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2 Random Variables

In this chapter, we discuss discrete and continuous random variables, which are quantities whose values depend
on the outcome of a random event, and how to compute associated statistics such as the expected value, variance,
and standard deviation. We also discuss joint distributions and independence of random variables and the related
notions of covariance and correlation.

We then study several fundamentally important probability distributions, such as the Poisson distribution and the
normal distribution, with an ultimate goal of laying the foundation to discussing their applications in statistics. In
particular, we describe how these distributions naturally arise in a wide array of practical situations and how to
use these random variable models to provide new information about these phenomena.

2.1 Discrete Random Variables

• When we observe the result of an experiment, we are often interested in some speci�c property of the outcome
rather than the entire outcome itself.

◦ For example, if we �ip a fair coin 5 times, we may want to know only the total number of heads obtained,
rather than the exact sequence of all 5 �ips.

◦ As another example, if we roll a pair of dice (e.g., in playing the dice game craps) we may want to know
the sum of the outcomes rather than the results of each individual roll.
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2.1.1 De�nition and Examples

• Formally, properties of outcomes can be thought of as functions de�ned on the outcomes of a sample space:

• De�nition: A random variable is a (real-valued) function de�ned on the outcomes in a sample space. If the
sample space is �nite (or countably in�nite), we refer to the random variable as a discrete random variable.

◦ Example: For the experiment of �ipping a coin 5 times, with corresponding sample space S, one random
variable X is the total number of heads obtained. The value of X on the outcome HHHHT is 4, while
the value of X on the outcome TTTTT is 0.

◦ Example: For the experiment of rolling a pair of dice, with corresponding sample space S, one random
variable Y is the sum of the outcomes. The value of Y on the outcome (1, 4) is 5, while the value of Y
on the outcome (6, 6) is 12.

• If X is a random variable, the set of outcomes on which X takes a particular value (or range of values) is a
subset of the sample space, which is to say, it is an event.

◦ Thus, if we have a probability distribution on the sample space, we may therefore ask about quantities
like (i) P (X = n), the probability that X takes the value n, or (ii) P (X ≥ 5), the probability that the
value of X is at least 5, or (iii) P (2 < X < 4), the probability that the value of X is strictly between 2
and 4.

◦ A common way to tabulate all of this information is to make a list or table of all the possible values of X
along with their corresponding probabilities. The associated function is called the probability density function
of X:

• De�nition: If X is a random variable on the sample space S, then the function pX such that pX(E) = P (X ∈
E) for any set of numbers E is called the probability density function (pdf) of X.

◦ Explicitly, the value of pX(a) on a real number a is the probability that the random variable X takes
the value a.

◦ For discrete random variables with a small number of outcomes, we usually describe the probability
density function using a table of values. In certain situations, we can �nd a convenient formula for the
values of the probability density function on arbitrary events, but in many other cases, the best we can
do is simply to tabulate all the di�erent values.

• Example: If two standard 6-sided dice are rolled, �nd the probability distribution for the random variable X
giving the sum of the outcomes. Then calculate (i) P (X = 7), (ii) P (4 < X < 9), and (iii) P (X ≤ 6).

◦ To �nd the probability distribution for X, we identify all of the possible values for X and then tabulate
the respective outcomes in which each value occurs.

◦ We can see that the possible values for X are 2, 3, 4, ... , 12, and that they occur as follows:
Value Outcomes Probability

X = 2 (1, 1) 1/36
X = 3 (1, 2), (2, 1) 2/36
X = 4 (1, 3), (2, 2), (3, 1) 3/36
X = 5 (1, 4), (2, 3), (3, 2), (4, 1) 4/36
X = 6 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) 5/36
X = 7 (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) 6/36
X = 8 (2, 6), (3, 5), (4, 4), (5, 3), (6, 2) 5/36
X = 9 (3, 6), (4, 5), (5, 4), (6, 3) 4/36
X = 10 (4, 6), (5, 5), (6, 4) 3/36
X = 11 (5, 6), (6, 5) 2/36
X = 12 (6, 6) 1/36

◦ Then we have P (X = 7) =
6

36
=

1

6
, P (4 < X < 9) =

4

36
+

5

36
+

6

36
+

5

36
=

5

9
, and P (X ≤ 6) =

1

36
+

2

36
+

3

36
+

4

36
+

5

36
=

5

12
.
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◦ Remark: In this situation, there is a moderately nice formula for the probability density function:

speci�cally, we have pX(n) = P (X = n) =
6− |7− n|

36
for integers n with 2 ≤ n ≤ 12, and pX(n) = 0

for all other values.

• Example: If a fair coin is �ipped 4 times, �nd the probability distributions for the random variable X giving
the number of total heads obtained, and for the random variable Y giving the longest run of consecutive tails
obtained. Then calculate (i) P (X = 2), (ii) P (X ≥ 3), (iii) P (1 < X < 4), (iv) P (Y = 1), (v) P (Y ≤ 3), and
(vi) P (X = Y = 2).

◦ For X, we obtain the following distribution:
Value Outcomes Probability

X = 0 TTTT 1/16
X = 1 TTTH, TTHT , THTT , HTTT 1/4
X = 2 TTHH, THTH, THHT , HTTH, HTHT , HHTT 3/8
X = 3 THHH, HTHH, HHTH, HHHT 1/4
X = 4 HHHH 1/16

◦ For Y , we obtain the following distribution:
Value Outcomes Probability

Y = 0 HHHH 1/16
Y = 1 THTH, THHT , THHH, HTHT , HTHH, HHTH, HHHT 7/16
Y = 2 TTHT , TTHH, THTT , HTTH, HHTT 5/16
Y = 3 TTTH, HTTT 1/8
Y = 4 TTTT 1/16

◦ We can then quickly compute P (X = 2) =
3

8
, P (X ≥ 3) =

1

4
+

1

16
=

5

16
, P (1 < X < 4) =

3

8
+

1

4
=

5

8
,

P (Y = 1) =
7

16
, and P (Y ≤ 3) =

1

16
+

7

16
+

5

16
+

1

8
=

15

16
.

◦ To �nd P (X = Y = 2) we must look at the individual outcomes where X and Y are both equal to 2.

There are 3 such outcomes (TTHH, HTTH, HHTT ), so P (X = Y = 2) =
3

16
.

• If we have a random variable X de�ned on the sample space, then since X is a function on outcomes, we can
de�ne various new random variables in terms of X.

◦ If g is any real-valued function, we can de�ne a new random variable g(X) by evaluating g on all of the
results of X. Some possibilities include g(X) = 2X, which doubles every value of X, or g(X) = X2,
which squares every value of X.

◦ More generally, if we have a collection of random variables X1, X2, . . . , Xn de�ned on the same sample
space, we can construct new functions in terms of them, such as the sum X1 +X2 + · · ·+Xn that returns
the sum of the values of X1, . . . , Xn on any given outcome.

• A particular random variable is the random variable identifying whether an event has occurred:

• De�nition: If E is any event, we de�ne the Bernoulli random variable for E to beXE =

{
1 if E occurs

0 if E does not occur
.

◦ The name for this random variable comes from the idea of a Bernoulli trial, which is an experiment
having only two possible outcomes, success (with probability p) and failure (with probability 1− p). We
think of E as being the event of success, while Ec is the event of failure.

◦ Many experiments consist of a sequence of independent Bernoulli trials, in which the outcome of each
trial is independent from the outcomes of all of the others. For example, �ipping a (fair or unfair) coin
10 times and testing whether heads is obtained for each �ip is an example of a Bernoulli trial.

◦ Using our results on independence of events, we can describe explicitly the probability distribution of
the random variable X giving the total number of successes when n independent Bernoulli trials are
performed, each with a probability p of success.
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• Proposition (Binomial Distribution): Let X be the random variable representing the total number of successes
obtained by performing n independent Bernoulli trials each of which has a success probability p. Then the
probability distribution of X is the binomial distribution, in which P (X = k) =

(
n
k

)
pk(1− p)n−k for integers

k with 0 ≤ k ≤ n, and P (X = k) = 0 for other k.

◦ The binomial distribution is so named because of the presence of the binomial coe�cients
(
n
k

)
. One

particular example of this distribution is the total number of heads obtained by �ipping n unfair coins
each of which has probability p of landing heads.

◦ Proof: From our results on binomial coe�cients, we can see that there are
(
n
k

)
ways to choose k trials

yielding success out of a total of n. Furthermore, since all of the trials are independent, the probability
of obtaining any given pattern of k successes and n− k failures is equal to pk(1− p)n−k.
◦ Thus, since the probability of obtaining any given one of the

(
n
k

)
outcomes with exactly k successes is

pk(1− p)n−k, the probability of obtaining exactly k successes is
(
n
k

)
pk(1− p)n−k, as claimed.

• Example: A baseball player's batting average is 0.378, meaning that she has a probability of 0.378 of getting
a hit on any given at-bat, independently of any other at-bat. Find the probability that in her �rst 100 at-bats
that she gets (i) exactly 37 hits, (ii) exactly 40 hits, and (iii) exactly 50 hits.

◦ We can view each at-bat as an independent Bernoulli trial (with a hit being considered a success) with
p = 0.378, so the total number of hits will be binomially distributed.

◦ Then the probability of getting 37 hits is

(
100

37

)
· 0.37837 · 0.62263 ≈ 8.13%, the probability of 40 hits is(

100

40

)
· 0.37840 · 0.62260 ≈ 7.33%, and the probability of 50 hits is

(
100

50

)
· 0.37850 · 0.62250 ≈ 0.37%.

2.1.2 Expected Value

• If we repeat an experiment many times and record the di�erent values of a random variable X each time, a
useful statistic summarizing the outcomes is the average value of the outcomes.

◦ We would like a way to describe the �average value� of a random variable X.

◦ Suppose that the sample space has outcomes s1, s2, . . . , sn on which the random variable X takes on the
values x1, x2, . . . , xn with probabilities p1, p2, . . . , pn, where p1 + · · ·+ pn = 1.

◦ Under our interpretation of these probabilities as giving the relative frequencies of events when we repeat
the experiment many times, if we perform the experiment N times where N is large, we should obtain
the event X = xi approximately piN times for each 1 ≤ i ≤ n.

◦ The average value would then be
(p1N)x1 + (p2N)x2 + · · ·+ (pnN)xn

N
= p1x1 + p2x2 + · · ·+ pnxn.

◦ We may use this calculation to give a de�nition of the �average value� for an arbitrary discrete random
variable:

• De�nition: If X is a discrete random variable, the expected value of X, written E(X), is the sum E(X) =∑
si∈S

P (si)X(si) over all outcomes si in the sample space S. In words, the expected value is the average of the

values that X takes on the outcomes in the sample space, weighted by the probability of each outcome.

◦ The expected value is also sometimes called the mean or the average value of X, and is often also written
as µX (�mu-X�) or as X (�X-bar�).

◦ Example: If a fair coin is �ipped once, the expected value of the random variable X giving the number

of total heads obtained is equal to E(X) =
1

2
· 0 +

1

2
· 1 =

1

2
, because there are two possible outcomes,

0 heads and 1 head, each of probability 1/2.
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◦ In the example above we see that the expected value captures the idea of an �average value� of the
random variable when the experiment is repeated many times: if we �ip a fair coin N times, we would
expect to see about N/2 heads (yielding on average 1/2 head per �ip) which agrees with the expected
value of 1/2.

◦ Example: If an unfair coin with a probability 2/3 of landing heads is �ipped once, the expected value of

the random variable X giving the number of total heads obtained is equal to E(X) =
1

3
· 0 +

2

3
· 1 =

2

3
,

because there are two possible outcomes, 0 heads and 1 head, of respective probabilities 1/3 and 2/3.

◦ Example: If a standard 6-sided die is rolled once, the expected value of the random variable X giving

the result is equal to E(X) =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 =

7

2
, because each of the 6

possible outcomes 1,2,3,4,5,6 has probability 1/6 of occurring.

• It is very important to note that the expected value of a discrete random variable can be in�nite or even not
de�ned at all.

◦ Example: If X is the discrete random variable whose value is 2n occurring with probability 2−n for

n ≥ 1, then its expected value is E(X) = 2 · 1

2
+ 4 · 1

4
+ 8 · 1

8
+ 16 · 1

16
+ · · · = 1 + 1 + 1 + 1 + · · · =∞.

◦ Example: If Y is the discrete random variable whose value is (−2)n occurring with the probability 2−n

for n ≥ 1, then its expected value is the sum 2 ·(−1

2
)+4 · 1

4
+8 ·(−1

8
)+16 · 1

16
+ · · · = −1+1−1+1−· · · .

This sum does not converge (since the partial sums alternate forever between the values −1 and 0), and
so the expected value of this random variable is not de�ned.

• A common application of expected value is to calculate the expected winnings from a game of chance:

• Example: In one version of a �Pick 3� lottery, a single entry ticket costs $1. In this lottery, 3 single digits are
drawn at random, and a ticket must match all 3 digits in the correct order to win the $500 prize. What is the
expected value of one ticket for this lottery?

◦ From the description, we can see that there is a
1

1000
probability of winning the prize and a

999

1000
probability of winning nothing.

◦ Since winning the prize nets a total of $499 (the prize minus the $1 entry fee), and winning nothing
nets a total of −$1, the expected value of the random variable giving the net winnings is equal to

1

1000
($499) +

999

1000
(−$1) = −$0.50 .

◦ The expected value of −$0.50, in this case, indicates that if one plays this lottery many times, on average
one should expect to lose 50 cents on every ticket.

• Example: In one version of the game �Chuck-a-luck�, three standard 6-sided dice are rolled. Prizes for a bet
of $1 are awarded as follows: $65 for a roll of three 6s, $5 for a roll of two 6s, $1 for one 6, and $0 for any
other roll. What is the expected value of one play of this game?

◦ We calculate the probabilities of the various values for the random variable X tallying the net winnings.

◦ Observe that the number of sixes obtained will be binomially distributed with n = 3 and p = 1/6: thus,
the probability of getting k sixes will be

(
3
k

)
(1/6)k(5/6)3−k.

◦ The probability of getting three sixes is (1/6)3 = 1/216, and in this case, the net winnings total $65.

◦ The probability of getting two sixes is 3(1/6)2(5/6) = 15/216, and in this case, the net winnings total
$4.

◦ The probability of getting one six is 3(1/6)(5/6)2 = 75/216, and in this case, the net winnings total $0.

◦ The probability of getting no sixes is (5/6)3 = 125/216, and in this case, the net winnings total -$1.

◦ Therefore, the expected winnings from one play are
1

216
·($65)+

15

216
·($4)+

75

216
·($0)+

125

216
·(−$1) = $0 .

5



◦ For this game, we can see that the expected winnings are $0, meaning that the game is fair (in the sense
that neither the player nor the person running the game should expect to win or lose money on average
over the long term).

• Expected value has several important algebraic properties:

• Proposition (Linearity of Expected Value): If X and Y are discrete random variables de�ned on the same
sample space whose expected values exist, and a and b are any real numbers, then E(aX + b) = a ·E(X) + b
and E(X + Y ) = E(X) + E(Y ).

◦ Intuitively, if the expected value of X is 4, then it is reasonable to feel that the expected value of X + 1
should be 5, while the expected value of 2X should be 8. These two observations, taken together, form
essentially the �rst part of the statement.

◦ Likewise, if the expected value of Y is 3, then it is also reasonable to feel that the expected value of
X + Y should be 7, the sum of the expected values of X and Y .

◦ Proof: Suppose the outcomes in the sample space are s1, s2, . . . with probabilities p1, p2, . . . , where
p1 + p2 + · · · = 1. Also suppose that the values of X on these outcomes are x1, x2, . . . and the values of
Y are y1, y2, . . .

◦ Then E(X) = p1x1 + p2x2 + · · · and E(Y ) = p1y1 + p2y2 + · · · .
◦ Since aX + b takes on the values ax1 + b, ax2 + b, . . . on the respective outcomes s1, s2, . . . , we have
E(aX + b) = p1(ax1 + b) + p2(ax2 + b) + · · · = a(p1x1 + p2x2 + · · · ) + b(p1 + p2 + · · · ) = a · E(X) + b.

◦ Also, X + Y takes on the values x1 + y1, x2 + y2, . . . on the respective outcomes s1, s2, . . . , we have
E(X + Y ) = p1(x1 + y1) + p2(x2 + y2) + · · · = (p1x1 + p2x2 + · · · ) + (p1y1 + p2y2 + · · · ) = E(X) +E(Y ).

• By using the linearity of expected value and decomposing random events into simpler pieces, we can compute
expected values of more complicated random variables:

• Example: An unfair coin with probability p of landing heads is �ipped n times. Find the expected number of
heads obtained.

◦ One approach would be to let X be the random variable giving the total number of heads, then compute
the probability distribution of X and use the result to �nd the expected value.

◦ Since the number of heads is binomially distributed, the probability of obtaining k heads is
(
n
k

)
pk(1 −

p)n−k, the expected value is

n∑
k=0

(
n
k

)
pk(1− p)n−k · k, which can eventually be evaluated (using algebraic

identities for the binomial coe�cients) as np .

◦ However, a vastly simpler approach is to observe that we can write X as the sum of random variables
X = X1 +X2 + · · ·+Xn, where Xi is the number of heads obtained on the nth �ip.

◦ Since E(X1) = E(X2) = · · · = E(Xn) = p since the �ips each independently have a probability p of
landing heads, by the additivity of expectation we see that E(X) = E(X1)+E(X2)+ · · ·+E(Xn) = np .

• Example: Five cards are randomly drawn from a standard 52-card deck. Find the expected number of cards
drawn that are (i) spades, (ii) aces, (iii) aces of spades.

◦ For (i), if we let X be the random variable giving the total number of spades, then X = X1 +X2 +X3 +

X4+X5 whereXi is the random variable that the ith card is a spade. Then we have E(Xi) =
13

52
=

1

4
since

each card can be one of 52 equally likely possibilities, 13 of which are spades, and so E(X) = 5 · 1
4

=
5

4
.

◦ For (ii), if we let Y be the random variable giving the total number of aces, then Y = Y1+Y2+Y3+Y4+Y5

where Yi is the random variable that the ith card is an ace. Then we have E(Yi) =
4

52
=

1

13
since each

card can be one of 52 equally likely possibilities, 4 of which are aces, and so E(Y ) = 5 · 1

13
=

5

13
.
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◦ In the same way, for (iii), if we decompose the random variable Z giving the total number of aces of

spades as a sum over the 5 cards drawn from the deck, we see that E(Z) = 5 · 1

52
=

5

52
.

◦ Remark: Notice that the values of the random variables X1, . . . , X5 are not independent: for example,
if the �rst card is a spade then the second card is less likely to be a spade (and vice versa, and similarly
for the other cards). Nonetheless, the expected value of the total number of spades is still the sum of
the individual expectations, even though the actual values of the corresponding random variables are not
independent of one another.

2.1.3 Variance and Standard Deviation

• In addition to computing the expected value of a random variable, we also would like to be able to measure
how much variation the values have relative to their expected value.

◦ For example, if one random variable X is always equal to 2, then there is no variation in its value. If the
random variable Y is equal to 0 half the time and 4 the other half the time, then its expected value is
also 2, but there is much more variation in the values of Y .

• De�nition: If X is a discrete random variable whose expected value E(X) = µ exists and is �nite, we de�ne
the variance of X to be var(X) = E[(X − µ)2], the expected value of the square of the di�erence between
X and its expectation. The standard deviation of X, denoted σ(X), is the square root of the variance:
σ(X) =

√
var(X).

◦ Roughly speaking, the standard deviation measures the �average distance� that a typical outcome of X
will be from the expected outcome.

◦ We can also give another formula for the variance: by using the linearity of expectation, we can write
E[(X −µ)2] = E(X2− 2µX +µ2) = E(X2)− 2µE(X) +µ2, and since µ = E(X), this formula simpli�es
to var(X) = E(X2)− µ2 = E(X2)− [E(X)]2.

◦ It is often faster to compute E(X) and E(X2) separately than to compute the probability distribution
of (X − µ)2.

• Example: If a coin with probability p of landing heads is �ipped once, �nd the expected value, variance, and
standard deviation of the random variable X giving the number of heads.

◦ There are two possible outcomes: either X = 0, which occurs with probability 1 − p, or X = 1, which
occurs with probability p.

◦ The expected value is then E(X) = (1− p) · 0 + p · 1 = p .

◦ For the standard deviation, there are two possible outcomes of (X − µ)2 = (X − p)2: either X − µ =
(0− p)2 = p2, which occurs with probability 1− p, or (X −µ)2 = (1− p)2, which occurs with probability
p.

◦ The variance is then var(X) = (1 − p) · p2 + p · (1 − p)2 = p(1− p) , and the standard deviation is

σ(X) =
√

var(X) =
√
p(1− p) .

◦ Alternatively, using the formula var(X) = E(X2)− [E(X)]2, we compute E(X2) = (1−p) ·02 +p ·12 = p,

and then var(X) = p− p2 = p(1− p) , as above.

◦ In particular, when p = 1/2, we see that the standard deviation is 1/2. This agrees with the natural
idea that although the expected number of heads obtained when �ipping a fair coin is 1/2, the actual
outcome is always a distance 1/2 away from the expectation (since it is either 0 or 1).

• Example: If a standard 6-sided die is rolled once, �nd the variance and standard deviation of the random
variable X giving the result of the die roll.

◦ Each of the possible outcomes X = 1, 2, 3, 4, 5, 6 occurs with probability
1

6
.
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◦ We compute E(X) =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 =

7

2
= 3.5, and also E(X2) =

1

6
· 12 +

1

6
· 22 +

1

6
· 32 +

1

6
· 42 +

1

6
· 52 +

1

6
· 62 =

91

6
.

◦ Thus, var(X) = E(X2)− [E(X)]2 =
91

6
− 49

4
=

35

12
, and σ(X) =

√
var(X) =

√
35

12
≈ 1.708.

• Example: A fair coin is �ipped 4 times. Find the expected value, variance, and standard deviation of the
random variable Y giving the longest run of consecutive tails obtained.

◦ We have previously computed the probability distribution of Y :
n 0 1 2 3 4

P (Y = n) 1/16 7/16 5/16 1/8 1/16

◦ We compute E(Y ) =
1

16
· 0 +

7

16
· 1 +

5

16
· 2 +

1

8
· 3 +

1

16
· 4 =

27

16
= 1.6875, and also E(Y 2) =

1

16
· 02 +

7

16
· 12 +

5

16
· 22 +

1

8
· 32 +

1

16
· 42 =

61

16
.

◦ Thus, var(Y ) = E(Y 2)− [E(Y )]2 =
61

16
− 729

256
=

247

256
, and σ(Y ) =

√
var(Y ) =

√
247

256
≈ 0.9823.

• As long as the expected value exists, the variance will always exist, because it is computed by summing
nonnegative values. However, even when the expected value is �nite, the variance can be in�nite:

• Example: Show that the random variable that takes the value 2n with probability 2/3n, for integers n ≥ 1,
has a �nite expected value but an in�nite variance.

◦ We compute the expected value E(X) = 2·2
3

+22·2
9

+23· 2

27
+· · · = 4 using the formula1 a+ar+ar2+· · · =

a

1− r
for the sum of a geometric series.

◦ For the variance, we also must compute E(X2) = 4· 2
3

+42 · 2
9

+43 · 2

27
+· · · =∞, since the common ratio in

this geometric series is
4

3
, which is greater than 1. But then the variance is var(X) = E(X2)−E(X)2 =∞,

which is to say, the variance is in�nite.

• The variance and standard deviation also possess some algebraic properties like those of expected value:

• Proposition (Properties of Variance): If X is a discrete random variable and a and b are any real numbers,
then var(aX + b) = a2 · var(X) and σ(aX + b) = |a|σ(X).

◦ Proof: From the linearity of expectation, we know that E(aX + b) = a ·E(X) + b, and therefore we have
aX + b− E(aX + b) = aX + b− aE(X)− b = a · [X − E(x)].

◦ Then var(aX + b) = E[(aX + b − E(aX + b))2] = E[a2 · (X − E(x))2] = a2var(X), and by taking the
square root of both sides we then get σ(aX + b) = |a|σ(X).

• Example: If X is a random variable with expected value 1 and standard deviation 3, what are the expected
value and standard deviation of 2X + 4?

◦ From the properties given above, we have E(2X+4) = 2E(X)+4 = 6 , and σ(2X+4) = |2|σ(X) = 6 .

1If |r| < 1 and S is the sum of the geometric series a+ar+ar2 +ar3 + · · · , notice that rS = ar+ar2 +ar3 + · · · and so S− rS = a,

meaning that S =
a

1− r
. This manipulation is only valid, however, when |r| < 1; for other r the series is either in�nite (r ≥ 1) or

nonconvergent (other r).
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2.1.4 Joint Distributions

• We now treat more carefully the situation of having several discrete random variables de�ned on the same
sample space, which will allow us to extend some of our analysis of conditional probability and independence
into the random-variable setting.

◦ If we have a collection of random variables X1, X2, . . . , Xn, we can summarize all of the possible infor-
mation about the behavior of these random variables simultaneously using a joint probability density
distribution, which simply lists all the possible collections of values of these random variables together
with their probabilities.

◦ We often package these values together into a function:

• De�nition: IfX1, X2, . . . , Xn are discrete random variables on the sample space S, then the function pX1,X2,...,Xn

de�ned on ordered n-tuples of events (a1, . . . , an) ∈ S such that pX1,X2,...,Xn
(a1, a2, . . . , an) = P (X1 =

a1, X2 = a2, . . . , Xn = an) is called the joint probability density function of X1, X2, . . . , Xn.

◦ The joint probability density function simply measures the probability that the various random variables
take particular values, for all combinations of possible values.

◦ For the situation of two random variables X and Y , we can display the joint probability density function
by tabulating all of the possible values of X and Y in a grid.

• Example: An unfair coin that comes up heads 2/3 of the time is �ipped 3 times. Tabulate the joint probability
density function of X and Y , where X is the random variable counting the total number of heads and Y is the
random variable counting the longest run of tails. Then calculate (i) P (X = Y = 1), (ii) P (X = 3, Y = 1),
(iii) P (Y −X = 1), and (iv) P (X + Y = 3).

◦ Here is a table of all the possible outcomes, their probabilities, and the values of X and Y on each:
Outcome Probability Value of X Value of Y
HHH 8/27 3 0

HHT , HTH, THH 4/27 2 1

HTT , TTH 2/27 1 2

THT 2/27 1 1

TTT 1/27 0 3

◦ We can reorganize this information into the following table, organized by the values of X and Y :
Y \ X 0 1 2 3

0 0 0 0 8/27
1 0 2/27 12/27 0

2 0 4/27 0 0

3 1/27 0 0 0

◦ By looking up the appropriate entries in the second table, we can then compute the probability of any
combination of values of X and Y .

◦ Thus, we have P (X = Y = 1) = 2/27 , P (X = 3, Y = 1) = 0 , P (Y − X = 1) = 4/27 , and

P (X + Y = 3) =
1

27
+

4

27
+

12

27
+

8

27
=

25

27
.

• Example: The joint probability distribution for the random variables I and O counting the number of diners
sitting inside and outside (respectively) at a small cafe in August is given below. Find (i) P (I = 2, O = 3),
(ii) P (I = 1), (iii) P (O = 2), (iv) P (I + O ≥ 4), (v) P (I = O), and (vi) P (|I −O| > 2). Also, �nd the
individual probability distributions for I and O.

I \ O 0 1 2 3 4 5

0 0.03 0.10 0.12 0.18 0.10 0.08

1 0 0.01 0.07 0.10 0.08 0.06

2 0 0 0 0.01 0.03 0.02

3 0 0 0 0 0 0.01

◦ We simply sum the appropriate entries in the table for each of the underlying results.
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◦ This yields P (I = 2, O = 3) = 0.01 , P (I = 1) = 0.01 + 0.07 + 0.10 + 0.08 + 0.06 = 0.32 , P (O = 2) =

0.12 + 0.07 = 0.19 , P (I +O ≥ 4) = 0.10 + 0.01 + 0.10 + 0.08 + 0.03 + 0.08 + 0.06 + 0.02 + 0.01 = 0.49 ,

P (I = O) = 0.03 + 0.01 = 0.04 , and P (|I −O| > 2) = 0.18 + 0.10 + 0.08 + 0.08 + 0.06 + 0.02 = 0.52 .

◦ To �nd the probability distribution for O by itself, we simply sum over all of the corresponding entries
in the table having the same value for O (i.e., down the columns):

O 0 1 2 3 4 5

Probability 0.03 0.11 0.19 0.29 0.21 0.17

◦ Likewise, to �nd the probability distribution for I, we sum across the rows:
I Probability

0 0.61

1 0.32

2 0.06

3 0.01

• In general, just like in the second example above, we can easily recover the individual probability distributions
for any of the random variables from their joint distribution by summing over the other variables:

• Proposition (Marginal Densities): If pX,Y (a, b) is the joint probability density function for the discrete random
variables X and Y , then for any a and b we may compute the single-variable probability density functions for
X and Y as pX(a) =

∑
y pX,Y (a, y) and pY (b) =

∑
x pX,Y (x, b).

◦ In general, a probability density function obtained by restricting a given probability distribution to a
subset is called a marginal probability distribution. This proposition gives the procedure for computing
the marginal probability distribution on the subsets X = a and Y = b (i.e., where one value of one of the
random variables is �xed). The word �marginal� is used to evoke the idea of writing the row and column
sums in the margins of the probability distribution table.

◦ Proof: The �rst formula follows by observing that the event {E : X = a} is the union over all real
numbers y of the sets {E : X = a, Y = y}. Since these sets are disjoint (since the random variable Y
can only take one value at a time), we can simply sum the corresponding probabilities by the probability
axioms.

◦ The second formula follows in the same way upon interchanging the roles of X and Y .

◦ Remark: This result can be extended to an arbitrary number of variables using essentially the same argu-
ment. In general, if X1, X2, . . . , Xn are discrete random variables with joint pdf pX1,X2,...,Xn

(a1, . . . , an)
then for any 1 ≤ k ≤ n the joint pdf pX1,X2,...,Xk

(a1, . . . , ak) is given by pX1,X2,...,Xk
(a1, . . . , ak) =∑

xk+1,...,xn
pX1,...,Xn(a1, . . . , ak, xk+1, . . . , xn), with a similar formula holding for any subset of the Xi

whose values are �xed.

2.1.5 Independence

• We would now like to use joint distributions to describe when two random variables are independent.

◦ Intuitively, much as with independence of events in probability spaces, we would say that two random
variables X and Y are independent when knowing the value of one gives no additional information about
the value of the other.

◦ Explicitly, this is the same as saying that P (X = a|Y = b) = P (X = a) for every value of a and b, which
(in turn) from our discussion of conditional probability, is equivalent to saying that P (X = a, Y = b) =
P (X = a) · P (Y = b).

◦ Equivalently, in the language of probability density functions, this says pX,Y (a, b) = pX(a) · pY (b). In
other words, the probability that both X = a and Y = b is the product of the probabilities of those two
separate events (namely, that X = a and that Y = b).

◦ In the same way as with conditional probabilities, we may easily extend this notion of independence
to more than two random variables. The analogous condition would be that the discrete random vari-
ables X1, X2, . . . , Xn are independent when, for any subset Y1, . . . , Yk of the Xi, the joint distribution
pY1,...,Yk

(a1, . . . , ak) is equal to the product of the individual distributions pY1
(a1) · · · · · pYk

(ak).
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◦ However, because we may compute all of these joint distributions using the single joint distribution
pX1,X2,...,Xn(a1, a2, . . . , an) (namely, by summing over all of the possible values of the random vari-
ables we are not considering), in fact all of these conditions follow from the single condition that
pX1,X2,...,Xn

(a1, a2, . . . , an) = pX1
(a1) · pX2

(a2) · · · · · pXn
(an).

• De�nition: We say that the discrete random variables X1, X2, . . . , Xn are collectively independent if the joint
distribution pX1,X2,...,Xn(a1, a2, . . . , an) = pX1(a1) · pX2(a2) · · · · · pXn(an) for all real numbers a1, a2, . . . , an.

• Example: If X and Y are random variables with the joint distribution displayed below, determine whether X
and Y are independent.

X \ Y 0 1 2 3

1 0.12 0.18 0.24 0.06

3 0.02 0.03 0.04 0.01

5 0.06 0.09 0.12 0.03

◦ We must �rst compute the probability distributions for X and Y , which we may do by summing the rows
and columns, and then we must check whether pX,Y (a, b) = pX(a) · pY (b) for each (a, b) in the table.

◦ We obtain the following:
X \ Y 0 1 2 3 Σ

1 0.12 0.18 0.24 0.06 0.6

3 0.02 0.03 0.04 0.01 0.1

5 0.06 0.09 0.12 0.03 0.3

Σ 0.2 0.3 0.4 0.1

◦ It is then easy to see that each entry is in fact the product of the corresponding row sum and column

sum: this means pX,Y (a, b) = pX(a) · pY (b) for each (a, b), and so X and Y are independent .

• Example: A fair coin is �ipped 3 times. If X is the total number of heads in the �rst two �ips and Y is the
total number of heads in the last two �ips, determine whether X and Y are independent.

◦ Intuitively, we would expect that these variables should not be independent, since both X and Y will be
a�ected by the outcome of the second coin �ip.

◦ Indeed, we have P (X = 2, Y = 0) = 0 since X = 2 requires the middle �ip to be heads while Y = 0
requires the middle �ip to be tails.

◦ However, P (X = 2) =
1

4
and P (Y = 0) =

1

4
also, and so P (X = 2) · P (Y = 0) =

1

16
6= P (X = 2, Y =

0) = 0. Thus, X and Y are not independent .

◦ We could also just evaluate the full joint distribution of X and Y and then use the same analysis as we
did in the previous example:

X \ Y 0 1 2 Σ
0 1/8 1/8 0 1/4
1 1/8 2/8 1/8 1/2
2 0 1/8 1/8 1/4
Σ 1/4 1/2 1/4

◦ We can see that there are four entries (the four corner entries) that are not equal to the product of the
corresponding row and column sums, so any of these would yield an appropriate counterexample.

• Under the assumption of independence, we can say a few additional things about expected value and variance:

• Proposition (Variance and Independence): If X and Y are independent discrete random variables whose
expected values exist, then E(XY ) = E(X) · E(Y ), and var(X + Y ) = var(X) + var(Y ).

◦ Note that we do require the hypothesis that X and Y be independent in order for the variance to be
additive. The result is not true for non-independent random variables: an easy counterexample occurs for
X = Y , in which case var(X+Y ) = var(2X) = 4var(X) which is not equal to var(X)+var(Y ) = 2var(X).

◦ Proof: Suppose X and Y are independent discrete random variables, where X takes the values x1, x2, . . .
with probabilities p1, p2, . . . and Y takes the values y1, y2, . . . with probabilities q1, q2, . . . .
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◦ By the assumption of independence, this meansX takes the value xi and Y takes the value yj , so thatXY

takes the value xiyj , with probability piqj . Therefore, E(XY ) =
∑
i,j piqjxiyj = [

∑
i pixi] ·

[∑
j qjyj

]
=

E(X) · E(Y ), as claimed.

◦ For the second statement, we may use the result just shown to obtain var(X + Y ) = E[(X + Y )2] −
[E(X + Y )]2 = E(X2 + 2XY + Y 2) − [E(X) + E(Y )]2 = E(X2) + 2E(X)E(Y ) + E(Y 2) − [E(X)2 +
2E(X)E(Y ) + E(Y )2] = [E(X2)− E(X)2] + [E(Y 2)− E(Y )2] = var(X) + var(Y ), as claimed.

• Using these properties we can calculate the variance and standard deviation of a binomially-distributed random
variable:

• Corollary (Binomial Variance): Let X be the binomially-distributed random variable representing the total
number of successes obtained by performing n independent Bernoulli trials each of which has a success
probability p. Then E(X) = np, var(X) = np(1− p), and σ(X) =

√
np(1− p).

◦ Proof: We write X = X1 +X2 + · · ·+Xn where Xi is the random variable representing success on the
ith trial for 1 ≤ i ≤ n.
◦ Observe that E(Xi) = (1 − p) · 0 + p · 1 = p and E(X2

i ) = (1 − p) · 02 + p · 12 = p, so var(Xi) =
E(X2

i )− E(Xi)
2 = p(1− p).

◦ Each of the Xi is a single Bernoulli trial and they are all collectively independent by assumption, so we
have E(X) = E(X1) + · · · + E(Xn) = np (as we previously calculated), and also var(X) = var(X1) +
· · ·+ var(Xn) = np(1− p) so that σ(X) =

√
var(X) =

√
np(1− p) as claimed.

• Example: An unfair coin with a probability 2/3 of landing heads is �ipped 450 times. Find the expected
number and the standard deviation in the number of tails obtained.

◦ Each individual �ip can be thought of as a Bernoulli trial, with success corresponding to obtaining tails
with probability p = 1/3, with a total of n = 450 trials.

◦ Thus, from our results on the binomial distribution, the expected number of tails is np = 450·1/3 = 150

and the standard deviation is
√
np(1− p) =

√
450 · 1/3 · 2/3 = 10 .

• Example: A car dealer has a probability 0.36 of selling a car to any individual customer, independently. If 25
customers patronize the dealership, determine the expected number and the standard deviation in the total
number of cars sold.

◦ Each individual customer can be thought of as a Bernoulli trial, with success corresponding to selling a
car with probability p = 0.36, with a total of n = 25 trials.

◦ Thus, from our results on the binomial distribution, the expected number of cars sold is np = 25·0.36 = 9

and the standard deviation is
√
np(1− p) =

√
25 · 0.36 · 0.64 = 2.4 .

2.1.6 Covariance and Correlation

• Another important quantity, which is moderately related to independence, is known as the covariance:

• De�nition: If X and Y are random variables whose expected values exist and are µX and µY respectively,
then the covariance of X and Y is de�ned as cov(X,Y ) = E[(X − µX) · (Y − µY )].

◦ Roughly speaking, the covariance measures how well a change in the value of X (relative to its average
value) correlates with a change in the value of Y (relative to its average value). If the covariance is large
and positive, then when X increases, Y will tend also to increase, and inversely when X decreases, Y
will tend also to decrease.

◦ Inversely, if the covariance is large and negative, then when X increases Y will tend to decrease, and
when X decreases Y will tend to increase. When the covariance is near zero, then a change in the value
of X does not tend to correspond to any particular type of change in the value of Y .
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• Example: Find the covariance of the random variables X and Y with joint distribution below.
X \ Y 0 10

0 0.4 0.1

10 0.2 0.3

◦ We can compute µX = 5, µY = 4, and so cov(X,Y ) = 0.4 · (−5) · (−4) + 0.1 · (−5) · (6) + 0.2 · (5) · (−4) +
0.3 · (5) · (06) = 10.

◦ We can see that when X is 0, Y is more likely to be 0 than 10, and when X is 10, Y is more likely to be
10 than 0.

• The de�nition of covariance is somewhat complicated to compute, even in the simple example above. We can
give a simpler formula that is more amenable to hand calculations2:

• Proposition (Covariance Formula): For any discrete random variables X and Y whose expected values exist,
we have cov(X,Y ) = E(XY )− E(X)E(Y ).

◦ Proof: If the expected values of X and Y are µX and µY respectively, then by linearity property of
expectation we have cov(X,Y ) = E(XY−µXY−µYX+µXµY ) = E(XY )−µXE(Y )−µY E(X)+µXµY =
E(XY )− µXµY = E(XY )− E(X)E(Y ), as claimed.

◦ From this formula, we can see that if X and Y are independent, then their covariance is equal to zero.
Do note, however, that the converse is not true: if the covariance is zero, it does not imply that X and
Y are independent.

• Example: Find the covariance of the random variables X and Y with joint distribution below.
X \ Y 0 5 10

0 0.3 0.2 0

10 0.4 0 0.1

◦ We compute E(X) = 0.5 · 0 + 0.5 · 10 = 5, E(Y ) = 0.7 · 0 + 0.2 · 5 + 0.1 · 10 = 2, and E(XY ) =
0.3 · 0 + 0.2 · 0 + 0 · 0 + 0.4 · 0 + 0 · 50 + 0.1 · 100 = 10.

◦ Therefore, we see cov(X,Y ) = E(XY )− E(X)E(Y ) = 10− 5 · 2 = 0 .

◦ Remark: Notice that although their covariance is zero, X and Y are not independent, since for example
P (X = 0) = 0.5, P (Y = 0) = 0.7, but P (X = 0, Y = 0) = 0.3 rather than P (X = 0) · P (Y = 0) =
0.5 · 0.7 = 0.35.

• We have various algebraic properties involving the covariance:

• Proposition (Properties of Covariance): If X, Y , Z are discrete random variables whose expected values exist,
then for any a and b we have cov(X,X) = var(X), cov(Y,X) = cov(X,Y ), cov(X + Y, Z) = cov(X,Z) +
cov(Y, Z), cov(aX + b, Y ) = a · cov(X,Y ), and var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ).

◦ Proof: By de�nition of the variance, we have cov(X,X) = E[(X − µX)2] = var(X).

◦ The second property follows from observing that (X − µX)(Y − µY ) = (Y − µY )(X − µX), so the
corresponding expected values are also equal, and the third property follows in the same way from
(X + Y − µX − µY )(Z − µZ) = (X + µX)(Z − µZ) + (Y − µY )(Z − µZ).

◦ The third property follows by noting that E(aX + b) = aµX + b so that cov(aX + b, Y ) = E[(aX + b−
aµX − b)(Y − µY ) = a · E[(X − µX)(Y − µY )] = a · cov(X,Y ).

◦ The last property follows from noting E(X+Y ) = µX+µY so that var(X+Y ) = E[(X+Y −µX−µY )2] =
E[(X−µX)2+2(X−µX)(Y −µY )+(Y −µY )2] = E[(X−µX)2]+2E[(X−µX)(Y −µY )]+E[(Y −µY )2] =
var(X) + 2cov(X,Y ) + var(Y ).

• Per the properties above, the covariance scales linearly with both of the random variables X and Y . In
some situations, we prefer to have a �normalized� measure of covariance, which we can obtain by dividing the
covariance by the product of the standard deviations:

2We will remark that in computational implementation, this formula su�ers from issues of numerical instability, since E(XY ) and
E(X)E(Y ) may both be quite large even when the covariance is very small.
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• De�nition: If X and Y are discrete random variables whose variances exist and are nonzero, the (Pearson)

correlation between X and Y is de�ned as corr(X,Y ) =
cov(X,Y )

σ(X)σ(Y )
.

◦ It is easy to see that the correlation (unlike the covariance) remains unchanged upon scaling and trans-
lating the variables: corr(aX + b, cY + d) = corr(X,Y ).

◦ The correlation between two random variables always lies between −1 and 1 inclusive3, with values near
1 indicating that the variables tend to increase linearly together and decrease linearly together (which
agrees with the intuitive notion of two variables being strongly positively correlated) and with values
near −1 indicating that the variables tend to increase linearly as the other decreases linearly (which
agrees with the intuitive notion of two variables being strongly negatively correlated).

◦ A correlation of zero is the same as a covariance of zero. Do note, however (as we saw above) that a
correlation of zero is not equivalent to the variables being independent!

◦ Remark: This correlation coe�cient is also known as the linear regression correlation coe�cient, since
it represents the closeness by which a linear function can describe the relationship between X and Y . A
correlation coe�cient near 1 indicates that there is a linear function with a positive slope that models
the relationship closely, while a correlation coe�cient near −1 indicates that there is a linear function
with a negative slope that models the relationship closely. A correlation coe�cient near 0 indicates that
there is no linear function that models the relationship closely (but of course, this need not mean that
the variables are unrelated, merely that any relationship is not linear).

◦ Remark (for students who like linear algebra): The covariance is a particular example of an inner product
on the vector space of discrete random variables, and the correlation can be interpreted as the cosine of
the generalized angle between the associated vectors, giving another reason why its value ranges from
−1 to 1.

• Example: A fair coin is �ipped 3 times. If X is the total number of heads in the �rst two �ips and Y is the
total number of heads in the last two �ips, �nd the covariance and correlation between X and Y .

◦ We previously found the joint distribution for X and Y :
X \ Y 0 1 2

0 1/8 1/8 0

1 1/8 2/8 1/8
2 0 1/8 1/8

◦ We can then �nd E(X) = E(Y ) = 1 and E(XY ) =
3

8
· 0 +

2

8
· 1 +

2

8
· 2 +

1

8
· 4 =

5

4
, and so cov(X,Y ) =

E(XY )− E(X)E(Y ) =
1

4
.

◦ Also, E(X2) = E(Y 2) =
2

8
· 02 +

4

8
· 12 +

2

8
· 22 =

3

2
, and so σ(X) = σ(Y ) =

√
3

2
− 12 =

√
1

2
. Thus,

corr(X,Y ) =
cov(X,Y )

σ(X)σ(Y )
=

1

2
.

◦ We can see that there is a positive correlation of moderate size between X and Y , which is intuitively
reasonable because X and Y each count the number of heads from one independent coin �ip and one
shared coin �ip.

• Example: Suppose X and Y are discrete random variables such that E(X) = 5, σ(X) = 1, E(Y ) = 3,
σ(Y ) = 2, and E(XY ) = 16. Find cov(X,Y ), corr(X,Y ), cov(X + Y,X − Y ), and corr(X + Y,X − Y ).

◦ We have cov(X,Y ) = E(XY )− E(X)E(Y ) = 16− 5 · 3 = 1 and corr(X,Y ) =
cov(X,Y )

σ(X)σ(Y )
=

1

2
.

◦ Also, using property (3) of covariance, we have cov(X+Y,X−Y ) = cov(X,X)+cov(Y,X)−cov(X,Y )−
cov(Y, Y ) = var(X)− var(Y ) = 12 − 22 = −3 .

3To see that the correlation is always between −1 and 1, observe that var(X + tY ) = var(X) + t2var(Y ) + 2tcov(X,Y ) is always
nonnegative for any constant t. Setting t = −cov(X,Y )/var(Y ) and simplifying yields var(X)− cov(X,Y )2/var(Y ) ≥ 0, so rearranging
and taking the square root yields |cov(X,Y )| ≤ σ(X)σ(Y ), whence −1 ≤ corr(X,Y ) ≤ 1.
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◦ To �nd the correlation we need σ(X + Y ) =
√

var(X + Y ) =
√

var(X) + var(Y ) + 2cov(X,Y ) =√
12 + 22 + 2 · 1 =

√
7 and σ(X−Y ) =

√
var(X − Y ) =

√
var(X) + var(Y )− 2cov(X,Y ) =

√
12 + 22 − 2 · 1 =√

3.

◦ Thus, the correlation is given by corr(X + Y,X − Y ) =
cov(X + Y,X − Y )

σ(X + Y )σ(X − Y )
=
−3√
21

.

2.2 Continuous Random Variables

• Another important class of random variables consists of the random variables whose underlying sample space
is the entire real line.

◦ Because there are uncountably many possible outcomes, to evaluate probabilities of events we cannot
simply sum over the outcomes that make them up.

◦ Instead, we must use the continuous analogue of summation, namely, integration.

◦ All of the results we will discuss are very similar to the corresponding ones for discrete random variables,
with the only added complexity being the requirement to evaluate integrals.

2.2.1 Probability Density Functions, Cumulative Distribution Functions

• De�nition: A continuous probability density function p(x) is a piecewise-continuous, nonnegative real-valued
function such that

´∞
−∞ p(x) dx = 1.

◦ Note that the integral
´∞
−∞ p(x) dx is in general improper. However, since p(x) is by assumption nonneg-

ative, then the value of the integral is always well-de�ned (although it may be ∞).

◦ Example: The function p(x) =

{
1/4 for 0 ≤ x ≤ 4

0 for other x
is a continuous probability density function, since

the two components of p(x) are both continuous and nonnegative, and
´∞
−∞ p(x) dx =

´ 4
0

1

4
dx =

1

4
x

∣∣∣∣4
x=0

= 1.

◦ Example: The function q(x) =

{
2x for 0 ≤ x ≤ 1

0 for other x
is a continuous probability density function, since the

two components of q(x) are both continuous and nonnegative, and
´∞
−∞ q(x) dx =

´ 1
0

2x dx = x2
∣∣1
x=0

= 1.

◦ Example: The function e(x) =

{
e−x for x ≥ 0

0 for x < 0
is a continuous probability density function, since

the two components of e(x) are both continuous and nonnegative, and
´∞
−∞ e(x) dx =

´∞
0
e−x dx =

−e−x|∞x=0 = 1.

• De�nition: We say that X is a continuous random variable if there exists a continuous probability density
function p(x) such that for any interval I on the real line, we have P (X ∈ I) =

´
I
p(x) dx.

◦ In other words, probabilities for continuous random variables are computed via integrating the probability
density function on the appropriate interval.

◦ Note that if X is a continuous random variable, then (no matter what the probability density function
is), the value of P (X = a) is zero for any value of a, since P (X = a) =

´ a
a
p(x) dx = 0. This means that

the probability that X will attain any speci�c value a is equal to zero.

• Example: IfX is the continuous random variable whose probability density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
,

�nd (i) P (1 ≤ X ≤ 3), (ii) P (X ≤ 2), (iii) P (X ≥ 5), (iv) P (−2 ≤ X ≤ 3), and (v) P (X = 2).
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◦ When we set up the integrals, we must remember to break the range of integration up (if needed) so that
we are integrating the correct component of p(x) on the correct interval.

◦ For example, to verify that p(x) is a probability density function, we would compute
´∞
−∞ p(x) dx =

´ 0
−∞ 0 dx+

´ 4
0

x

8
dx+

´∞
4

0 dx = 0 +
1

16
x2
∣∣∣∣4
x=0

+ 0 = 1, as required.

◦ For (i), we have P (1 ≤ X ≤ 3) =
´ 3
1
p(x) dx =

´ 3
1

x

8
dx =

1

16
x2
∣∣∣∣3
x=1

=
1

2
.

◦ For (ii), we have P (X ≤ 2) =
´ 2
−∞ p(x) dx =

´ 0
−∞ 0 dx+

´ 2
0

x

8
dx =

1

16
x2
∣∣∣∣2
x=0

=
1

4
.

◦ For (iii), we have P (X ≥ 5) =
´∞
5
p(x) dx =

´∞
5

0 dx = 0 .

◦ For (iv), we have P (−2 ≤ X ≤ 3) =
´ 3
−2 p(x) dx =

´ 0
−2 0 dx+

´ 3
0

x

8
dx =

1

16
x2
∣∣∣∣3
x=0

=
9

16
.

◦ For (v), we have P (X = 2) =
´ 2
2
p(x) dx =

´ 2
2

x

8
dx =

1

16
x2
∣∣∣∣2
x=2

= 0 .

• As we saw in the example above, if we are evaluating integrals, we may ignore intervals on which p(x) = 0,
since their contribution to the integrals will always be 0.

• A useful function related to the probability density function of a continuous random variable is the cumulative
distribution function4, which measures the total probability that the continuous random variable takes a value
≤ x:

• De�nition: IfX is a continuous random variable with probability density function p(x), its cumulative distribution function
(cdf) c(x) is de�ned as c(x) =

´ x
−∞ p(t) dt for each real value of x. Then P (X ≤ a) = c(a) and P (X ≥ a) =

1− c(a) for every a, and P (a ≤ X ≤ b) = c(b)− c(a) for every a and b.

◦ By the fundamental theorem of calculus, we have c′(x) = p(x) for every x, so we may freely convert
back and forth between the probability density function and the cumulative distribution function via
di�erentiation and integration.

◦ Since p(x) is nonnegative, if a ≤ b then c(a) ≤ c(b), and since
´∞
−∞ p(x) dx = 1, we have limx→∞ c(x) = 1,

and limx→−∞ c(x) = 0.

◦ Example: For the random variable with probability density function p(x) =

{
1/4 for 0 ≤ x ≤ 4

0 for other x
, the

cumulative distribution function is c(x) =


0 for x ≤ 0

x/4 for 0 ≤ x ≤ 4

1 for x ≥ 4

.

◦ Example: For the random variable with probability density function q(x) =

{
0 for x < 1

1/x2 for x ≥ 1
, the

cumulative distribution function is c(x) =

{
0 for x < 1

1− 1/x for x ≥ 1
.

• Example: The probability density function for a continuous random variable X has the form p(x) =
a

x3/2
for 1 ≤ x ≤ 9 and 0 elsewhere. Find (i) the value of a, (ii) the probability that 1 ≤ X ≤ 4, and (iii) the
cumulative distribution function for X.

4In fact, one may also de�ne the cumulative distribution function for a discrete random variable; the typical de�nition is c(x) =∑
n≤x p(n). However, for various reasons in certain cases one may prefer to sum only over all values less than x, rather than less than

or equal to x. This issue does not arise when working with continuous random variables, since the probability of obtaining exactly the
value x is always zero, so we could in fact use either de�nition of the cumulative distribution function (as giving the probability of a
value ≤ x or as giving the probability of a value < x) since they are the same. For this reason, we will work with cumulative distribution
functions only in the context of continuous random variables.
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◦ The value of a is determined by the fact that the integral of p(x) over its full domain must equal 1, which

is to say that
´ 9
1

a

x3/2
dx = 1. Since

´ 9
1

a

x3/2
dx = −2ax−1/2

∣∣9
x=1

=
4

3
a, we must have a =

3

4
.

◦ Next, the probability that 1 ≤ X ≤ 4 is given by
´ 4
1
p(x) dx =

´ 4
1

3

4
x−3/2 dx =

3

4
.

◦ Finally, the cumulative distribution function is c(x) =
´ x
−∞ p(t) dt, yielding c(x) =


0 for x ≤ 1
3
2 (1− x−1/2) for 1 ≤ x ≤ 9

1 for x ≥ 9

.

◦ Remark: If we had computed the cumulative distribution function �rst, we could alternatively have

calculated P (1 ≤ X ≤ 4) = c(4)− c(1) =
3

4
− 0 =

3

4
.

• A simple class of continuous random variables are those whose probability density functions are constant on
an interval [a, b] and zero elsewhere. We say such random variables are uniformly distributed on the interval
[a, b].

◦ From the requirement that the integral of the probability density function equals 1, it is straight-
forward to see that the probability density function for a uniformly-distributed random variable on

[a, b] is given by p(x) =


1

b− a
for a ≤ x ≤ b

0 for other x
, and then the cumulative distribution function is

c(x) =


0 for x < a
x− a
b− a

for a ≤ x ≤ b

1 for x > b

.

◦ Using this description we can easily compute probabilities for uniformly-distributed random variables.

• Example: The high temperature in a certain city in May is uniformly distributed between 70◦F and 90◦F.
Find the probabilities that (i) the temperature is between 82◦F and 85◦F, (ii) the temperature is less than
75◦F, and (iii) the temperature is greater than 82◦F.

◦ From our description of uniformly-distributed random variables, we can see that the probability density

function for the temperature is p(x) =

{
1/20 for 70 ≤ x ≤ 90

0 for other x
.

◦ Then for (i), the probability is
´ 85
82
p(x) dx =

´ 85
82

1

20
dx =

3

20
.

◦ For (ii), the probability is
´ 75
−∞ p(x) dx =

´ 70
−∞ 0 dx+

´ 75
70

1

20
dx =

1

4
.

◦ For (iii), the probability is
´∞
82
p(x) dx =

´ 90
82

1

20
dx+

´∞
90

0 dx =
2

5
.

• Another important class of distributions, which we will discuss in more detail later, are the exponential
distributions:

• De�nition: The exponential distribution with parameter λ > 0 is the continuous random variable with prob-
ability density function p(x) = λe−λx for x ≥ 0, and is 0 for negative x.

◦ We can easily compute the cumulative distribution function as c(x) =

{
0 for x < 0

1− e−λx for x ≥ 0
.

• Example: If X is exponentially distributed with parameter λ = 1/2, �nd (i) P (X < 1), (ii) P (X ≥ 3), and
(iii) P (1 ≤ X ≤ 2).

◦ Using the cumulative distribution function, we have P (X < 1) = c(1) = 1− e−1/2 ≈ 0.3935, P (X ≥

3) = 1− c(3) = e−3/2 ≈ 0.2231, and P (1 ≤ X ≤ 2) = c(2)− c(1) = e−1/2 − e−1 ≈ 0.2387.
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2.2.2 Expected Value, Variance, Standard Deviation

• In much the same way as we de�ned expected value, variance, and standard deviation for discrete random
variables, we can also de�ne these quantities for continuous random variables.

• De�nition: If X is a continuous random variable with probability density function p(x), we de�ne the
expected value as E(X) =

´∞
−∞ x p(x) dx, presuming that the integral converges.

◦ This formula is the continuous analogue of the expected value formula for a discrete random variable.

• Example: Find the expected values of the continuous random variablesX, Y and Z with respective probability

density functions p(x) =

{
6(x− x2) for 0 ≤ x ≤ 1

0 for other x
, q(x) =

{
2x for 0 ≤ x ≤ 1

0 for other x
, and e(x) =

{
λe−λx for x ≥ 0

0 for x < 0
.

◦ By de�nition, we have E(X) =
´∞
−∞ x p(x) dx =

´ 1
0
x · 6(x− x2) dx = (2x3 − 3

2x
4)
∣∣1
x=0

=
1

2
.

◦ Likewise, E(Y ) =
´∞
−∞ x q(x) dx =

´ 1
0
x · 2x dx = ( 2

3x
3)
∣∣1
x=0

=
2

3
.

◦ Also, E(Z) =
´∞
−∞ x e(x) dx =

´∞
0
λx e−λx dx = (−xe−λx − e−λx/λ)

∣∣∞
x=0

= 1/λ .

• Much like in the case of discrete random variables, the expected value of a continuous random variable can
be in�nite or even unde�ned:

• Example: Find the expected values of the continuous random variables X and Y with respective probability

density functions p(x) =

{
1/x2 for x ≥ 1

0 for other x
and q(x) =

1

π(1 + x2)
.

◦ By de�nition, we have E(X) =
´∞
−∞ x p(x) dx =

´∞
1
x · 1

x2
dx = ln(x)|∞x=1 = ∞ .

◦ For Y , we would have E(Y ) =
´∞
−∞ x · 1

π(1 + x2)
dx. By using a substitution, we can see that an

antiderivative of
x

π(1 + x2)
is

1

2π
ln(1 + x2).

◦ To evaluate this improper integral, we can split the range of integration at 0 to obtain
´∞
0
x· 1

π(1 + x2)
dx =

1
2π ln(1 + x2)

∣∣∞
x=0

=∞, while
´ 0
−∞ x · 1

π(1 + x2)
dx = 1

2π ln(1 + x2)
∣∣0
x=−∞ = −∞.

◦ But this tells us that the original integral E(Y ) =
´∞
−∞ x · 1

π(1 + x2)
dx is ∞−∞, which is not de�ned.

◦ Remark: Observe that the probability density function for Y is symmetric about x = 0, which would
suggest that the expected value is 0. However, this is not the case! This particular probability density
function is called the Cauchy distribution, and yields counterexamples to many statements that might
seem to be intuitively obvious.

• We would like to de�ne the variance and standard deviation in the same way as for discrete random variables;
namely, as var(X) = E[(X − µ)2] where µ = E(X) is the expected value of X, or equivalently as var(X) =
E(X2)− [E(X)]2.

◦ However, we need to know how to compute the expected value of a function of X.

◦ To illustrate the di�culty, suppose X is uniformly distributed on [0, 2]. Then we can easily compute
E(X) = 1, but it is not so obvious how to �nd E(X2).

◦ Since X2 is a random variable, it has some probability density function, which we can try to calculate
by using the cumulative distribution function.

◦ Explicitly, since X2 ≤ a is equivalent to X ≤
√
a (at least for X nonnegative), this means that cX2(a) =

cX(
√
a) for 0 ≤ a ≤ 4.
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◦ In terms of the probability density functions, this says
´ a
0
pX2(x) dx =

´√a
0

pX(x) dx =
´√a
0

1

2
dx =

√
a

2
.

◦ Then di�erentiating both sides yields pX2(a) =
d

da

[√
a

2

]
=

1

4
a−1/2 for 0 ≤ a ≤ 4.

◦ Thus, we deduce that pX2(x) =

{
x−1/2/4 for 0 ≤ x ≤ 4

0 for other x
.

◦ We can then evaluate E(X2) =
´ 4
0
x · 1

4
x−1/2 dx =

1

6
x3/2

∣∣∣∣4
x=0

=
4

3
.

• This procedure we used to compute E(X2) in the example above is quite complicated and di�cult. Fortunately,
there is a simpler way to compute the expected value of a function of a continuous random variable:

• Proposition (Expected Value of Functions of X): If X is a continuous random variable with probability
density function p(x), and g(x) is any piecewise-continuous function, then the expected value of g(X) is
E[g(X)] =

´∞
−∞ g(x) p(x) dx.

◦ To explain the intuitive reason for this formula, consider instead the case of a discrete random variable
X taking values x1, x2, . . . with probabilities p1, p2, . . . : then E[g(X)] = g(x1)p1 + g(x2)p2 + · · · =∑
i g(xi)pi. The continuous analogue of this formula replaces the summation with the corresponding

integral, yielding precisely the formula above5.

◦ Proof (special case): Suppose g is increasing and has an inverse function g−1. Then g(x) ≤ a is equivalent
to x ≤ g−1(a), so by the argument given above, we see that cg(X)(a) = cX(g−1(a)).

◦ Di�erentiating yields pg(X)(a) = p(g−1(a)) · 1

g′(g−1(a))
, so E[g(X)] =

´∞
−∞ x · (g−1(x)) · 1

g′(g−1(x))
dx.

◦ Making the substitution u = g−1(x), so that x = g(u) and dx = g′(u)du, in the integral and simplifying
yields E[g(X)] =

´∞
−∞ g(u) · p(u) du, as claimed.

◦ The argument in the general case is similar.

• Corollary (Linearity of Expected Value): If X and Y are continuous random variables whose expected values
are de�ned, and a and b are any real numbers, then E(aX+ b) = a ·E(X) + b and E(X+Y ) = E(X) +E(Y ).

◦ Proof (�rst statement): If X has probability density function p(x), then E(aX + b) =
´∞
−∞(ax + b) ·

p(x) dx = a
´∞
−∞ x · p(x) + b

´∞
−∞ p(x) dx = a · E(X) + b.

◦ The second statement can be deduced by �rst �nding the probability density function of X+Y and then
using an argument similar to that of the proposition above.

• If the expected value of a continuous random variable is de�ned and �nite, we can de�ne the variance and
standard deviation in the same way as for discrete random variables:

• De�nition: If X is a continuous random variable whose expected value µ exists and is �nite, the variance
var(X) is de�ned as var(X) = E[(X−µ)2] = E(X2)−E(X)2, and the standard deviation is σ(X) =

√
var(X).

◦ The equality E[(X−µ)2] = E(X2)−E(X)2 follows for continuous random variables by the same argument
used for discrete random variables.

• Example: Find the variance and standard deviation for the continuous random variablesX, Y , and Z with den-

sity functions p(x) =

{
6(x− x2) for 0 ≤ x ≤ 1

0 for other x
, q(x) =

{
2x for 0 ≤ x ≤ 1

0 for other x
, e(x) =

{
λe−λx for x ≥ 0

0 for x < 0
.

◦ For X, we have E(X) =
´ 1
0
x · 6(x− x2) dx = (2x3 − 3

2x
4)
∣∣1
x=0

=
1

2
and E(X2) =

´ 1
0
x2 · 6(x− x2) dx =

( 3
2x

4 − 6
5x

5)
∣∣1
x=0

=
3

10
.

5In fact, another way to prove the continuous version is to approximate the continuous random variable with a discrete one, and
observe that the corresponding expectation for the discrete approximation is a Riemann sum for the integral above.
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◦ Thus var(X) = E(X2)− [E(X)]2 =
3

10
− 1

4
=

1

20
and σ(X) =

√
1

20
.

◦ For Y , we have E(Y ) =
´ 1
0
x · 2x dx = ( 2

3x
3)
∣∣1
x=0

=
2

3
and E(Y 2) =

´ 1
0
x2 · 2x dx = ( 1

2x
4)
∣∣1
x=0

=
1

2
.

◦ Thus var(Y ) = E(Y 2)− [E(Y )]2 =
2

3
− 1

4
=

5

12
and σ(Y ) =

√
5

12
.

◦ For Z, E(Z) =
´∞
0
λx e−λx dx = 1/λ, E(Z2) =

´∞
0
x2λ e−λx dx = −(x2 + 2x/λ+ 2/λ2)e−x

∣∣∞
x=0

= 2/λ2.

◦ Thus var(Z) = E(Z2)− [E(Z)]2 = 2/λ2 − 1/λ2 = 1/λ2 and σ(Z) = 1/λ .

◦ Remark: The last example shows that the exponential distribution with parameter λ has expected value
and standard deviation both equal to 1/λ.

• Proposition (Properties of Variance): If X is a continuous random variable and a and b are any real numbers,
then var(aX + b) = a2 · var(X) and σ(aX + b) = |a|σ(X).

◦ Proof: The proof follows in the same way as for discrete random variables.

• Example: If X is a continuous random variable with expected value 4 and standard deviation 3, what are the
expected value and standard deviation of 3X − 5?

◦ From the properties given above, we have E(3X−5) = 3E(X)−5 = 7 , and σ(3X−5) = |3|σ(X) = 9 .

• If a random variable X is measured in a particular unit (e.g., dollars), then its standard deviation is also
measured in the same units and measures the approximate spread of X around its expected value.

◦ Intuitively, we should expect that �most� of the distribution forX should be concentrated near its average,
provided that we measure in increments of the standard deviation.

◦ We can make this statement more precise, as follows:

• Theorem (Chebyshev's Inequality): If X is a random variable with expected value µ and standard deviation
σ, then P (|X − µ| ≥ kσ) ≤ 1/k2 for any positive real number k.

◦ In words, Chebyshev's inequality says that the probability that X takes a value at least k standard
deviations away from its mean is at most 1/k2. (The statement thus only has content for k > 1.)

◦ Proof: First we show that if Y is a nonnegative random variable and a is any positive real number, it is
true that P (Y ≥ a) ≤ E(Y )/a. (This is a result known as Markov's inequality.)

◦ For this, if we break the expected value calculation into the two pieces where 0 ≤ Y < a and Y ≥ a, we can
see that E(Y ) = P (0 ≤ Y < a) ·E(Y |0 ≤ Y < a)+P (Y ≥ a) ·E(Y |Y ≥ a) ≥ P (Y < a) ·0+P (Y ≥ a) ·a,
since the expected value of Y when 0 ≤ Y < a is at least 0, and the expected value of Y when Y ≥ a is
at least a.

◦ Thus, since E(Y ) ≥ P (Y ≥ a) · a, that means P (Y ≥ a) ≤ E(Y )/a.

◦ Now, we apply this result to the random variable Y = (X − µ)2 and a = k2σ2 (note that Y ≥ 0 and
a > 0 here so the result applies): it says P [(X − µ)2 ≥ k2σ2) ≤ E[(X − µ)2]/(k2σ2).

◦ But since E[(X − µ)2] = σ2, we obtain P [(X − µ)2 ≥ k2σ2) ≤ σ2/(k2σ2) = 1/k2.

◦ Since (X − µ)2 ≥ k2σ2 is equivalent to |X − µ| ≥ kσ, we have obtained the desired result.

◦ Remark: Because we only used properties of expected value in the proof, Chebyshev's inequality applies
to any random variable, discrete or continuous.

• We can interpret Chebyshev's inequality as giving a precise bound on how far away the probability distribution
of the random variable X can be concentrated in terms of the standard deviation.

◦ Setting k = 2, for example, says that the value of X can be 2 or more standard deviations away from
the mean at most 1/4 of the time.
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◦ Similarly, setting k = 3 implies that the value can be 3 or more standard deviations away from the mean
at most 1/9 of the time.

◦ For almost all distributions, Chebyshev's inequality is very conservative (relative to reality): most dis-
tributions actually lie within 2 standard deviations of the mean much more than 75% of the time.

◦ However, for the discrete random variable taking the values −1, 0, and 1 with respective probabilities
1/(2t2), 1− 1/t2, and 1/(2t2), the mean is 0 and the standard deviation is 1/t, so the inequality is sharp
for this distribution and k = t.

• Example: In a statistics class, the exam scores are distributed with mean 80 and standard deviation 5. Find
a lower bound for the percentage of students who must score (i) between 72 and 88 inclusive, (ii) between 70
and 90 inclusive, and (iii) between 67 and 93 inclusive.

◦ Since we are given the mean and standard deviation, we can use Chebyshev's inequality.

◦ For (i), the range represents a width of k = 8
5 = 1.6 standard deviations away from the mean, and so by

Chebyshev's inequality, a proportion of at least 1 − 1/k2 = 60.9% of students must score between 72
and 88 inclusive.

◦ For (ii), the range represents a width of k = 10
5 = 2 standard deviations away from the mean, and so by

Chebyshev's inequality, a proportion of at least 1− 1/k2 = 75% of students must score between 70 and
90 inclusive.

◦ For (iii), the range represents a width of k = 13
5 = 2.6 standard deviations away from the mean, so by

Chebyshev's inequality, a proportion of at least 1 − 1/k2 = 85.2% of students must score between 67
and 93 inclusive.

2.2.3 Joint Distributions

• Next, we discuss the situation of having several continuous random variables de�ned on the same sample
space.

◦ Just as with discrete random variables, if we have a collection of continuous random variablesX1, X2, . . . , Xn,
we can summarize all of the possible information about the behavior of these random variables simulta-
neously using a joint probability density function.

• De�nition: If X1, X2, . . . , Xn are continuous random variables, then the function pX1,X2,...,Xn
(a1, a2, . . . , an)

de�ned on ordered n-tuples of real numbers, such that
˜
R
pX1,X2,...,Xn

(a1, a2, . . . , an) dandan−1 · · · da1 =
P [(X1, X2, . . . , Xn) ∈ R] for every regionR in n-dimensional space is called the joint probability density function
of X1, X2, . . . , Xn.

◦ Although the de�nition seems somewhat complicated, the idea is the same as a one-variable probability
density function: to compute the probability that the values of X1, X2, . . . , Xn land in a particular region
R, we simply integrate the probability density function on the domain R.

• To evaluate any of these probabilities, we will need to use multivariable integration.

◦ For the situation of two random variables X and Y (which we will primarily focus on), R will be a region
in the xy-plane, and the integrals will be double integrals. In this situation, we may visualize z = p(x, y)
as a surface lying above the xy-plane and the double integral

˜
R
p(x, y) dy dx as the volume underneath

the surface that lies on top of the planar region R.

◦ In the event that the region R is the rectangle a ≤ x ≤ b, c ≤ y ≤ d, we may evaluate this double integral

as the iterated integral
´ b
a

[´ d
c
f(x, y) dy

]
dx, where we integrate �rst (on the inside) with respect to the

variable y, and then second (on the outside) with respect to the variable x.

◦ When we evaluate the inner integral with respect to y, we view x as a constant and y as the variable
and take the antiderivative in y, then evaluate at the two limits of integration and subtract.
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◦ Example: To evaluate
´ 1
0

´ 2
0

(6− 2x− 2y) dy dx, �rst we evaluate the inner integral
´ 2
0

(6− 2x− 2y) dy
as follows: ˆ 2

0

(6− 2x− 2y) dy =
[
6y − 2xy − y2

] ∣∣∣2
y=0

= [12− 4x− 4]− [0− 0− 0] = 8− 4x.

Now we can evaluate the �outer� integral
´ 1
0

(8− 4x) dx =
[
8x− 2x2

] ∣∣∣1
x=0

= 6 .

◦ More generally, if the region R is bounded below by the curve y = c(x) and above by the curve y = d(x),

then the iterated integral has the form
´ b
a

´ d(x)
c(x)

f(x, y) dy dx, where now the inner limits of integration

depend on the outer variable x. When we evaluate the inner integral in y, we will be left with a function
of x, and then we can evaluate the outer integral.

• Example: The continuous random variables X and Y have joint probability density function de�ned by
p(x, y) = 1

4xy for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2, and p(x, y) = 0 elsewhere. Find (i) P (0 ≤ X ≤ 1, 0 ≤ Y ≤ 1), (ii)
P (0 ≤ X ≤ 1), (iii) P (X + Y ≤ 1), and (iv) P (1 < X < Y < 2).

◦ We simply set up each of the corresponding integrals.

◦ First, P (0 ≤ X ≤ 1, 0 ≤ Y ≤ 1) corresponds to the rectangle bounded by x = 0, x = 1, y = 0, and y = 1,

so the desired integral is
´ 1
0

´ 1
0

1

4
xy dy dx =

´ 1
0

[
1

8
xy2
] ∣∣∣1
y=0

dx =
´ 1
0

1

8
x dx =

[
1

16
x2
] ∣∣∣1
x=0

=
1

16
.

◦ Second, P (0 ≤ X ≤ 1) corresponds to the in�nite strip bounded by x = 0 and x = 1. But since the
probability density function is zero except when 0 ≤ y ≤ 2, we only want to integrate between those
bounds.

◦ Thus, the desired integral is
´ 1
0

´ 2
0

1

4
xy dy dx =

´ 1
0

[
1

8
xy2
] ∣∣∣2
y=0

dx =
´ 1
0

1

2
x dx =

[
1

4
x2
] ∣∣∣1
x=0

=
1

4
.

◦ Third, inside the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, the condition P (X + Y ≤ 1) represents the triangle
with vertices (0, 0), (1, 0), and (0, 1).

◦ By drawing a quick sketch, and using the fact that the diagonal side of the triangle is the line x+ y = 1,
we see that we can describe this region as 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1− x. The desired probability is then
´ 1
0

´ 1−x
0

1

4
xy dy dx =

´ 1
0

[
1

8
xy2
] ∣∣∣1−x
y=0

dx =
´ 1
0

1

8
(x− 2x2 + x3) dx =

[
1

16
x2 − 1

12
x3 +

1

32
x4
] ∣∣∣1
x=0

=
1

96
.

◦ Finally, drawing the condition 1 < X < Y < 2 shows that it is also a triangle with vertices (1, 1), (1, 2),
and (2, 2), and can be described as the region with 1 < x < 2 and x < y < 2. The desired probability is

then
´ 2
1

´ 2
x

1

4
xy dy dx =

´ 2
1

[
1

8
xy2
] ∣∣∣2
y=x

dx =
´ 2
1

1

8
(4x− x3) dx =

[
1

4
x2 − 1

32
x4
] ∣∣∣2
x=1

=
9

32
.

• As in the case of discrete random variables, we can also recover the individual probability distributions for
any of the random variables from their joint distribution by integrating over the other variables:

• Proposition (Marginal Densities): If pX,Y (a, b) is the joint probability density function for the continuous
random variables X and Y , then for any a and b we may compute the single-variable probability density
functions for X and Y as pX(x) =

´∞
−∞ pX,Y (x, y) dy and pY (y) =

´∞
−∞ pX,Y (x, y) dx.

◦ Proof: By the de�nition of the joint probability density function, we know that P (a ≤ X ≤ b) = P (a ≤
X ≤ b,−∞ < Y <∞) =

´ b
a

´∞
−∞ pX,Y (x, y) dy dx.

◦ Thus, we see that integrating
´∞
−∞ pX,Y (x, y) dy with respect to x on the interval [a, b] yields P (a ≤ X ≤

b), which means that
´∞
−∞ pX,Y (x, y) dy is the probability density function for X.

◦ The second formula follows in the same way upon interchanging the roles of X and Y and switching
the order of integration in the iterated integral (this is always allowable by Fubini's theorem since the
integrand is nonnegative).

◦ Remark: This result can be extended to an arbitrary number of variables using essentially the same argu-
ment. In general, ifX1, X2, . . . , Xn are continuous random variables with joint pdf pX1,X2,...,Xn(x1, . . . , xn)
then for any 1 ≤ k ≤ n the joint pdf pX1,X2,...,Xk

(x1, . . . , xk) is given by pX1,X2,...,Xk
(x1, . . . , xk) =´∞

−∞ · · ·
´∞
−∞ pX1,...,Xn

(x1, . . . , xk, xk+1, . . . , xn) dxndxn−1 · · · dxk+1, with a similar formula holding for
any subset of the Xi whose values are �xed.
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• Example: The continuous random variables X and Y have joint probability density function de�ned by
p(x, y) = a · (x + 2y) for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x, y) = 0 elsewhere. Find (i) the value of a, (ii)
P (2 ≤ X ≤ 3), (iii) P (2Y < X), and (iv) the marginal probability density functions for X and Y .

◦ In order to be a probability density function, the integral of p(x, y) over its domain must equal 1. Setting

up the integral yields
´ 3
0

´ 2
0
a(x+2y) dy dx =

´ 3
0
a(xy+y2)

∣∣∣2
y=0

dx =
´ 3
0
a(2x+4) dx =

[
a(x2 + 4x)

] ∣∣∣3
x=0

=

21a. Thus, we must have a = 1/21 .

◦ Next, inside the rectangle 0 ≤ x ≤ 3,0 ≤ y ≤ 2, the condition P (2 ≤ X ≤ 3) corresponds to the

rectangle with 2 ≤ x ≤ 3 and 0 ≤ y ≤ 2. Thus, the desired integral is
´ 3
2

´ 2
0

1

21
(x + 2y) dy dx =

´ 3
2

1

21
(xy + y2)

∣∣∣2
y=0

dx =
´ 3
2

1

21
(2x+ 4) dx =

[
1

21
(x2 + 4x)

] ∣∣∣3
x=2

=
3

7
.

◦ Third, inside the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, the condition P (2Y < X) corresponds to the triangle
with vertices (0, 0), (0, 1), and (2, 1), and can be described as the region with 0 ≤ x ≤ 2 and 0 < y < x/2.

◦ Thus, the desired integral is
´ 2
0

´ x/2
0

1

21
(x+2y) dy dx =

´ 2
0

1

21
(xy+y2)

∣∣∣x/2
y=0

dx =
´ 2
0

1

28
x2 dx =

1

84
x3
∣∣∣2
x=0

=

2

21
.

◦ To �nd the marginal pdfs for X and Y , we simply integrate the joint pdf with respect to the appropriate
variable.

◦ The marginal pdf for X is given by
´∞
−∞ p(x, y) dy =

´ 2
0

1

21
(x+2y) dy =

1

21
(xy+y2)

∣∣∣2
y=0

=
1

21
(2x+ 4) .

◦ The marginal pdf for Y is given by
´∞
−∞ p(x, y) dx =

´ 3
0

1

21
(x + 2y) dx =

1

21
(
1

2
x2 + 2xy)

∣∣∣3
x=0

=

1

42
(9 + 8y) .

◦ Remark: We could have instead used our calculation of the marginal pdf for X to �nd P (2 ≤ X ≤ 3) =´ 3
2

1

21
(2x+ 4) dx =

3

7
. Note (of course) the result comes out the same either way!

2.2.4 Independence, Covariance, Correlation

• Just like with discrete random variables, we can also use joint distributions to describe when two continuous
random variables are independent.

◦ As in the discrete case, two continuous random variables X and Y are independent when knowing the
value of one gives no additional information about the value of the other, which we can phrase as saying
that P (a < X < b|c < Y < d) = P (a < X < b).

◦ By rearranging, this says P (a < X < b, c < Y < d) = P (a < X < b) · P (c < Y < d), which in terms of

probabilities says
´ b
a

´ d
c
pX,Y (x, y) dy dx =

´ b
a
pX(x) dx ·

´ d
c
pY (y) dy.

◦ But since the right-hand side is also equal to the iterated integral
´ b
a

´ d
c
pX(x) · pY (y) dy dx, since both

sides are equal on every rectangle [a, b]× [c, d], we must have pX,Y (x, y) = pX(x) · pY (y) for every x and
y.

◦ Notice (as we might have guessed) that this is exactly the same condition as in the discrete case.

◦ We can extend to more than two variables, in just the same way:

• De�nition: We say that the continuous random variables X1, X2, . . . , Xn are collectively independent if
the joint distribution pX1,X2,...,Xn

(x1, x2, . . . , xn) = pX1
(x1) · pX2

(x2) · · · · · pXn
(xn) for all real numbers

x1, x2, . . . , xn.
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◦ Example: The continuous random variables X and Y with joint probability density function de�ned by
pX,Y (x, y) = 1

4xy for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2 are independent because their marginal distribution

functions are pX(x) =
´ 2
0

1
4xy dy = 1

2x and pY (y) =
´ 2
0

1
4xy dx = 1

2y, and indeed pX,Y (x, y) = 1
4xy =

1
2x ·

1
2y = pX(x) · pY (y).

◦ Example: The continuous random variables X and Y with joint probability density function de�ned
by p(x, y) = 1

21 (x + 2y) for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2 are not independent, because their marginal
distribution functions were previously calculated to be pX(x) = 1

21 (2x+ 4) and pY (y) = 1
42 (9 + 8y), and

pX,Y (x, y) 6= pX(x)pY (y).

◦ In the second example above, we did not actually need to evaluate the marginal distribution functions to
see that the variables were not independent, because their joint distribution function p(x, y) = 1

21 (x+2y)
cannot be written as the product of a single function of x and a single function of y.

◦ In fact, the converse observation holds as well: if we can write pX,Y (x, y) = q(x) · r(y) for some functions
q(x) and r(y), then in fact the random variables X and Y will be independent6.

• We obtain the same results as in the discrete case about variance and independence, and can de�ne the
covariance and correlation as well:

• De�nition: If X and Y are random variables whose expected values exist and are µX and µY respectively,
then the covariance of X and Y is de�ned as cov(X,Y ) = E[(X − µX) · (Y − µY )] = E(XY )− E(X)E(Y ).

◦ In order to compute the covariance, we need to know how to compute the expected value of arbitrary
functions of X and Y .

◦ We can use the same principle discussed earlier for how to �nd the expected value of an arbitrary function
of X: explicitly, for any function g(X,Y ), we have E[g(X,Y )] =

´∞
−∞
´∞
−∞ g(x, y) · pX,Y (x, y) dy dx.

• Example: If X and Y have joint distribution given by pX,Y (x, y) = x + y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, �nd the
covariance of X and Y .

◦ We compute E(X) =
´ 1
0

´ 1
0
x(x + y) dy dx =

´ 1
0

(x2 + 1
2x) dx = 7

12 , E(Y ) =
´ 1
0

´ 1
0
y(x + y) dy dx =´ 1

0
( 1
2x+ 1

3 ) dx = 7
12 , and E(XY ) =

´ 1
0

´ 1
0
xy(x+ y) dy dx =

´ 1
0

( 1
2x

2 + 1
3x) dx = 1

3 .

◦ Thus, the covariance is cov(X,Y ) = E(XY )− E(X)E(Y ) = − 1
144 .

• The same properties of variance and covariance also hold in the continuous setting:

• Proposition (Properties of Variance and Covariance): If X, Y , Z are continuous random variables whose
expected values exist, then for any a and b we have cov(X,X) = var(X), cov(Y,X) = cov(X,Y ), cov(X +
Y, Z) = cov(X,Z)+cov(Y,Z), cov(aX+b, Y ) = a·cov(X,Y ), and var(X+Y ) = var(X)+var(Y )+2cov(X,Y ).
Furthermore, if X and Y are independent, then E(XY ) = E(X) ·E(Y ), and var(X + Y ) = var(X) + var(Y ).

◦ Proof: All of these properties follow in the same way as in the discrete case.

◦ For example, if X and Y are independent, then E(XY ) =
´∞
−∞
´∞
−∞ xy · pX,Y (x, y) dy dx =

´∞
−∞
´∞
−∞ xy ·

pX(x)pY (y) dy dx =
´∞
−∞ xpX(x)dx ·

´∞
−∞ ypY (y)dy = E(X) · E(Y ).

• De�nition: If X and Y are continuous random variables whose variances exist and are nonzero, the (Pearson)

correlation between X and Y is de�ned as corr(X,Y ) =
cov(X,Y )

σ(X)σ(Y )
.

◦ Once again, the correlation in the continuous case has the same interpretation as in the discrete case: it
describes the strength to which the relationship between X and Y can be captured by a linear model.

• Example: Suppose that the continuous random variablesX and Y have joint distribution given by pX,Y (x, y) =
2e−x−2y for x ≥ 0 and y ≥ 0. Find (i) the marginal pdfs of X and Y , (ii) P (X > 1), (iii) P (X < Y < 2X),
(iv) whether X and Y are independent, and (v) the covariance and correlation of X and Y .

6This follows because the marginal distribution functions can be computed as pX(x) =
´∞
−∞ q(x)r(y) dy = q(x) ·

´∞
−∞ r(y) dy and

pY (y) =
´∞
−∞ q(x)r(y) dx = r(y) ·

´∞
−∞ q(x) dx, and then in fact pX(x) ·pY (y) = q(x)r(y) ·

´∞
−∞ q(x)r(y) dy dx = q(x)r(y) since the latter

double integral is 1 because it is the integral of the joint distribution pX,Y over its entire domain.
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◦ First, we have pX(x) =
´∞
0

2e−x−2y dy = −e−x−2y
∣∣∣∞
y=0

= e−x , and also pY (y) =
´∞
0

2e−x−2y dx =

−2e−x−2y
∣∣∣∞
x=0

= 2e−2y .

◦ Second, we have P (X > 1) =
´∞
1
pX(x) dx =

´∞
1
e−x dx = −e−x

∣∣∣∞
x=1

= e−1 ≈ 0.3679.

◦ Third, inside the region with x, y ≥ 0, the condition P (X < Y < 2X) yields an in�nite triangular region

that can be described by x ≥ 0 and x < y < 2x, so the desired integral is
´∞
0

´ 2x
x

2e−x−2y dy dx =

´∞
0
−e−x−2y

∣∣∣2x
y=x

dx =
´∞
0

[e−3x − e−5x] dx = − 1
3e
−3x + 1

5e
−5x
∣∣∣∞
x=0

=
2

15
.

◦ Next, we can see that pX,Y (x, y) = 2e−x · e−2y which is the product of a function of x with a function of

y, so by the discussion above, we see that X and Y are independent . Alternatively, we could observe

that pX,Y (x, y) = 2e−x−2y = e−x · 2e−2y = pX(x) · pY (y).

◦ Finally, since X and Y are independent, their covariance and correlation are both 0 .

• Example: Suppose that the continuous random variablesX and Y have joint distribution given by pX,Y (x, y) =
1
24 (x+ y2) for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 3. Find the covariance and correlation of X and Y .

◦ We have E(X) =
´ 2
0

´ 3
0

1

24
x(x+ y2) dy dx =

´ 2
0

1

8
(3x+ x2) dx =

13

12
, E(Y ) =

´ 2
0

´ 3
0

1

24
y(x+ y2) dy dx =

´ 2
0

1

32
(6x+ 27) dx =

33

16
, and E(XY ) =

´ 2
0

´ 3
0

1

24
xy(x+ y2) dy dx =

´ 2
0

1

32
(6x2 + 27x) dx =

35

16
.

◦ Thus, the covariance is cov(X,Y ) = E(XY )− E(X)E(Y ) =
35

16
− 13

12
· 33

16
= − 3

64
≈ −0.0469.

◦ For the correlation, we also need to compute σ(X) and σ(Y ).

◦ First, E(X2) =
´ 2
0

´ 3
0

1

24
x2(x + y2) dy dx =

´ 2
0

1

8
(3x2 + x3) dx =

3

2
, so σ(X) =

√
E(X2)− E(X)2 =

√
47/12 ≈ 0.5713 .

◦ Also, E(Y 2) =
´ 2
0

´ 3
0

1

24
y2(x + y2) dy dx =

´ 2
0

1

40
(15x + 81) dx =

24

5
, so σ(Y ) =

√
E(Y 2)− E(Y )2 =

√
3495/80 ≈ 0.7390 .

◦ Thus, corr(X,Y ) =
cov(X,Y )

σ(X)σ(Y )
≈ −0.1110 .

2.3 The Normal Distribution, Central Limit Theorem, and Modeling Applications

• In this section, we will discuss three important classes of probability distributions: the Gaussian normal
distributions, the Poisson distributions, and the exponential distributions.

◦ Each of these classes of distributions arises in various practical applications involving phenomena with
particular simple properties, and our goal is to describe why these distributions occur so frequently. The
normal distribution is by far the most important of these three, but all of them serve as important models
for various processes, so we will discuss them together.

◦ Speci�cally, the normal distribution is often used to model quantities arising as sums or averages of a
number of small pieces, such as student grades, human heights, errors in measurements, and many other
physical phenomena. The reason for this (as we will explain) is because of an extremely important result
known as the central limit theorem, which says that the normalized average of repeated sampling from
a �xed distribution will always tend to be normally distributed as the sample size grows large.

◦ The Poisson distribution is used to model the occurrences of discrete rare events such as airplane crashes,
mutations in DNA replication, insurance claims, goals during a sports game, and radioactive decay. The
reason for this is due to the Poisson limit theorem, which says that if the number of samples from a varying
distribution is selected in such a way that the overall expected number of occurrences approaches a �xed
limit as the number of samples increases, then the limiting distribution will have a Poisson distribution.

◦ The exponential distribution is used to model waiting times for �memoryless� processes, in which the
distribution of future waiting time is independent of the amount of time already waited.
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2.3.1 The Normal Distribution

• One of the most important probability distributions is the normal distribution, often called the �bell curve�
due to its shape.

• De�nition: A random variable Nµ,σ is normally distributed with mean µ and standard deviation σ if its

probability density function is pµ,σ(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2). The standard normal distribution is N0,1,

having mean 0 and standard deviation 1.

◦ Here is a graph of the standard normal distribution showing its �bell curve� shape:

◦ It is not trivial to verify that pµ,σ(x) actually yields a probability density function: one must show that´∞
−∞

1

σ
√

2π
e−(x−µ)

2/2σ2

dx = 1, although this can be done in various ways7.

◦ By manipulating the integrals accordingly using a series of substitutions and the evaluation of
´∞
−∞ pµ,σ(x) dx =

1, we may eventually compute that E(Nµ,σ) = µ and var(Nµ,σ) = σ2 so that σ(Nµ,σ) = σ.

• Example: Suppose N11,2 is a normally-distributed random variable with expected value 11 and standard
deviation 2. Find (i) P (N ≤ 11), (ii) P (7 ≤ N ≤ 9), and (iii) P (N ≥ 13).

◦ One approach is simply to write down the probability density function and set up the integrals.

◦ This yields P (N11,2 ≤ 11) =
´ 11
−∞

1

2
√

2π
e−(x−11)

2/8 dx, with P (7 ≤ N11,2 ≤ 9) =
´ 9
7

1

2
√

2π
e−(x−11)

2/8 dx,

and P (N11,2 ≥ 13) =
´∞
13

1

2
√

2π
e−(x−11)

2/8 dx.

◦ Unfortunately, except in certain rare cases, integrals involving the normal distribution are very di�cult
to evaluate exactly, owing to the fact that the function e−(x−µ)

2/(2σ2) does not have an elementary
antiderivative: this means we cannot write down an exact formula for the inde�nite integral (i.e., the
cumulative distribution function) in terms of polynomials, exponentials, logarithms, or trigonometric
functions.

◦ Of course, we can use numerical integration procedures (implemented by a calculator or computer) to

approximate these integrals to any desired accuracy: this yields P (N11,2 ≤ 11) = 0.5 , P (7 ≤ N11,2 ≤
9) ≈ 0.1359 , and P (N11,2 ≥ 13) ≈ 0.1587 .

• Another approach to solving problems involving the normal distribution is use a table of computed values for
the cumulative distribution function of the standard normal distribution N0,1, along with a substitution.

◦ Explicitly, it is a straightforward calculation to verify that if we de�ne za =
a− µ
σ

and zb =
b− µ
σ

, then

P (a ≤ Nµ,σ ≤ b) = P (za ≤ N0,1 ≤ zb).
7One approach is to substitute u = (x − µ)/(σ

√
2), which converts the problem into showing that the value of the integral J =´∞

−∞ e−u2
du is

√
π. This can be done in several ways: the most standard approach is to write J2 =

´∞
−∞
´∞
−∞ e−(x2+y2) dy dx and

then convert to polar coordinates to deduce J2 = π. There are many other approaches, including di�erentiation under the integral,
interchanging the order of a double integral, integration in the complex plane, and asymptotic analysis.
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◦ Intuitively, the reason that this change of variables will work is that all of the normal distributions are
geometrically similar to one another. Thus, by translating by µ (to center the distribution at 0) and
rescaling by 1/σ (to stretch the distribution so it has standard deviation 1), we may convert any question
about areas under an arbitrary normal distribution Nµ,σ to one about the standard normal distribution
N0,1.

◦ Once we make this translation and �nd these (so-called) �z-scores�, we can use a table of computed values
for the cumulative distribution function of the standard normal N0,1 (such as the table given below) to
�nd the desired probabilities:
z −3 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 3

P (N0,1 ≤ z) 0.0014 0.0228 0.0668 0.1587 0.3085 0.5 0.6915 0.8413 0.9332 0.9772 0.9987

• Example (again): Suppose N11,2 is a normally-distributed random variable with expected value 11 and stan-
dard deviation 2. Find (i) P (N ≤ 11), (ii) P (7 ≤ N ≤ 9), and (iii) P (N ≥ 13).

◦ We have µ = 11 and σ = 2, so P (N11,2 ≤ 11) = P (N0,1 ≤ 0) = 0.5 .

◦ Likewise, P (7 ≤ N11,2 ≤ 9) = P (−2 ≤ N0,1 ≤ −1) = P (N0,1 ≤ −1)−P (N0,1 ≤ −2) = 0.1587− 0.0228 ≈
0.1359 .

◦ Finally, P (N11,2 ≥ 13) = P (N0,1 ≥ 1) = 1− P (N0,1 ≤ 1) = 1− 0.8413 = 0.1587 .

• Example: A certain standardized test is designed so that its score distribution will be normal with a mean
of 500 and a standard deviation of 100. Determine the percentage of scores that will be (i) between 450 and
550, (ii) less than 600, and (iii) greater than 700.

◦ From the given information, the scores follow the normal distribution N500,100.

◦ Using the z-score method described above, we can compute P (450 < N500,100 < 550) = P (−0.5 < N0,1 <

0.5) = 0.6915− 0.3085 ≈ 0.3830 .

◦ Next, we have P (N500,100 < 600) = P (N0,1 ≤ 1) ≈ 0.8413 , and �nally, P (N500,100 > 700) = P (N0,1 >

2) = 1− P (N0,1 ≤ 2) ≈ 0.0228 .

◦ Remark: Of course, we could also compute these values directly using numerical integration and the
original distribution N500,100.

• In some situations we want to invert our analysis by starting with a probability and �nding the corresponding
value or range in the distribution.

◦ Analytically, this corresponds to evaluating the inverse function of the normal cumulative density function
(which is usually called the inverse normal for short), which can be done e�ciently using a calculator or
computer.

◦ Alternatively, we could look up the needed probabilities in a table to �nd the associated z-scores.

• Example: A certain standardized test is designed so that its score distribution will be normal with a mean
of 500 and a standard deviation of 100. Determine the score at (i) the 80th percentile, and (ii) the 99th
percentile.

◦ Remark: A score is said to be at the Nth percentile of a distribution if a proportion N/100 of the other
scores are below it. (Thus, the median is at the 50th percentile.)

◦ The score S80 at the 80th percentile will have the property that P (N500,100 ≤ S80) = 0.80. Using a
computer, we can �nd that P (N500,100 ≤ 584) ≈ 0.7995 and P (N500,100 ≤ 585) = 0.8023, so the desired

80th-percentile score is 584 to the nearest integer.

◦ Alternatively, using a table of z-scores, we could �nd that the value z with P (N0,1 ≤ z) = 0.80 is
z ≈ 0.8416, and so the desired score is 500 + 100z ≈ 584.16.

◦ In the same way, the score S97 at the 99th percentile will have the property that P (N500,100 ≤ S99) = 0.99.
Using a computer, we can �nd that P (N500,100 ≤ 732) ≈ 0.9898 and P (N500,100 ≤ 733) = 0.9901, so the

desired 99th-percentile score is 733 to the nearest integer.

◦ Alternatively, using a table of z-scores, we could �nd that the value z with P (N0,1 ≤ z) = 0.99 is
z ≈ 2.3263, and so the desired score is 500 + 100z ≈ 732.63.
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2.3.2 The Central Limit Theorem

• As remarked earlier, the normal distribution is seen very commonly in physical applications (e.g., in the
distribution of human heights, sizes of parts made by automated processes, blood pressures, measurement
errors, and scores on standardized examinations).

• The reason for the common appearance of the normal distribution is the following fundamental result:

• Theorem (Central Limit Theorem): Let X1, X2, ... , Xn be a sequence of independent, identically-distributed
discrete or continuous random variables each with �nite expected value µ and standard deviation σ > 0. Then

the distribution of the random variable Yn =
X1 +X2 + · · ·+Xn − nµ

σ
√
n

will approach the standard normal

distribution (of mean 0 and standard deviation 1) as n tends to ∞: explicitly, we have P (a ≤ Yn ≤ b) →´ b
a

1√
2π
e−x

2/2 dx for any real numbers a ≤ b.

◦ If X1, . . . , Xn are independent and identically-distributed, we may think of the random variable X1 +
· · · + Xn as being the sum of the results of independently sampling a random variable X a total of n
times. (One example of this would be �ipping a coin n times and summing the total number of heads;
another would be rolling a die n times and summing the outcomes.)

◦ From the linearity of expected value, we can see that E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) = nµ.

◦ Also, since X1, . . . , Xn are independent, we also have var(X1+X2+· · ·+Xn) = var(X1)+· · ·+var(Xn) =

nσ2, and so σ(X1 + · · ·+Xn) =
√
nσ2 = σ

√
n.

◦ Thus, the central limit theorem says that if we �normalize� the summed distribution X1 + · · · + Xn by
translating and rescaling it so that its expected value is 0 and its standard deviation is 1, the resulting
normalized average approaches the standard normal distribution as we average over more and more
samples.

◦ This result is quite powerful, since it applies to any discrete or continuous random variable whose expected
value and standard deviation are de�ned.

• As one application, since the binomial distribution is obtained by summing n independent Bernoulli random
variables, the central limit theorem tells us that if n is su�ciently large, then the binomial distribution will
be well approximated by a normal distribution with the same expected value and standard deviation.

◦ As a practical matter, the approximation tends to be very good when np and n(1− p) are both at least
5, and increases in accuracy when np and n(1− p) are larger.
◦ Since the binomial distribution is discrete while the normal distribution is continuous, we typically make
an adjustment when we approximate the binomial distribution by the normal distribution, namely, we
approximate the probability P (B = k) that the binomial random variable equals k with the probability
P (k − 1

2 ≤ N ≤ k + 1
2 ) that the normal random variable lands in the interval [k − 1

2 , k + 1
2 ].

◦ We make a similar �continuity correction� whenever we approximate a discrete distribution by a contin-
uous one, because in all such cases we need to compare areas to areas.

• Here are some comparisons of binomial distributions (with various parameters n and p) with their correspond-
ing normal approximations:
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• Example: Compute the exact probability that a fair coin �ipped 400 times will land heads (i) exactly 200 times,
and (ii) between 203 and 208 times inclusive, and compare them to the results of the normal approximation
(with continuity correction).

◦ The total number of heads is binomially distributed with n = 400 and p = 1/2, so for (i) the probability

is
1

2400

(
400

200

)
≈ 3.99%, while for (ii) it is

1

2400

[(
400

203

)
+

(
400

204

)
+ · · ·+

(
400

208

)]
≈ 20.36%.

◦ The normal approximation to this binomial distribution has expected value µ = np = 200 and standard
deviation

√
np(1− p) = 10.

◦ Therefore, for (i) we wish to compute P (199.5 ≤ N200,10 ≤ 200.5), which from our discussion of z-scores
is also equal to P (−0.05 ≤ N0,1 ≤ 0.05). Using a table of values, we can �nd P (N0,1 ≤ −0.05) = 0.48006
and P (N0,1 ≤ 0.05) = 0.51994, so the desired probability is 0.51994− 0.48006 = 0.03988 ≈ 3.99%.

◦ For (ii) we wish to compute P (202.5 ≤ N200,10 ≤ 208.5), which from our discussion of z-scores is also
equal to P (0.25 ≤ N0,1 ≤ 0.85). Using a table of values, we can �nd P (N0,1 ≤ 0.25) = 0.59871 and
P (N0,1 ≤ 0.85) = 0.80234, so the desired probability is 0.80234− 0.59871 = 0.20363 ≈ 20.36%.

◦ As we can see from our calculations, the normal approximation is very good! In fact, the use of the
normal distribution to approximate the binomial distribution was, historically speaking, one of the very
�rst applications of the normal distribution.

• Example: Use the normal distribution to estimate the probability that if 420 fair dice are rolled, the total of
all the dice rolls will be between 1460 and 1501 inclusive.

◦ We saw earlier that µX =
7

2
and σX =

√
35

12
for the random variable X giving the outcome of one roll.

◦ Since we are summing the results of 420 independent samplings of X, the central limit theorem tells us
that the overall distribution of the sum will be closely approximated by a normal distribution with mean
420µX = 1470 and standard deviation

√
420µX = 35.

◦ The desired probability is then P (1459.5 ≤ N1420,35 ≤ 1501.5) = P (−0.3 ≤ N0,1 ≤ 0.9) ≈ 43.39% .

• Another fundamentally important property of the normal distribution is that it is stable, in the sense that
the sum of any number of independent normal distributions is also a normal distribution:

• Proposition (Stability of Normal Distribution): If X1, X2, . . . , Xn are independent normally-distributed ran-
dom variables with means µ1, . . . , µn and standard deviations σ1, . . . , σn, then the sum X1 + X2 + · · · + Xn

is also normally distributed with mean µ1 + · · ·+ µn and standard deviation
√
σ2
1 + · · ·+ σ2

n.

◦ Proof: It is a moderately straightforward calculation using the joint probability distribution to show that
the distribution of the sum of two normally-distributed variables is also normally distributed. (Alterna-
tively, this can be derived from the central limit theorem.)

◦ Thus, X1+X2 is normally-distributed, hence so is (X1+X2)+X3, ... , and hence so is X1+X2+· · ·+Xn.

◦ The statements about the mean and standard deviation follows because the expected value and variance
for independent random variables are additive.
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• We can use this stability property to analyze random variables that are obtained by summing or averaging
normal distributions:

• Example: According to an airline's customer research, the weight of its passengers' bags is normally distributed
with a mean of 10 kilograms and a standard deviation of 2 kilograms. To maximize e�ciency, the airline needs
to design the cargo hold to be the smallest size that is able to carry all of its passengers' bags 99.9% of the
time. If each �ight holds 49 passengers, how much weight should the cargo hold be designed for?

◦ Since the total weight is the sum of 49 independent normal distributions each with a mean of 10 kilograms
and a standard deviation of 2 kilograms, the total weight will also be normally distributed with a mean
of 49 · 10 = 490 kilograms and a standard deviation of 2

√
49 = 14 kilograms.

◦ In order to be able to carry all its passengers bags 99.9% of the time, we want the maximum capacity
M to satisfy P (N49,14 ≤ M) = 0.999. Using a computer or a table of z-scores, we can see that M ≈
390 + 14 · 3.0902 = 533.26 kilograms.

• Example: In a typical game, a basketball team attempts 15 one-point free throws, 60 two-point �eld goals,
and 25 three-point �eld goals. If free throws, two-pointers, and three-pointers independently score 75%, 50%,
and 35% of the time respectively, �nd (i) the expected number of points the team scores per game, (ii) the
standard deviation in the number of points scored, and (iii) the approximate probability that the team will
score at least 110 points.

◦ The total number of free throws, two-pointers, and three-pointers will each be binomially distributed.

◦ Since the values of np and n(1− p) are fairly large for each of these three distributions, they will be well
approximated by the corresponding normal distributions with the same mean and standard deviation.
The total number of points will then be a weighted sum of these approximately normal distributions,
hence will also be approximately normal.

◦ The number of free throws has n = 15 and p = 0.75 hence the expected value is 15 · 0.75 = 11.25 with
standard deviation

√
15 · 0.75 · 0.25 ≈ 1.6771.

◦ The number of two-pointers has n = 60 and p = 0.50 hence the expected number of two-pointers is
60 · 0.50 = 30 with standard deviation

√
60 · 0.50 · 0.50 ≈ 3.8730. Since two-pointers are worth 2 points

each, the expected number of points is 2 · 30 = 60 with standard deviation 7.7460.

◦ In the same way, the number of three-pointers has n = 25 and p = 0.35, so the expected number of
points from three-pointers is 3 · 25 · 0.35 = 26.25 with standard deviation 3

√
25 · 0.35 · 0.65 = 7.1545.

◦ Thus, the total number of points is (approximately) normally distributed with mean 11.25+60+26.25 =

97.5 and the standard deviation is
√

1.67712 + 7.74602 + 7.15452 ≈ 10.6771 .

◦ For (iii), since the distribution is approximately normal, the most obvious estimate for the probability that
the team will score at least 110 points is given by P (N97.5,10.6771 ≥ 110) = P (N0,1 ≥ 1.1707) ≈ 0.1209.

◦ However, because the distribution of points is discrete, we should use a continuity correction and instead
compute P (N97.5,10.6771 ≥ 109.5) = P (N0,1 ≥ 1.1239) ≈ 0.1305: this yields an estimate of roughly 13%.

• Example: A statistics instructor has two classes with 16 and 25 students respectively. She gives an exam
to each student in each class, where the student scores are normally distributed with mean 80 and standard
deviation 5. Find (i) the expected mean and standard deviation in each class, and also the probabilities that
(ii) the average in the 16-student class is at least 81 points, (iii) the average in the 25-student class is less
than 79 points, and (iv) that the average in the 16-student class is at least 1 point higher than the average in
the 25-student class.

◦ Suppose the students in the two classes have scores X1, X2, . . . , X16 and Y1, Y2, . . . , Y25.

◦ Then the sum X1 +X2 + · · ·+X16 will be normally distributed with mean 16 ·80 and standard deviation
5
√

16 = 20. This means that the average 1
16 (X1 + X2 + · · · + X16) will have mean 80 and standard

deviation 20/16 = 1.25 .

◦ In the same way, Y1 +Y2 + · · ·+Y25 will be normally distributed with mean 25 ·80 and standard deviation
5
√

25 = 25, so the average 1
25 (Y1+Y2+ · · ·+Y25) will have mean 80 and standard deviation 25/25 = 1 .
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◦ For (ii), we want to �nd P (N80,1.25 ≥ 81) = P (N0,1 ≥ 0.8) = 1 − P (N0,1 < 0.8) ≈ 0.2119 , or about
21.2%.

◦ For (iii), we want to �nd P (N80,1 < 79) = P (N0,1 < 1) ≈ 0.1587 , or about 15.9%.

◦ For (iv), we want to understand the distribution of the di�erenceX−Y , whereX (the 16-student average)
is normally distributed with mean 80 and standard deviation 1.25 and Y (the 25-student average) is
normally distributed with mean 80 and standard deviation 1.

◦ The idea is to recognize that X − Y = X + (−Y ) and that −Y is also normally distributed (now with
mean −80 and standard deviation 1). Thus, by our results, the random variable X + (−Y ) will also be
normally distributed with mean 80 + (−80) = 0 and standard deviation

√
1.252 + 12 ≈ 1.6008.

◦ The desired probability is then equal to P (N0,1.6008 ≥ 1) = P (N0,1 ≥ 0.6247) = 1− P (N0,1 < 0.6247) ≈
0.2661 , or about 26.6%.

• The ideas in this last example form the basis for many approaches in statistical testing, since these calculations
give a way of determining how likely it is that a di�erence in sampling averages has occurred by chance, if
the means of the distributions were actually equal.

• We will also mention that it is possible to obtain estimates of a similar form even when the underlying
distribution is not normal.

◦ Instead of relying on the central limit theorem, one must use the (comparatively much weaker) result of
Chebyshev's inequality.

• Example: In a di�erent statistics class, the exam scores are distributed with mean 80 and standard deviation 6,
but are no longer known to be normally distributed. If the probability that the class average is within 1 point
of the mean is at least 84%, �nd the minimal number of students in the class (i) with no additional information
about the distribution, and (ii) if the central limit theorem is assumed to give a good approximation for the
average score's distribution.

◦ If there are n students in the class, then the average score has mean 80 and standard deviation 6/
√
n.

◦ For (i), Chebyshev's inequality says that the proportion of students scoring within k standard deviations
of the mean is at least 1− 1/k2, which is equal to 84% when k = 5/2.

◦ Therefore, 1 point must represent 5/2 of a standard deviation in the average score: this means 1 =

(5/2) · (6/
√
n) so that n = 225 .

◦ For (ii), if the central limit theorem is assumed to give a good approximation, then the average score
is approximately normally distributed with mean 80 and standard deviation 6/

√
n, so we have P (79 ≤

N80,6/
√
n ≤ 81) = 0.84.

◦ Since the two tails of the normal distribution are symmetric, the condition is equivalent to saying that
P (N80,6/

√
n ≤ 79) = 0.08, or, upon rescaling, that P (N0,1 ≤ 79−80

6/
√
n

) = 0.08.

◦ Using a computer or table for the inverse normal cdf indicates that P (N0,1 ≤ z) = 0.08 holds for

z ≈ −1.4051, and so 79−80
6/
√
n

= −1.4051 so that n ≈ 71.07, meaning that 72 students would be the

minimum.

2.3.3 The Poisson Distribution and Poisson Limit Theorem

• The next class of random variables we will discuss are the Poisson distributions:

• De�nition: The Poisson distribution with parameter λ > 0 is the discrete random variable that takes the

nonnegative integer value n with probability
λne−λ

n!
.
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◦ Here are some plots of Poisson probability distribution functions:

◦ Note that this is in fact a valid probability distribution because
∑∞
n=0

λne−λ

n!
= e−λ ·

∑∞
n=0

λn

n!
= e−λeλ =

1, where we used the Taylor expansion ex =
∑∞
n=0

xn

n!
.

◦ If X has a Poisson distribution with parameter λ, then E(X) =
∑∞
n=0 n

λne−λ

n!
= λ

∑∞
n=1

λn−1e−λ

(n− 1)!
= λ,

and also E(X2) =
∑∞
n=0 n

2λ
ne−λ

n!
=
∑∞
n=1 λ

λn−1e−λ

(n− 1)!
+
∑∞
n=2 λ

2λ
n−2e−λ

(n− 2)!
= λ + λ2, and so var(X) =

E(X2)− E(X)2 = λ2 + λ− λ2 = λ.

◦ Thus, the expected value of a Poisson-distributed random variable is λ, and its variance is also λ.

◦ It is also not hard to see that the highest peak of the Poisson distribution occurs at n = bλc, the greatest
integer less than or equal to λ.

• Example: If the random variable X has a Poisson distribution with λ = 4, �nd (i) P (X = 2), (ii) P (X < 4),
and (iii) P (X ≥ 3).

◦ Since λ is small, we can make a short table of the initial values of the probability distribution, since

P (X = n) =
λne−λ

n!
:

n 0 1 2 3 4 5 6 7 8 9 10

P (X = n) 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595 0.0298 0.0132 0.0053

◦ From the table we see P (X = 2) ≈ 0.1465 , P (X < 4) = 0.0183 + 0.0733 + 0.1465 + 0.1954 ≈ 0.4335 ,

and P (X ≥ 3) = 1− 0.0183− 0.0733− 0.1465 ≈ 0.7619 .

• The Poisson distribution arises in the analysis of systems having a large number of independent events each
of which occurs rarely.

◦ More speci�cally, suppose we would like to model the probability distribution of how often a rare event
will occur in a �xed time window, under the assumption that on average the event will occur λ times in
the window and that occurrences are independent (meaning that the occurrence of one event does not
a�ect the probability that a second will occur).
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◦ We can approximate this situation by dividing the time interval into W possible �small windows� in
which a rare event (occurring with probability p = λ/W ) can either occur or not occur: we wish to �nd
the probability distribution for the number of events that do occur.

◦ With this description, the probability distribution of this approximation will be the binomial distribution
with W independent events and event probability p = λ/W , meaning that the probability of observing

exactly n events is equal to

(
W

n

)
pn(1− p)W−n =

(
W

n

)
(λ/W )n · (1− λ/W )W−n.

◦ However, this is an only an approximation to the original problem: to �nd the answer to the original
question, we need to take the limit as W →∞. Our main result is that taking the limit yields a Poisson
distribution:

• Theorem (Poisson Limit Theorem): Suppose λ > 0 is a �xed constant and p = λ/W . Then limW→∞

(
W

n

)
pn(1−

p)W−n =
λne−λ

n!
. Therefore, the probability distribution of the number of rare independent events occurring

in a �xed interval, under the assumption that the average number of events per interval is λ, is Poisson with
parameter λ.

◦ Proof: We have

(
W

n

)
pn(1 − p)W−n =

W (W − 1)(W − 2) · · · (W − n+ 1)

n!
· ( λ
W

)n · (1 − λ

W
)W−n =

W (W − 1)(W − 2) · · · (W − n+ 1)

W ·W ·W · · · · ·W
· λ

n

n!
· (1− λ

W
)W · (1− λ

W
)−n.

◦ As W → ∞, the �rst term
W (W − 1)(W − 2) · · · (W − n+ 1)

W ·W ·W · · · · ·W
has limit 1, the second term

λn

n!
is a

constant, the third term has limit e−λ by a standard application of L'Hôpital's rule, and the last term

has limit 1. Thus, the product has limit 1 · λ
n

n!
· e−λ · 1 =

λne−λ

n!
, as claimed.

• The Poisson limit theorem serves as a sort of complement to the central limit theorem for binomial distribu-
tions: the central limit theorem says that as n→∞, the binomial distribution tends to a normal distribution
when np and n(1 − p) are moderately large, while the Poisson limit theorem says that it tends to a Poisson
distribution when np is small.

◦ The practical outcome of the Poisson limit theorem is that the Poisson distribution can be used to model
the occurrences of independent rare events.

◦ In fact, one of the �rst historical applications of the Poisson distribution was to estimate the number of
soldiers killed by horse-kicks each year in the Prussian cavalry. Other situations in which the Poisson
distribution arises include the distribution of telephone calls received by a customer service center, the
number of mutations created on a DNA strand during replication, the number of customers arriving
at a restaurant or shop, the number of insurance claims received during a given month, the number of
earthquakes during a given month, the number of goals scored by a hockey team during a game, and the
number of decay events observed in a radioactive sample with a long half-life.

• Example: At a call center, customer service calls come in at a rate of 1.2 per hour. Find the probabilities
that (i) in the next hour, there are no calls, (ii) in the next hour, there is exactly one call, (iii) in the next two
hours, there are no calls, (iv) in the next two hours, there are at least 3 calls, and (v) in the next 30 minutes,
there are no calls.

◦ First, a Poisson model is reasonable for this problem, because calls are fairly rare (based on the average
of 1.2 per hour) and they should be essentially independent of one another.

◦ The given information says that the number of calls X in a one-hour window will have a Poisson distri-
bution with parameter λ = 1.2.

◦ Thus, the probability of having no calls is P (X = 0) =
1.20e−1.2

0!
≈ 0.3012 while the probability of

exactly one call is P (X = 1) =
1.21e−1.2

1!
≈ 0.3614 .
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◦ The distribution of the number of calls Y in a two-hour window will also have a Poisson distribution (since
the same logic given above still applies), but since the average number of calls in 2 hours is 2 · 1.2 = 2.4,
the corresponding parameter is λ = 2.4.

◦ Thus, the probability of having no calls is P (Y = 0) =
2.40e−2.4

0!
≈ 0.0907 while the probability of at

least 3 calls is P (Y ≥ 3) = 1− P (Y ≤ 2) = 1− 2.40e−2.4

0!
− 2.41e−2.4

1!
− 2.42e−2.4

2!
≈ 0.4303 .

◦ The distribution of the number of calls Z in a 30-minute window will also have a Poisson distribution,
but now with parameter λ = 0.5 · 1.2 = 0.6. The probability of having no calls is therefore P (Z = 0) =
0.60e−0.6

0!
≈ 0.5488 .

• Example: Based on past history, a hospital determines that the average number of patients arriving at the
emergency room between 2am and 3am is 5.3. Using a Poisson model, estimate the probability that between
2am and 3am today, (i) no patients arrive, (ii) more than 5 patients arrive, and (iii) 10 or more patients arrive.
Next, (iv) describe the distribution of the total number of patients arriving between 2am and 3am over a full
366-day leap year, and �nd its mean and standard deviation, and (v) estimate the probability of getting at
least 2000 patients that year. Finally, estimate the probabilities of seeing (vi) 10 or more patients at least 15
times this year, and (vii) seeing 0 patients at least twice this year.

◦ We remark that a Poisson model is reasonable for this problem, because the arrival of patients is fairly
rare based on the given average of 5.3 per hour, and it is also reasonable to assume that the arrivals of
patients at the emergency room are essentially independent of one another.

◦ For (i), the given information says that the number of patients seen on one day will have a Poisson
distribution with parameter λ = 5.3. Thus, the probability of having no patients today is e−5.3 ≈
0.00499 , or about 0.5%.

◦ For (ii), the probability of having more than 5 patients is 1 − P (X ≤ 5) = 1 − e−5.3 − 5.3e−5.3

1!
−

5.32e−5.3

2!
− 5.33e−5.3

3!
− 5.34e−5.3

4!
− 5.35e−5.3

5!
≈ 0.4365 .

◦ For (iii), the probability of having 10 or more patients is P (X ≥ 10) = 1−P (X ≤ 9) = 1− e−5.3− · · · −
5.39e−5.3

9!
≈ 0.0441 .

◦ For (iv), the total number of patients over the full 366-day year is obtained by summing 366 independent
Poisson-distributed random variables each with λ = 5.3. The resulting exact distribution is Poisson
with parameter λ′ = 366 · 5.3 = 1939.8, so the mean is λ′ = 1939.8 and the standard deviation is√
λ′ = 44.04 .

◦ Alternatively, we could invoke the central limit theorem to see that the distribution will be approximately
normal with mean 366 · 5.3 = 1939.8 and standard deviation

√
366 · 5.3 ≈ 44.04 . (This is a re�ection

of the fact that for large λ, the Poisson distribution is approximately normal.)

◦ For (v), we could use either the Poisson model or the normal model, but the normal model is much easier
to calculate with. Using a continuity correction, the desired probability is P (# ≥ 2000) = P (Nµ,σ >

1999.5) = P (N0,1 > 1.3555) ≈ 0.0876 .

◦ For (vi), the probability of having 10+ patients on any given day is approximately 0.0441 from (iii)
above. The total number of times the hospital will see 10+ patients during the year will be binomially
distributed with parameters n = 366 and p = 0.0441.

◦ Since np = 16.10, the normal approximation to the binomial will be fairly good (with µ = np = 16.10
and σ =

√
np(1− p) = 3.9280), so the desired probability is approximately P (B366,0.0441 ≥ 15) ≈

P (N
np,
√
np(1−p) > 14.5) = P (N0,1 > −0.4177) = 0.6619 .

◦ For (vii), the probability of having 0 patients on any given day is approximately 0.00499 from (i) above.
The total number of times the hospital will see 0 patients during the year will be binomially distributed
with parameters n = 366 and p = 0.00499.

◦ Since np = 1.8269 and n is large, the Poisson approximation to the binomial will be fairly good (with pa-
rameter λ = np = 1.8269), so the desired probability is approximately P (B366,0.00499 ≥ 2) ≈ P (P1.8269 ≥
2) = 1− e−1.8269 − 1.8269e−1.8269 = 0.5450 .
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2.3.4 The Exponential Distribution and Memoryless Processes

• The third class of random variables we will discuss are the exponential distributions. Recall the de�nition:

• De�nition: The exponential distribution with parameter λ > 0 is the continuous random variable with prob-
ability density function p(x) = λe−λx for x ≥ 0, and is 0 for negative x.

◦ The cumulative distribution function is c(x) = 1 − e−λx (for x ≥ 0), and we also found earlier that the
expected value and standard deviation are both 1/λ.

• The exponential distribution is used to model �memoryless� processes, as follows:

• De�nition: Suppose X is a continuous random variable measuring the waiting time for an event (such as the
failure of a piece of equipment, the arrival of a customer to a shop, or the decay of a radioactive isotope).
We say that X is memoryless if X has the property that the subsequent waiting time is independent of the
amount of time already waited.

◦ If a represents the total time already waited, and b represents the additional time before the event occurs,
then this memoryless condition says that P (X > a+ b|X > a) = P (X > b) for every a and b.

◦ Equivalently, this means P (X > a+ b) = P (X > a) · P (X > b), since the event X > a+ b includes the
event X > a.

◦ But now, if X has an exponential distribution, then P (X > a + b) = e−λ(a+b) = e−λae−λb = P (X >
a) · P (X > b). This means that exponentially-distributed random variables are memoryless. In fact, the
exponential distributions are the only memoryless continuous probability distributions:

• Proposition (Memoryless Distributions): If X is a memoryless continuous random variable, then in fact X
has an exponential distribution.

◦ Proof: Observe that by continuity, the condition P (X > a + b) = P (X > a) · P (X > b) implies that
P (X > 2) = P (X > 1)2, P (X > 3) = P (X > 1)3, and then P (X > 4) = P (X > 1)4, and so forth.

◦ By the same logic, we have P (X > 1/n) = P (X > 1)1/n for every integer n, so combining this reasoning
with the argument above shows that P (X > a) = P (X > 1)a for every rational number a > 0.

◦ But since P (X > a) is a nondecreasing function of a, this means in fact P (X > a) = P (X > 1)a for
every real a > 0.

◦ Now writing λ = − ln[P (X > 1)] yields P (X > a) = e−λa, and so the cumulative distribution function
agrees with that of the exponential distribution with parameter λ. This means X must be exponentially
distributed with parameter λ, as claimed.

◦ Remark: Essentially the same proof shows that the only memoryless discrete random variables are the
geometric distributions with parameter p, in which P (X = n) = p(1− p)n for nonnegative integers n.

• Example: The usage time before a certain refrigerator model needs to be repaired is modeled as an exponential
distribution. Customer surveys indicate that 20% of the refrigerators must be repaired within their �rst year
of operation. Find the parameter λ for the distribution, and also the percentage of refrigerators that will last
at least 5 years without needing to be repaired.

◦ If X is the waiting time for repair, the given information says that P (X < 1) = 0.20. If the parameter

is λ then since P (X < 1) = 1− e−λ we see 1− e−λ = 0.20 so that λ = − ln(0.80) ≈ 0.2231.

◦ Then the proportion of refrigerators that will last at least 5 years is P (X ≥ 5) = e−5λ = (0.80)5 ≈ 0.3277,

which is about 33% .

◦ Remark: We could also have calculated the proportion directly using the memoryless property: the given
information says that 80% of refrigerators last one year without being repaired, so of these, 80% will last
another year, and 80% of those will last a third year, and so forth, for an overall proportion of (0.80)5

that will last 5 years.
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• Example: An unreliable ride-share service is supposed to take a customer to the airport. The average waiting
time is 45 minutes, but the customer feels that the total amount of time she has waited so far has no
relationship to the amount of additional time she will have to wait. If the customer uses the service 40 times
a year, estimate the probability that the car actually shows up within 5 minutes at least 6 times out of the
40 uses.

◦ The given information is describing a memoryless waiting time, so by our results, the waiting time will
be exponentially distributed. Since the expected value is 1/λ, that means λ = 1/45.

◦ Then the probability that the car shows up within 5 minutes (in one use of the service) is 1− e−5/45 =
0.1052.

◦ So, if the customer uses the service 40 times, the total number of times the car shows up within 5 minutes
will be binomially distributed with parameters n = 40 and p = 0.1052.

◦ Since np = 4.2064, we are in a situation where the Poisson approximation should be better. The resulting
probability estimate is P (Pλ ≥ 6) = 1− P (Pλ < 6) = 0.2479 .

◦ Remark: If instead we used the normal approximation, we would get a probability estimate P (Nµ,σ >
5.5) = P (N0,1 > 0.6658) = 0.2528. The exact binomial probability is 0.2406, so we can see that the
Poisson estimate is slightly more accurate than the normal estimate.

• As a �nal remark to �nish our discussion, we will note that there is a connection between the Poisson
distribution and the exponential distribution that arises from our interpretations of the processes they model.

◦ The Poisson distribution models the number of occurrences of independently-occurring rare events in a
particular interval of time, while the exponential distribution models the waiting time for a memoryless
process.

◦ Now suppose we have a Poisson-distributed phenomenon, and we ask: how long do we have to wait
between two occurrences of the phenomenon?

◦ Because the Poisson events are independent and rare, the occurrence of one does not a�ect the waiting
time for the next one. Since this waiting time is memoryless, the distribution of waiting times between
Poisson events will have an exponential distribution.

◦ This fact that waiting times between Poisson events have an exponential distribution leads to some
unintuitive results.

◦ For example, the exponential distribution decreases rapidly, starting from 0: therefore, the distances
between Poisson events are more likely to be small rather than big. Speci�cally, if the average distance
is D (so the exponential parameter is 1/D), the probability of obtaining a distance less than the average
is then 1− e−1/D·D = 1− e−1 ≈ 0.6321.

◦ Thus, despite the fact that the Poisson events will be uniformly distributed inside the time interval
(since they are, after all, independent and occur randomly), it is nonetheless likely that we will observe
�clusters� of occurrences.

◦ Although this may seem peculiar, it is really just a re�ection of the general fact that randomly-occurring
events will tend to appear in clusters: it is, in fact, very unlikely for several independent random events
to be spaced evenly apart.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2018-2020. You may not reproduce or distribute this
material without my express permission.
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