[Kakeya Sets Over non-Archimedean Local Rings](#page-23-0)

Kakeya Sets Over non-Archimedean Local Rings

Evan P. Dummit

University of Wisconsin-Madison

October 13, 2012

Outline

Outline:

- **1** Classical Kakeya problem
- **2** Finite-field Kakeya problem
- **3** Kakeya problem over local rings
- **4** Open questions

This is joint work with M. Hablicek (UW-Madison).

Classical Kakeya Problem

Definition

A Kakeya set (or Besicovitch set) is a set of points in Euclidean space which contains a unit line segment in every direction.

Classical Kakeya Problem

Definition

A Kakeya set (or Besicovitch set) is a set of points in Euclidean space which contains a unit line segment in every direction.

Theorem (A. Besicovitch; 1919)

For $n \geq 2$, there exists a Kakeya set of measure 0 in \mathbb{R}^n .

The Kakeya conjecture

Definition

The Minkowski dimension of a set K is defined to be

$$
\dim(K) = \lim_{\epsilon \to 0} \frac{\log N(\epsilon)}{\log(1/\epsilon)}
$$

where $N(\epsilon)$ is the number of squares of size ϵ needed to cover K.

The Kakeya conjecture

Definition

The **Minkowski dimension** of a set K is defined to be

$$
\dim(K) = \lim_{\epsilon \to 0} \frac{\log N(\epsilon)}{\log(1/\epsilon)}
$$

where $N(\epsilon)$ is the number of squares of size ϵ needed to cover K.

Conjecture (Kakeya conjecture)

Any Kakeya set in \mathbb{R}^n is of Minkowski dimension n.

The conjecture is known to hold when $n = 2$ but only lower bounds are known for $n > 2$.

Kakeya sets over finite fields

Definitions:

- Let \mathbb{F}_q be a finite field, and *n* a fixed positive integer.
- Space of interest: $S = \mathbb{F}_q^n$.
- Lines in S are of the form $\{x + sy : s \in \mathbb{F}_q, x, y \in S\}$.
- \bullet A direction in S is an equivalence class of y giving the same line.
- A Kakeya set is a set containing a line in every direction.

Kakeya sets over finite fields

Definitions:

- Let \mathbb{F}_q be a finite field, and n a fixed positive integer.
- Space of interest: $S = \mathbb{F}_q^n$.
- Lines in S are of the form $\{x + sy : s \in \mathbb{F}_q, x, y \in S\}$.
- \bullet A direction in S is an equivalence class of y giving the same line.
- A Kakeya set is a set containing a line in every direction.

Theorem (Dvir; 2008)

Any Kakeya set in
$$
\mathbb{F}_q^n
$$
 contains at least $\frac{q^n}{n!}$ points.

In other words, a Kakeya set over a finite field always has positive measure. (This proves the Kakeya conjecture over \mathbb{F}_q .)

Between $\mathbb R$ and $\mathbb F_q$

Over $\mathbb R$ there exist Kakeya sets of measure zero, but over $\mathbb F_q$, there exists a hard lower bound on measure (independent of q). What's in between?

Question (J. Ellenberg, R. Oberlin, T. Tao; 2009)

Are there Besicovitch phenomena in $\mathbb{F}_q[[t]]^n$ or in \mathbb{Z}_p^n ?

In other words, do there exist Kakeya sets of measure 0 in these spaces?

Between $\mathbb R$ and $\mathbb F_q$

Over $\mathbb R$ there exist Kakeya sets of measure zero, but over $\mathbb F_q$, there exists a hard lower bound on measure (independent of q). What's in between?

Question (J. Ellenberg, R. Oberlin, T. Tao; 2009)

Are there Besicovitch phenomena in $\mathbb{F}_q[[t]]^n$ or in \mathbb{Z}_p^n ?

In other words, do there exist Kakeya sets of measure 0 in these spaces?

Theorem (E.D., Hablicek; 2011)

There exists a Kakeya set of measure 0 in $\mathbb{F}_q[[t]]^n$ for each $n \geq 2$.

Proof: Explicit construction.

Preliminaries

Definitions:

- Space of interest: $S = \mathbb{F}_q[[t]]^n$.
- Lines in S are of the form $\{x + sy : s \in \mathbb{F}_q[[t]], x, y \in S\}.$
- A direction in S is an equivalence class of y , for which at least one coordinate is a unit.
- A Kakeya set is a set containing a line in every direction.
- The Haar measure μ on S is generated by the projections $\pi_k: \mathbb{F}_q[[t]] \to \mathbb{F}_q[[t]]/ (t^k),$ where the measure on $(\mathbb{F}_q[[t]]/(\overline{t}^k))^n$ is the probability measure.

Construction, I

Observations:

- Only need to construct a Kakeya set K of measure zero in $\mathbb{F}_q[[t]]^2$, then just take $K \times \mathbb{F}_q[[t]]^{n-2}$ in general.
- In $\mathbb{F}_q[[t]]^2$, only need to construct a set H containing all lines with direction vectors $(1, b)$; then $K = \{(x, y) : (x, y) \text{ or } (y, x) \in H\}$ is Kakeya.

Construction, I

Observations:

- Only need to construct a Kakeya set K of measure zero in $\mathbb{F}_q[[t]]^2$, then just take $K \times \mathbb{F}_q[[t]]^{n-2}$ in general.
- In $\mathbb{F}_q[[t]]^2$, only need to construct a set H containing all lines with direction vectors $(1, b)$; then $K = \{(x, y) : (x, y) \text{ or } (y, x) \in H\}$ is Kakeya.
- For any odd map $* : \mathbb{F}_{q}[[t]] \to \mathbb{F}_{q}[[t]]$, the set $H_* = \{(x, y) : ax + y = a^* \text{ for some } a \in \mathbb{F}_q[[t]]\}$ will contain a line with direction vectors $(1, b)$.
- Reason: For any $b \in \mathbb{F}_q[[t]]$, the points $(x, y) = (0, -b^*) + s(1, b)$ are in H_* .

Construction, II

We need to find a choice of a^\ast that makes H_\ast have measure zero.

Construction, II

We need to find a choice of a^\ast that makes H_\ast have measure zero. Solution:

- For any $a\in \mathbb{F}_q[[t]],$ let a_i denote the coefficient of $t^i.$
- For any $a \in \mathbb{F}_q[[t]]$, define $a^* \in \mathbb{F}_q[[t]]$ by setting

 $a_i^* =$ $\int 0$ if $i = 2^k - 2$ for some natural number k, a_{i+1} otherwise.

Proposition

With notation as previous, the set

$$
H := \{(x, y) \in \mathbb{F}_{q}[[t]]^{2} : ax + y = a^{*} \text{ for some } a \in \mathbb{F}_{q}[[t]]\}
$$

contains a line with direction vector $(1, b)$ for each $b \in \mathbb{F}_q[[t]]$, and has measure 0.

Construction, III: Sketch of Proof

The point (x, y) is in H if and only if there exists an $a = a_0 + a_1 t + a_2 t^2 + \cdots$ satisfying the system

. . .

. . .

$$
a_0x_0 + y_0 = 0, \t\t [0]
$$

$$
a_1x_0 + a_0x_1 + y_1 = a_2, \qquad [1]
$$

$$
a_2x_0 + a_1x_1 + a_0x_2 + y_2 = 0, \qquad [2]
$$

$$
a_n x_0 + a_{n-1} x_1 + \cdots + a_0 x_n + y_n = a_n^*,
$$
 [n]

Construction, III: Sketch of Proof

The point (x, y) is in H if and only if there exists an $a = a_0 + a_1 t + a_2 t^2 + \cdots$ satisfying the system

> . . .

> . . .

$$
a_0x_0 + y_0 = 0, \t\t [0]
$$

$$
a_1x_0 + a_0x_1 + y_1 = a_2, \qquad [1]
$$

$$
a_2x_0 + a_1x_1 + a_0x_2 + y_2 = 0, \qquad [2]
$$

$$
a_n x_0 + a_{n-1} x_1 + \cdots + a_0 x_n + y_n = a_n^*,
$$
 [n]

Now count solutions to equations $[0]-[n]$ as n grows, and show that the measure of the set of points (x, y) such that there exists an a satisfying $[0]$ - $[n]$ tends to 0 as *n* grows.

Minkowski Dimension, I

We can also pose the Kakeya conjecture over the local ring setting.

Minkowski Dimension, I

We can also pose the Kakeya conjecture over the local ring setting.

Definition

The Minkowski dimension of a subset E of $\mathbb{F}_q[[t]]^n$ is

$$
\lim_{k\to\infty}\frac{\log|E_k|}{\log q^k}
$$

where E_k is the image of E under $\mathbb{F}_q[[t]] \to \mathbb{F}_q[[t]]/(t^k)$.

(We have an analogous definition for subsets of \mathbb{Z}_p^n .)

Conjecture (Kakeya Conjecture)

For $n > 2$, the Minkowski dimension of a Kakeya set in $Rⁿ$ where $R=\mathbb{Z}_p$ or $\mathbb{F}_q[[t]]$ is n.

Minkowski Dimension, II

Theorem (E.D., M. Hablicek; 2011)

The Minkowski dimension of a Kakeya set in $\mathbb{F}_q[[t]]^2$ or \mathbb{Z}_p^2 is 2.

In dimensions $n > 3$ over these rings, the Kakeya conjecture remains open.

Minkowski Dimension, II

Theorem (E.D., M. Hablicek; 2011)

The Minkowski dimension of a Kakeya set in $\mathbb{F}_q[[t]]^2$ or \mathbb{Z}_p^2 is 2.

In dimensions $n > 3$ over these rings, the Kakeya conjecture remains open. Key result in proof:

Proposition

Let E be a Kakeya set in R² where $R = \mathbb{F}_q[t]/t^k$ or $\mathbb{Z}/p^k\mathbb{Z}$. Then $|E| \geq \frac{|R|^2}{24}$ $\frac{1}{2k}$.

This proposition is a sharpening of a counting result of Ellenberg-Oberlin-Tao.

Question

Does a Kakeya set of measure 0 exist in \mathbb{Z}_p^2 ? (Or other rings?)

Open Questions

Question

Does a Kakeya set of measure 0 exist in \mathbb{Z}_p^2 ? (Or other rings?)

Kakeya sets over $\mathbb R$ are the central ingredient in a theorem on L^p spaces in classical analysis:

Theorem (C. Fefferman; 1971)

The truncated Fourier operator T on $L^p(\mathbb{R}^n)$, defined by $\hat{T}f(x) = \chi_p(x)\hat{f}(x)$, where χ_p is the characteristic function of the unit ball, is bounded only on L^2 .

If a Kakeya set of measure zero exists over \mathbb{Z}_p , it may be possible to obtain a similar theorem over \mathbb{Z}_p .

[Kakeya Sets Over non-Archimedean Local Rings](#page-0-0)

End of Talk

Thank you!