3 − 7x + 10, or x3 − x2 − 9x + 9 = 0.

We know this cubic has roots x = −3, 1 so we can quickly get
the factorization (x + 3)(x − 1)(x − 3) = 0. Thus the third
root is x = 3, yielding y = −4.

This means the other intersection point is (3,−4).

4This proof technique is also not valid in mathematics. Your experience in
other disciplines (computer science, the humanities) may vary.
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The Addition Law, IV

It’s not so hard to show that the argument from the example will
work in general. If you want the details, here they are:

Suppose P1 = (x1, y1), P2 = (x2, y2) are two distinct points
on the elliptic curve E : y2 = x3 + Ax + B.

Let L be the line through P1 and P2 with equation
y = mx + b: we claim it intersects E in a third point Q.

The intersection points of L with E are the solutions to the
system y = mx + b and y2 = x3 + Ax + B.

Equivalently, we must solve (mx + b)2 = x3 + Ax + B, or
x3 + (−m2)x2 + (A− 2mb)x + (B − b2) = 0.

However, this cubic already has the two roots x = x1 and
x = x2, so it must have a third root (in fact, the root is
m2 − x1 − x2): this gives us the third point Q we wanted.
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The Addition Law, V

Once we construct a third point on an elliptic curve this way, we
might try to find more points.

If we try this procedure directly using our points P1, P2, and
Q, however, we will not get anywhere: the line through any of
these two points intersects the elliptic curve at the other point.

However, we can also exploit the vertical symmetry of the
curve to make new points: if P = (x , y) lies on the curve,
then the point −P = (x ,−y) also lies on the curve.

We can then take lines through one of our starting points and
this point −P to find even more points on the curve.
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The Addition Law, VI

Here’s a picture of what happens if we repeatedly apply this
starting with P1 = (0, 1) on y2 = x3 − x + 1:



Factoring Integers Using Elliptic Curves

The Addition Law, VI

Here’s a picture of what happens if we repeatedly apply this
starting with P1 = (0, 1) on y2 = x3 − x + 1:



Factoring Integers Using Elliptic Curves

The Addition Law, VI

Here’s a picture of what happens if we repeatedly apply this
starting with P1 = (0, 1) on y2 = x3 − x + 1:



Factoring Integers Using Elliptic Curves

The Addition Law, VI

Here’s a picture of what happens if we repeatedly apply this
starting with P1 = (0, 1) on y2 = x3 − x + 1:



Factoring Integers Using Elliptic Curves

The Addition Law, VII

If we combine these two procedures (taking the third point on the
line through two given points and then reflecting this point
vertically), we can often generate many points on the curve
starting from just two.

Definition (Addition Law I)

If P1 and P2 are two distinct points on the elliptic curve
E : y2 = x3 + Ax + B, let Q = (x ′, y ′) be the third intersection
point of E with the line L joining P1 and P2. We define the sum
P1 + P2 to be the point −Q = (x ′,−y ′).

We saw this in the examples already, but just to emphasize,
the sum P1 + P2 is not the pointwise coordinate sum of P1

and P2!
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The Addition Law, VIII

There is an important issue that I completely glossed over, that
definitely none of you noticed.

Specifically, if we attempt to add two points which are vertical
reflections of one another on the graph of y2 = x3 + Ax + B,
the resulting line will not intersect the curve again.

One option would simply be to declare that this operation is
invalid.

However, there is a much better approach: we will
simply declare that E also includes a point at ∞ (which we
denote simply as ∞) lying on every vertical line.

So, the line through P and ∞ is the vertical line through P.

With this convention, this point ∞ actually behaves as an
identity in our addition law, and the point −P is an additive
inverse of P: in other words, P +∞ = P for any P, and
P + (−P) =∞ for any P as well.
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The Addition Law, IX: The Rise of Skywalker

Actually, there’s another issue that I also glossed over, but luckily
nobody noticed it either.

Specifically, our approach of taking the line through two
points P and Q does not work correctly when P = Q: what
exactly is the line through P and then P again?
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Actually, there’s another issue that I also glossed over, but luckily
nobody noticed it either.

Specifically, our approach of taking the line through two
points P and Q does not work correctly when P = Q: what
exactly is the line through P and then P again?

Let’s take a cue from calculus and think about what the line
looks like as we slide Q closer to P: it turns out to be the
tangent line.

So we can define P + P by letting L be the tangent line to E
at P, and then take P + P to be the vertical reflection of the
third intersection point of the tangent line with E .

We can compute the slope of the tangent line to E at P using
some calculus5.

5Finally, a useful application of implicit differentiation!
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The Addition Law, X: Marks The Spot

Here’s a picture to illustrate this “doubling law”:
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The Addition Law, XI: This One Goes To Eleven

Now, for those of you who know what a group is, in fact this
addition law makes the set of points on the elliptic curve into an
abelian group.

The addition law is associative: (P + Q) + R = P + (Q + R)
for any P,Q,R.

The addition law is commutative: P + Q = Q + P for any
P,Q.

There is an identity: P +∞ = P for any P.

There exist inverses: P + (−P) =∞ for any P.
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Scaling Points, I

Now, what does any of this have to do with factoring integers?
We’re getting there, but hold on for just a bit more.

The main idea, interestingly enough, involves thinking about
what happens if we repeatedly add a point P to itself: namely,
the points P, P + P, P + P + P, P + P + P + P, and so on.

For shorthand, let’s write nP = P + P + · · ·+ P︸ ︷︷ ︸
n terms

.

Most of the time, the multiples of P rapidly get very
complicated. For P = (1, 1) on y2 = x3 − x + 1, for example,
they are 2P = (1/4,−7/8), 3P = (56, 419),
4P = (−223/784, 24655/21952), and so on.

These multiples will just get more and more complicated as
we keep going.
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Scaling Points, II

But sometimes, multiples start repeating. For example, consider
the elliptic curve y2 = x3 + 1.

For P = (−1, 0), we can compute 2P =∞, 3P = (−1, 0),
4P =∞, 5P = (−1, 0), and so on. The multiples of P just
alternate between P and the identity ∞.

For Q = (0, 1), on the other hand, we can compute
2Q = (0,−1), 3Q =∞, 4Q = (0, 1), 5Q = (0,−1),
6Q =∞, and so on. The multiples of Q cycle between (0, 1),
(0,−1), and ∞.

Now, what do you think happens if we look at the multiples of
P + Q = (2,−3)?

In fact, they will repeat every 6 times: 2(P + Q) = (0,−1),
3(P + Q) = (−1, 0), 4(P + Q) = (0, 1), 5(P + Q) = (0, 1),
and 6(P + Q) =∞. After this we just start cycling back at
(0,−1) again.
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Scaling Points, III

We can see that if some multiple of a point is ∞, then all of the
later multiples will just repeat the earlier ones.

In the event that some multiple of P is the identity element
∞, the smallest positive n for which nP =∞ is called the
order of n.

On the previous slide, the order of P was 2, while the order of
Q was 3.
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Elliptic Curves Modulo Primes, I

Up until this point, we’ve been thinking about elliptic curves with
integer coefficients, with equations like y2 = x3 + Ax + B. We
could also think of this equation modulo a prime number p,
however.

For those unfamiliar with modular arithmetic, this just means
that the two sides have the same remainder when we divide
them both by p.

For example, the point (4, 1) lies on E : y2 = x3 + x − 2
modulo 5, because y2 = 1 and x3 + x − 2 = 66, and 1 and 66
have the same remainder when we divide them by 5.

In fact, because there are only 5 possible values for x and y
when we divide them by 5, we can actually just work out all of
the points on E modulo 5: they are (1, 0), (4, 1), (4, 4), and
of course ∞.
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Elliptic Curves Modulo Primes, II

Here’s a simple observation:

Observation

Every point on an elliptic curve modulo a prime p has finite order.

Why? Well, there are only p possible values for each
coordinate of a point (x , y), so (counting ∞) there’s a
maximum of p2 + 1 possible points on E .

Then the multiples of any point P must start repeating, since
there’s only finitely many options.

If aP = bP for some a < b, adding −aP to both sides shows
that (b − a)P =∞. This means some multiple of P is the
identity.
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Elliptic Curves Modulo Primes, III

Now, here’s a marvellous observation:

Observation

The addition law still works perfectly well on an elliptic curve
modulo a prime p.

Why? Well, we can just write out the addition law as an
algebraic formula.

Explicitly, if y = mx + b is the line through P = (x1, y1) and
Q = (x2, y2) (or the equation of the tangent line, when
P = Q), then P + Q = (m2 − x1 − x2,m(m2 − x1 − x2) + b).

Everything in the formula still makes sense modulo p: the
only potential concern is that the formula involves a quotient:
specifically, in finding the slope m of the line.
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Elliptic Curves Modulo Primes, IV

So let’s think carefully about the slope of a line modulo p, which
will be some kind of quotient a/b.

If you try out some examples, you will eventally notice that
most of the time, you can use some trickery to convert a
quotient a/b into an integer modulo p.

For example, 1/3 = 6/3 = 2 modulo 5, or 3/4 = 24/4 = 6
modulo 7.

In fact, when p is prime, in general any rational number a/b is
equivalent to an integer modulo p, as long as b is not divisible
by p.

So we can simplify any slope as long as the denominator
doesn’t reduce to 0 modulo p. But if the denominator is zero,
that just means the line is vertical, in which case the sum
we’re trying to compute is just ∞.
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Elliptic Curves Modulo Primes, V Nonprimes, VI

Now, this business about the addition law still working perfectly
well modulo p really does rely on p specifically being a prime
number.

If we try things modulo a composite number n, say n = 6, this
simplification doesn’t always work.

For example, try finding a way to simplify the slope 2/3
modulo 6 so that it comes out to be an integer by adding or
subtracting multiples of 6 from the numerator and
denominator.

Here are some other bad ones: 1/3, 1/2, 3/4, 7/8, 5/9, ....

In general, if the denominator has a common factor with n
(but isn’t just 0 mod n), then the resulting slope makes no
sense.

This seems like a big problem, right?
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Elliptic Curves Modulo Primes, V Nonprimes, VI
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modulo 6 so that it comes out to be an integer by adding or
subtracting multiples of 6 from the numerator and
denominator.

Here are some other bad ones: 1/3, 1/2, 3/4, 7/8, 5/9, ....

In general, if the denominator has a common factor with n
(but isn’t just 0 mod n), then the resulting slope makes no
sense.

This seems like a big problem, right?



Factoring Integers Using Elliptic Curves

Elliptic Curve Factorization, I: We’re Almost Done

Believe it or not, this “problem” is actually the key to factoring
integers with elliptic curves. Here’s the idea:

Suppose n is a composite integer.

Pick any elliptic curve E with a point P 6=∞ on E modulo n.
(We can do this easily if we select the point and value of A
first, and then just compute the needed B that makes
y2 = x3 + Ax + B.)

Now start computing the multiples of P, with everything done
modulo n: compute 2P, 3P, 4P, ....

If in the middle of the calculation, we get an illegal
denominator, then it has a common factor with n that isn’t n
itself.

Taking the gcd of this “bad” denominator with n then yields a
nontrivial factor of n.
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Elliptic Curve Factorization, II: I’m Almost Through

Here’s an example with the point P = (1, 3) on
E : y2 = x3 + 4x + 4 modulo 21.

To find 2P we first compute the slope of the slope of the

tangent line, which is
3(1)2 + 4

2 · 3
=

7

6
by some implicit

differentiation.

But this ratio is not defined modulo 21 since 6 is not relatively
prime to 21.

Per the procedure we compute gcd(21, 6) = 3, and voilà: we
have a factor of 21.
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But this ratio is not defined modulo 21 since 6 is not relatively
prime to 21.

Per the procedure we compute gcd(21, 6) = 3, and voilà: we
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Elliptic Curve Factorization, III: You’re Almost Free

Now, of course, it’s probably not at all clear why we would expect
this procedure to work, or why it would even be efficient.

In fact, we don’t want to compute all of the multiples of P:
this will be too slow.

We just want to compute a bunch of them that are “highly
divisible”: what we do is just find the multiples 2!P, 3!P, 4!P,
5!P, 6!P, ...., and just keep track during the calculations if we
end up with any bad denominators of our slopes.

This is fairly quick because we can just use the recursion
Q1 = P, Qj = jQj−1.
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Elliptic Curve Factorization, IV: Yes, There’s More

Here’s an example with n = 170999 using P = (1, 4) on
y2 = x3 + 4x + 11.

We compute the points Qj successively using the recursion
Q1 = P, Qj = jQj−1 on the E modulo n until we obtain a bad
denominator.

j 1 2 3 4

Qj (1, 4) (109545, 75144) (81282, 86818) (100818, 143145)

Factor? no no no no

j 5 6 7 8

Qj (152033, 116998) (87978, 17295) (104368, 99929) (126411, 167685)

Factor? no no no no

j 9 10

Qj (79623, 108587) –

Factor? no 557
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Elliptic Curve Factorization, V: Stay Alive

Here’s an example with n = 170999 using P = (1, 4) on
y2 = x3 + 4x + 11.

Here, finding 10Q9 will require dividing by a denominator that
is not relatively prime to n.

The exact details of the computation will depend on the
method used to compute 10Q9, but successive doubling will
yield 2Q9 = (147257, 97701) and 8Q9 = (160625, 116187).

Attempting to add these two points will require using a line

with slope m =
116187− 97701

160625− 147257
=

18486

13368
, and

gcd(13368, 170999) = 557.

And so, we find the factor 557 of 170999.
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Elliptic Curve Factorization, VI: Pick Up Sticks

So why does this procedure work? Here’s some reasons:

If n = pq, the factorization algorithm will succeed after M
steps when the order of P as a point on E modulo p divides
M! (so M!P =∞ modulo p) but the order as a point on E
modulo q does not divide M! (so M!P 6=∞ modulo q).
It is unlikely that these two things will occur at exactly the
same value of M, so what we are essentially seeking is for the
order of P on E modulo p to divide M!.
A result from group theory (Lagrange’s theorem) implies that
the order of P on E modulo p divides the total number of
points on E modulo p, so as long as the number of points on
E modulo p only has small prime factors, it will divide M! for
small M, and the factorization will succeed quickly.
Finally, by trying different randomly-chosen curves E , we are
fairly likely to be able to get one whose number of points has
prime factors that are all fairly small relative to n. (Whew!)
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Elliptic Curve Factorization, VII: I Ran Out Of Jokes

Okay, enough details, let’s put it to the test. Below I chose a
dozen random 5-digit primes. Pick two and multiply them together
with a calculator or computer. Then I’ll see if I can get my
implementation of elliptic curve factorization to factor the product
you give me.

11701.

17623.

20533.

22697.

38287.

46549.

51767.

54629.

62603.

73967.

80953.

93281.

Or if you like, you can find some other composite number, and I’ll
give it a try.
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Some Other Tidbits

There are lots of other interesting things to say about elliptic curve
factorization (and very much else to say about elliptic curves in
general). Here are some:

Elliptic curve factorization is fastest at finding “small” factors,
around 10-50 digits or so, of large composite integers.

Elliptic curves can also be used to do cryptography: in fact,
public-key elliptic curve cryptography is now a bit more
commonly used than RSA, because ECC can use much
smaller key sizes for an equivalent level of security.

And finally, just to tease some pure mathematics, elliptic
curves are also a fundamental ingredient in Wiles’s proof of
Fermat’s Last Theorem6.

6To learn more about elliptic curves, take Math 7359: Elliptic Curves and
Modular Forms
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Thanks!

Thanks to Zach Greenfield and the other math club organizers for
providing me the opportunity to speak here today!

Please also allow me to advertise the Putnam Club, which meets
Wednesdays from 6pm-7:30pm in 509 Lake. We get together to
(try to) solve some problems from old Putnam exams, and also eat
pizza. If you like competition math and/or problem-solving, come
check us out!

I hope you enjoyed my talk, and I’d like to thank you for attending!
Enjoy your weekend!


