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The Kakeya Problem

The Kakeya Needle Problem, I

Definition (S. Kakeya, 1917)

A Kakeya needle set is a subset of the plane inside which it is
possible to rotate a needle of length 1 completely around.
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The Kakeya Needle Problem, II

An example of a Kakeya set: a circle of diameter 1 (area π/4):
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The Kakeya Needle Problem, III

Another example of a Kakeya set: a deltoid (area π/8):
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The Kakeya Needle Problem, IV

Question

What is the minimum area of a Kakeya needle set?

It was originally believed that the deltoid example (of area π/8)
was the smallest possible Kakeya set. But....

Theorem (A. Besicovitch, 1919)

There exists a Kakeya needle set in the plane having arbitrarily
small area.
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The Kakeya Needle Problem, IV

Question

What is the minimum area of a Kakeya needle set?

It was originally believed that the deltoid example (of area π/8)
was the smallest possible Kakeya set. But....

Theorem (A. Besicovitch, 1919)

There exists a Kakeya needle set in the plane having arbitrarily
small area.



The Kakeya Problem

The Kakeya Needle Problem, V

Basic idea for constructing a Kakeya set of small area:

Start with a simple Kakeya set.

Slice up the set into pieces.

Slide the the pieces together so that they overlap a lot.

Repeat steps 2-3 until the set is arbitrarily small.
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The Kakeya Needle Problem, V
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The Kakeya Needle Problem, VI

Here’s an example of how this “slicing and sliding” procedure
works:
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The Kakeya Needle Problem, VII: The Force Awakens

There are many ways to tweak this problem to give us new ones.
Here are some:

We could relax the requirement of having an actual needle
moving through space, and just ask about sets that contain a
unit segment in every possible direction.

Instead of working in the plane, we could work in
3-dimensional space, and ask about (surface) areas or
volumes.

We could use shapes other than a straight line segment, like a
bent segment or even a curve.

Try to think of your own version of this problem!
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The Finite Kakeya Problem, I

Let’s now look at the Kakeya problem “modulo p” (where p is a
prime number). Instead of the entire plane, we use a p × p grid of
lattice points:
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The Finite Kakeya Problem, II

Lines “wrap around” the edges of the grid:
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The Finite Kakeya Problem, III

We need a few more facts about lines in our p × p grid modulo p:

Each line contains p points.

Algebraically, a line will be an equation of the form
ax + by ≡ c (mod p) for some integers a, b, and c .

Any non-vertical line can be put into the usual form
y ≡ mx + b (mod p).

Just like regular lines in the plane, these lines have a slope
(which is the value m above, or ∞ for a vertical line).

Two lines point in the same direction (i.e., are “parallel”) if
they have the same slope.

There are p + 1 possible directions: slope 0, slope 1, ... ,
slope p − 1, and slope ∞.
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The Finite Kakeya Problem, IV

Here is the “mod-p” Kakeya problem:

Definition

A Kakeya set is a set of points in the p × p which contains a line
in every direction.

By “contains a line” we mean “contains the p points on the line”.
Here is an example of a 3× 3 Kakeya set:



The Kakeya Problem

The Finite Kakeya Problem, V

Here is an example of a Kakeya set for the 5× 5 grid:
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The Finite Kakeya Problem, VI

So how small can a Kakeya set in the p × p grid be?

Proposition

Any Kakeya set in the p × p grid contains at least
1

2
p2 points.

Proof: The first line has p points, the second adds at least p − 1
new points, the third adds at least p − 2 more, and so on.
Therefore, the total number of points in the Kakeya set is at least

p + (p − 1) + (p − 2) + ...+ 2 + 1 =
p(p + 1)

2
>

1

2
p2

points, as claimed.
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The Finite Kakeya Problem, VI

So how small can a Kakeya set in the p × p grid be?

Proposition

Any Kakeya set in the p × p grid contains at least
1

2
p2 points.

Proof: The first line has p points, the second adds at least p − 1
new points, the third adds at least p − 2 more, and so on.
Therefore, the total number of points in the Kakeya set is at least

p + (p − 1) + (p − 2) + ...+ 2 + 1 =
p(p + 1)

2
>

1

2
p2

points, as claimed.



The Kakeya Problem

The Finite Kakeya Problem, VI
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new points, the third adds at least p − 2 more, and so on.
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The Finite Kakeya Problem, VII

How can we generalize this problem? One way: work with a “grid”
in 3 or higher-dimensional space.

Conjecture (Finite-Field Kakeya Conjecture)

Any n-dimensional Kakeya set modulo p contains at least cnp
n

points, for some constant cn > 0.

Originally posed by T. Wolff in 1999. This problem seemed
extremely hard!

Theorem (G. Mockenhaupt, T.Tao, 2004)

Any n-dimensional Kakeya set modulo p contains at least
cnp

(4n+3)/7 points, for a constant cn > 0.
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The Finite Kakeya Problem, VIII

But, it turns out, this problem has an extremely clever and very
short solution using nothing more than polynomials:

Theorem (Dvir; 2008)

Any n-dimensional Kakeya set modulo p contains at least(
n + q − 1

n

)
≥ pn

n!
points.

In other words, a Kakeya set always contains a positive proportion
of the points, even when the grid size gets very large.
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The Finite Kakeya Problem, IX

There are lots of other ways to generalize this problem. For
example, we could try working with an n× n grid of points where n
is not prime. But be warned: lines in this setting behave more
strangely!

In fact, the precise answers in this case are not known! (Perhaps
you might have a good idea....)
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