# The Kakeya Problem

### Evan P. Dummit Arizona State University

November 15, 2017

## The Kakeya Needle Problem, I

#### Definition (S. Kakeya, 1917)

A **Kakeya needle set** is a subset of the plane inside which it is possible to rotate a needle of length 1 completely around.

## The Kakeya Needle Problem, II

An example of a Kakeya set: a circle of diameter 1 (area  $\pi/4$ ):

# The Kakeya Needle Problem, III

Another example of a Kakeya set: a deltoid (area  $\pi/8$ ):

## The Kakeya Needle Problem, IV

#### Question

What is the minimum area of a Kakeya needle set?

It was originally believed that the deltoid example (of area  $\pi/8$ ) was the smallest possible Kakeya set. But....

# The Kakeya Needle Problem, IV

#### Question

What is the minimum area of a Kakeya needle set?

It was originally believed that the deltoid example (of area  $\pi/8$ ) was the smallest possible Kakeya set. But....

#### Theorem (A. Besicovitch, 1919)

There exists a Kakeya needle set in the plane having arbitrarily small area.

## The Kakeya Needle Problem, V

Basic idea for constructing a Kakeya set of small area:

## The Kakeya Needle Problem, V

Basic idea for constructing a Kakeya set of small area:

- Start with a simple Kakeya set.
- Slice up the set into pieces.
- Slide the the pieces together so that they overlap a lot.
- Repeat steps 2-3 until the set is arbitrarily small.

## The Kakeya Needle Problem, VI

Here's an example of how this "slicing and sliding" procedure works:

## The Kakeya Needle Problem, VII: The Force Awakens

There are many ways to tweak this problem to give us new ones. Here are some:

- We could relax the requirement of having an actual needle moving through space, and just ask about sets that contain a unit segment in every possible direction.
- Instead of working in the plane, we could work in 3-dimensional space, and ask about (surface) areas or volumes.
- We could use shapes other than a straight line segment, like a bent segment or even a curve.

Try to think of your own version of this problem!

## The Finite Kakeya Problem, I

Let's now look at the Kakeya problem "modulo p" (where p is a prime number). Instead of the entire plane, we use a  $p \times p$  grid of lattice points:



### The Finite Kakeya Problem, II

Lines "wrap around" the edges of the grid:



## The Finite Kakeya Problem, III

We need a few more facts about lines in our  $p \times p$  grid modulo p:

- Each line contains p points.
- Algebraically, a line will be an equation of the form  $ax + by \equiv c \pmod{p}$  for some integers *a*, *b*, and *c*.
- Any non-vertical line can be put into the usual form  $y \equiv mx + b \pmod{p}$ .
- Just like regular lines in the plane, these lines have a slope (which is the value *m* above, or  $\infty$  for a vertical line).
- Two lines point in the same direction (i.e., are "parallel") if they have the same slope.
- There are p + 1 possible directions: slope 0, slope 1, ... , slope p 1, and slope  $\infty$ .

# The Finite Kakeya Problem, IV

Here is the "mod-*p*" Kakeya problem:

#### Definition

A **Kakeya set** is a set of points in the  $p \times p$  which contains a line in every direction.

By "contains a line" we mean "contains the p points on the line". Here is an example of a  $3 \times 3$  Kakeya set:



### The Finite Kakeya Problem, V

Here is an example of a Kakeya set for the  $5 \times 5$  grid:



## The Finite Kakeya Problem, VI

So how small can a Kakeya set in the  $p \times p$  grid be?

## The Finite Kakeya Problem, VI

So how small can a Kakeya set in the  $p \times p$  grid be?



## The Finite Kakeya Problem, VI

So how small can a Kakeya set in the  $p \times p$  grid be?

Proposition  
Any Kakeya set in the 
$$p \times p$$
 grid contains at least  $\frac{1}{2}p^2$  points.

*Proof.* The first line has p points, the second adds at least p-1 new points, the third adds at least p-2 more, and so on. Therefore, the total number of points in the Kakeya set is at least

$$p + (p - 1) + (p - 2) + ... + 2 + 1 = \frac{p(p + 1)}{2} > \frac{1}{2}p^2$$

points, as claimed.

## The Finite Kakeya Problem, VII

How can we generalize this problem? One way: work with a "grid" in 3 or higher-dimensional space.

#### Conjecture (Finite-Field Kakeya Conjecture)

Any n-dimensional Kakeya set modulo p contains at least  $c_n p^n$  points, for some constant  $c_n > 0$ .

Originally posed by T. Wolff in 1999. This problem seemed extremely hard!

## The Finite Kakeya Problem, VII

How can we generalize this problem? One way: work with a "grid" in 3 or higher-dimensional space.

#### Conjecture (Finite-Field Kakeya Conjecture)

Any n-dimensional Kakeya set modulo p contains at least  $c_n p^n$  points, for some constant  $c_n > 0$ .

Originally posed by T. Wolff in 1999. This problem seemed extremely hard!

#### Theorem (G. Mockenhaupt, T.Tao, 2004)

Any n-dimensional Kakeya set modulo p contains at least  $c_n p^{(4n+3)/7}$  points, for a constant  $c_n > 0$ .

# The Finite Kakeya Problem, VIII

But, it turns out, this problem has an extremely clever and very short solution using nothing more than polynomials:

#### Theorem (Dvir; 2008)

Any n-dimensional Kakeya set modulo p contains at least  $\binom{n+q-1}{n} \ge \frac{p^n}{n!}$  points.

In other words, a Kakeya set always contains a positive proportion of the points, even when the grid size gets very large.

## The Finite Kakeya Problem, IX

There are lots of other ways to generalize this problem. For example, we could try working with an  $n \times n$  grid of points where n is not prime. But be warned: lines in this setting behave more strangely!

In fact, the precise answers in this case are not known! (Perhaps you might have a good idea....)