’Linear Algebra (part 3): Eigenvalues and Eigenvectors ‘ (by Evan Dummit, 2016, v. 2.00)
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4 Eigenvalues and Eigenvectors

e We have discussed quite extensively the correspondence between solving a system of homogeneous linear
equations and solving the matrix equation Ax = 0, for A an n X n matrix and x and 0 each n x 1 column
vectors.

e For reasons that will become more apparent soon, a more general version of this question which is also of
interest is to solve the matrix equation Ax = Ax, where A is a scalar. (The original “homogeneous system”
problem corresponds to A = 0.)

e In the language of linear transformations, this says the following: given a linear transformation 7': V — V
from a vector space V to itself, on what vectors x does T" act as multiplication by a constant \?

4.1 Eigenvalues, Eigenvectors, Characteristic Polynomials

e Definition: For A an n X n matrix, a nonzero vector x with Ax = Ax is called an eigenvector of A, and the
corresponding scalar A is called an eigenvalue of A.

o Important note: We do not consider the zero vector 0 an eigenvector.

o Example: If A = [ ? i }, the vector x = [ ! } is an eigenvector of A with eigenvalue 5, because

I HEHE.

o Example: If A = { i , the vector x = [ 1 is an eigenvector of A with eigenvalue 1, because
2 3 3 5
e[ 2] 3][2]
2 —4 5 1
o Example: f A= | 2 -2 5 [,thevectorx = | 2 | is an eigenvector of A with eigenvalue 4, because
2 1 2 2
2 —4 5 1 4
Ax=|2 -2 5 2 | =] 8| =4x
2 1 2 2 8

e Figenvalues and eigenvectors can also be complex numbers, even if the matrix A only has real-number entries.

o Example: If A = {? :g ],thevectorx { 2—;2

becauuseAx:[2 =5 ] [ 241 ] = [ _1—.’—22}:2}(.

is an eigenvector of A with eigenvalue i = /—1,

1 -2 1 )



6 3 -2 1—1

o Example: fA=| —2 0 0 |, the vector x = 2 is an eigenvector of A with eigenvalue 1+1,
6 4 2 2
6 3 -2 1—14 2
because Ax=| -2 0 0 2i =| —242i | =(1+i)x.
6 4 -2 2 242

e It may at first seem that a given matrix may have many eigenvectors with many different eigenvalues. But
in fact, any n x n matrix can only have a few eigenvalues, and there is a simple way to find them all using
determinants:

e Proposition (Finding Eigenvalues): If A is an n x n matrix, the real or complex number ) is an eigenvalue of
A if and only det(A] — A) = 0.

o Proof: Suppose X is an eigenvalue with associated nonzero eigenvector x: this is equivalent to saying
Ax = Ax.

o Next observe that Ax = (AI)x where [ is the n x n identity matrix.

o Therefore, we can rewrite the eigenvalue equation Ax = Ax = (AI)x as (Al — A)x = 0.

o But from our study of homogeneous systems of linear equations, the matrix equation (Al — A)x = 0 has
a nonzero solution for x if and only if the matrix (A — A) is not invertible, which is in turn equivalent
to saying that det(A] — A) = 0.

e When we expand the determinant det(¢] — A), we will obtain a polynomial of degree n in the variable t.

e Definition: For an nxn matrix A, the degree-n polynomial p(t) = det(¢I—A) is called the characteristic polynomial
of A, and its roots are precisely the eigenvalues of A.

o Some authors instead define the characteristic polynomial as the determinant of the matrix A —tI rather
than ¢tI — A. We define it this way because then the coefficient of ¢™ will always be 1, rather than (—1)".

e When searching for roots of polynomials of small degree, the following case of the rational root test is often
helpful.

e Proposition: Suppose the polynomial p(t) = ™+ - - +b has integer coefficients and leading coefficient 1. Then
any rational root of p(¢) must be an integer that divides b.

o The proposition cuts down on the amount of trial and error necessary for finding rational roots of
polynomials, since we only need to consider integers that divide the constant term.

o Of course, a generic polynomial will not have a rational root, so to compute eigenvalues in practice
one generally needs to use numerical approximations. (But we will arrange the examples so that the
polynomials will factor nicely.)

e Example: Find the eigenvalues of A = [ g i }

t—3 -1
-2 t—-4

o The eigenvalues are then the zeroes of this polynomial. Since t2 — 7t + 10 = (¢t — 2)(t — 5) we see that
the zeroes are t = 2 and ¢ = 5, meaning that the eigenvalues are .

1 4 V3
e Example: Find the eigenvaluesof A= | 0 3 -8
0 0 =«

o First we compute the characteristic polynomial det(t] — A) = ’ ' =12 — Tt +10.

t—1 —4 =3
o Observe that det(t] — A) = 0 t—-3 8 = (t — 1)(t — 3)(t — m) since the matrix is upper-
0 0 t—m

triangular. Thus, the eigenvalues are .



The idea from the example above works in generality:

Proposition (Eigenvalues of Triangular Matrix): The eigenvalues of an upper-triangular matrix or of a lower-
triangular matrix are its diagonal entries.

o Proof: If A is an n x n upper-triangular (or lower-triangular) matrix, then so is ¢t — A.
o Then by properties of determinants, det(t] — A) is equal to the product of the diagonal entries of tI — A.

o Since these diagonal entries are simply ¢t — a; ; for 1 <14 < n, the eigenvalues are a; ; for 1 < ¢ < n, which
are simply the diagonal entries of A.

e It can happen that the characteristic polynomial has a repeated root. In such cases, it is customary to note
that the associated eigenvalue has “multiplicity” and include the eigenvalue the appropriate number of extra
times when listing them.

o For example, if a matrix has characteristic polynomial ¢?(t — 1)3, we would say the eigenvalues are 0 with
multiplicity 2, and 1 with multiplicity 3. We would list the eigenvalues as A = 0,0,1,1,1.

1 -1 0
e Example: Find the eigenvaluesof A= | 1 3 0
0 0 O
t—1 1 0 i1
o By expanding along the bottom row we see det(t] — A) =| -1 ¢t—-3 0| = t‘ 1 t_3 ’ =
0 0 t
t(t? — 4t + 4).
o Since t? — 4t +4 = (t —2)? we see that the characteristic polynomial has a single root ¢ = 0 and a double
root t = 2.

o Thus, A has an eigenvalue 0 of multiplicity 1 and an eigenvalue 2 of multiplicity 2. As a list, the
eigenvalues are \ = .

e Example: Find the eigenvalues of A =

O O =
[
== O

o By expanding along the top row,

t-1 -1 0
det(tl —A) = | 0 t—1 -1
0 0 t-1
t—1 -1 0 -1
- (tl)’ 0 t—1’+1‘0 t—l‘

(t—1D)(t—1)2=(t—1)3

o Thus, the characteristic polynomial has a triple root ¢ = 1.
o Thus, A has an eigenvalue 1 of multiplicity 3. As a list, the eigenvalues are A = .

e Note also that the characteristic polynomial may have non-real numbers as roots.

o As we saw above, matrices with real entries may have non-real eigenvalues. Such non-real eigenvalues are
absolutely acceptable: the only wrinkle is that the eigenvectors for these eigenvalues will also necessarily
contain non-real entries.

o If A has real number entries, then because the characteristic polynomial of A is a polynomial with real
coefficients, any non-real roots of the characteristic polynomial will come in complex conjugate pairs.

e Example: Find the eigenvalues of A = [ j2 ; }



t—1 -1
2 t—3

o The eigenvalues are then the zeroes of this polynomial. By the quadratic formula, the roots are

4++/-4
—s = 2 £, so the eigenvalues are |2+ 7 and 2 — 7 |.

o First we compute the characteristic polynomial det(t] — A) = ’ =12 — 4t +5.

-1 2 -4
e Example: Find the eigenvalues of A = 3 -2 1
4 -4 4

o By expanding along the top row,

t+1 -2 4

det(tI —A) = | =3 t+2 -1
—4 4 t—4
3 t+2 -1 -3 -1 3 {42
- (Hl)‘ 4 t—4‘+2‘—4 t—4’+4‘—4 4 ‘
= (t+1)(#* —2t —4) +2(=3t + 8) + 4(4t — 4)
= - +4t—4

o To find the roots, we wish to solve the cubic equation t3 — t? + 4t — 4 = 0.

o By the rational root test, if the polynomial has a rational root then it must be an integer dividing —4:
that is, one of £1, +2, +4. Testing the possibilities reveals that ¢ = 1 is a root, and then we get the
factorization (¢ — 1)(t? +4) = 0.

o The roots of the quadratic are t = £2i, so the eigenvalues are m

4.2 Eigenspaces

e Using the characteristic polynomial, we can find all the eigenvalues of a matrix A without actually determining
the associated eigenvectors. However, we often also want to find the eigenvectors associated to each eigenvalue.

e We might hope that there is a straightforward way to describe all the eigenvectors, and (conveniently) there
is: the set of all eigenvectors with a particular eigenvalue X\ has a vector space structure.

e Proposition: For a fixed value of A, the set Sy whose elements are the eigenvectors x with Ax = Ax, together
with the zero vector, is a subspace of V' = R"™ (thought of as n x 1 column vectors). This set S is called the
eigenspace associated to the eigenvalue A, or the \-eigenspace.

o Proof: Notice that because we explicitly included the zero vector, Sy is simply the set of all vectors such
that Av = Av. Now we simply check the subspace criterion:

o [S1]: Si contains the zero vector.

o [S2]: Sy is closed under addition, because if Ax; = Ax; and Axy = Axa, then A(x; + x2) = A(X1 + X2).

o [S3]: Sy is closed under scalar multiplication, because if Ax = Ax, then for any scalar 5, A(8x) =

B(Ax) = B(Ax) = A(Bx).

e Example: Find the 1-eigenspaces, and their dimensions, for A = [ (1) (1) } and B = [ (1) 1 }

o For the 1-eigenspace of A, we want to find all vectors with [ (1) 2 } { Z } = [ Z }

o Clearly, all vectors satisfy this equation, so the 1-eigenspace of A is the set of all vectors [ , and

o> Q
[

has dimension 2.



o For the 1-eigenspace of B, we want to find all vectors with [ (1) 1 ] [ Z } = [ Z }, or equivalently,

1) [3)

o The vectors satisfying the equation are those with b = 0, so the 1-eigenspace of B is the set of vectors of

the form [ g } , and has dimension 1.

o Notice that the characteristic polynomial of each matrix is (¢ — 1), since both matrices are upper-
triangular, and they both have a single eigenvalue A = 1 of multiplicity 2. Nonetheless, the matrices do
not have the same eigenvectors, and the dimensions of their 1-eigenspaces are different.

e Now, since the \-eigenspace is a vector space, if we want to describe all eigenvectors for a given eigenvalue A,
we can simply find a basis for the A-eigenspace.

o For each eigenvalue A, our goal is to solve for all vectors x satisfying Ax = Ax.

o Equivalently, we wish to find the vectors x satisfying the matrix equation (Al — A)x = 0, which (per our
analysis of systems of linear equations) can be done by row-reducing the matrix AT — A. We have also
described the procedure for extracting a basis for the solution set.

o The resulting solution vectors x form the eigenspace associated to A, and the nonzero vectors in the
space are the eigenvectors corresponding to .

e To find all the eigenvalues and eigenvectors of a matrix A, follow these steps:

o Step 1: Write down the matrix ¢t — A and compute its determinant (using any method) to obtain the
characteristic polynomial p(t).

o Step 2: Set p(t) equal to zero and solve. The roots are precisely the eigenvalues A of A.

o Step 3: For each eigenvalue A, solve for all vectors x satisfying Ax = Ax: this is the set of solutions to
(M — A)x = 0, which is equivalent to the nullspace of AT — A and may be computed by row-reduction.

e Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A = [ ; ? } .

o We have ¢ — A — [ 7 ] 50 p(t) = det(t] — A) = (£ — 2)(t — 1) — (~2)(—3) = 2 — 3t — 4.

o Since p(t) =2 — 3t —4 = (t —4)(t + 1), the eigenvalues are .

o For A\ = —1, we want to find the nullspace of { _1_; 2 _1_3 1 } = [ :g :3 ] By row-reducing we

-3 -2
0 0

] , so the nullspace is 1-dimensional and is spanned by [ -2 ] .

find the row-echelon form is { 3

o For A = 4, we want to find the nullspace of [ 4:32 4121 } = [ 33 _32 ] By row-reducing we find

the row-echelon form is [ (1) _01 } , 8o the nullspace is 1-dimensional and is spanned by [ ! } A

1
1 01
e Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A= | -1 1 3
-1 0 3
t—1 0 -1
o First, wehave tI—A= | 1 t—1 -3 | sop(t)= <t1>" IR ’+<1>" e ‘ -

1 0 t-—3
(t—1)2t—-3)+ (t—1).



o Since p(t) = (t — 1) - [(t = 1)(t — 3) + 1] = (t — 1)(t — 2)?, the eigenvalues are [\ =1, 2, 2|

1-1 0 -1 00 -1
o For A = 1 we want to find the nullspace of 1 1-1 =3 = |1 0 =3 |. This matrix’s
1 0 1-3 1 0 -3
100 0
reduced row-echelon formis | 0 0 1 |, so the nullspace is 1-dimensional and spanned by 1
0 0O 0
2—-1 0 -1 1 0 -1
o For A = 2 we want to find the nullspace of 1 2—1 =3 = |1 1 =3 |. This matrix’s
1 0 2—-3 1 0 -1
1 0 -1 1
reduced row-echelon formis | 0 1 —2 [, so the nullspace is 1-dimensional and spanned by 2
0 0 0 1
0 0 O
e Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A= 1 0 -1
01 0
t 0 O -
o WehavetI —A=| -1 t 1 ,sop(t):det(tI—A):t‘ 1 ‘:t-(tQ—i—l).
0 -1 t
o Since p(t) =t - (t* + 1), the eigenvalues are m
0 0 O
o For A = 0 we want to find the nullspace of | —1 0 1 |. This matrix’s reduced row-echelon form is
0 -1 0
1 0 -1 1
0 1 0 |, so the nullspace is 1-dimensional and spanned by 0
0 0 O 1
1 0 0
o For A =i we want to find the nullspace of | —1 ¢ 1 |. This matrix’s reduced row-echelon form is
0 -1 4
1 0 O 0
0 1 —¢ |, sothe nullspace is 1-dimensional and spanned by i
00 O 1
- 0 0
o For A = —i we want to find the nullspace of | —1 —¢ 1 |. This matrix’s reduced row-echelon form
0 -1 —i
1 00 0
is | 0 1 < |, sothe nullspace is 1-dimensional and spanned by —1
0 0 O 1

e Notice that in the example above, with a real matrix having complex-conjugate eigenvalues, the associated
eigenvectors were also complex conjugates. This is no accident:

e Proposition (Conjugate Eigenvalues): If A is a real matrix and v is an eigenvector with a complex eigenvalue
A, then the complex conjugate Vv is an eigenvector with eigenvalue A. In particular, a basis for the \-eigenspace
is given by the set of complex conjugates of a basis for the \-eigenspace.

o Proof: The first statement follows from the observation that the complex conjugate of a product or sum
is the appropriate product or sum of complex conjugates, so if A and B are any matrices of compatible
sizes for multiplication, we have A- B = A - B.




o Thus, if Av = Av, taking complex conjugates gives AV = )V, and since A = A because A is a real
matrix, we see AV = A\V: thus, V is an eigenvector with eigenvalue .

o The second statement follows from the first, since complex conjugation does not affect linear independence
or dimension.

e Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A = [ ;’ ;1 } .

[¢]

2 t-5

Using the quadratic equation yields that the eigenvalues are .
t—3 1 | 144 1
-2 t-5| | -2 -1+

WehavetI—A:[t_g 1 ],sop(t):det(tI—A):(t—3)(t—5)—(—2)(1):t2—8t+17.

@]

[¢]

For A = 4+, we want to find the nullspace of [ } . Row-reducing this

matrix yields
1+ 1 Ro+(1—i)R; 1+ 1
-2 =143 0 0

. . . . . 1
from which we can see that the eigenspace is 1-dimensional and spanned by [ 1 ] !

o For A = 4 — i we can simply take the conjugate of the calculation we made for A\ = 4 + 4: thus, the

(4 — i)-eigenspace is also 1-dimensional and spanned by { ! ] .

-1+
5 —4 —6
e Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A= | 2 1 -2
2 -3 -3

t—5 4 6
Wehave tI—A=| -2 t—-1 2 | ;sodet(tI—A)=(t—5)(t>+2t—9)—4(—2t—2)+6(2t—8) =
-2 3 t+3

o

3 -3 +t+5.

o Searching for small rational roots produces the root t = —1, and factoring yields t3 — 3t2 +t + 5 =
(t+1)(t?> — 4t + 5). The roots of the quadratic are 2 4 4, so ’ A=-1,2+142—14 ‘
A=5 4 6 -6 4 6
o For A = —1 we want to find the nullspace of -2 A-1 2 = | —2 —2 2 |. This matrix’s
-2 3 A+3 -2 3 2
1 0 -1 1
reduced row-echelon formis | 0 1 0 [, so the nullspace is 1-dimensional and spanned by 0
0 0 O 1
A=5 4 6 -3+i 4 6
o For A = 2 4+ ¢ we want to find the nullspace of -2 -1 2 = -2 1+ 2
-2 3 A+3 -2 3 5+1
Row-reducing this matrix yields
-34+i 4 6 14 -34+i 4 6 , 0 2—-i 341
2 140 2 el R S L N S T R (S ey
-2 3 544 —2 3 54 | MetOEOR 0 2—i 3+i
0 2—1 341 2tip 0 1 1+ 0 1 143
O I J ey A g e ([ S s (A L LELN S
0 0 0 0 0 0 0 0 0
g [001 1 1 0 —1+43
P10 —14d | B2 0 1 14
0 0 0 0 0 0



(¢]

1—14

from which we see that the nullspace is 1-dimensional and spanned by —1—1
1
For A = 2 — i we can simply take the conjugate of the calculation we made for A = 2 + i: thus, the
1414
(2 — i)-eigenspace is also 1-dimensional and spanned by -1+
1

4.3 Additional Properties of Eigenvalues

e We will now mention a few useful theoretical results about eigenvalues, eigenvectors, and eigenspaces.

e Theorem (Eigenvalue Multiplicity): If ) is an eigenvalue of the matrix A which appears exactly % times as a
root of the characteristic polynomial, then the dimension of the eigenspace corresponding to A is at least 1
and at most k.

o Remark: The number of times that A appears as a root of the characteristic polynomial is sometimes called
the “algebraic multiplicity” of A\, and the dimension of the eigenspace corresponding to A is sometimes
called the “geometric multiplicity” of A. In this language, the theorem above says that the geometric
multiplicity is less than or equal to the algebraic multiplicity.

o Example: If the characteristic polynomial of a matrix is (t — 1)3(¢ — 3)?, then the eigenspace for A = 1
is at most 3-dimensional, and the eigenspace for A = 3 is at most 2-dimensional.

o Proof: The statement that the eigenspace has dimension at least 1 is immediate, because (by assumption)
A is a root of the characteristic polynomial and therefore has at least one nonzero eigenvector associated
to it.

o For the other statement, observe that the dimension of the A-eigenspace is the dimension of the solution
space of the homogeneous system (Al — A) - x = 0. (Equivalently, it is the dimension of the nullspace of
the matrix A — A.)

o If X appears k times as a root of the characteristic polynomial, then when we put the matrix Al — A into
its reduced row-echelon form B, we claim that B must have at most k rows of all zeroes.

o Otherwise, the matrix B (and hence AI — A too, since the nullity and rank of a matrix are not changed
by row operations) would have 0 as an eigenvalue more than k times, because B is in echelon form and
therefore upper-triangular.

o But the number of rows of all zeroes in a square matrix in reduced row-echelon form is the same as
the number of nonpivotal columns, which is the number of free variables, which is the dimension of the
solution space.

o So, putting all the statements together, we see that the dimension of the eigenspace is at most k.

e Theorem (Independent Eigenvectors): If vi,vs, ..., v, are eigenvectors of A associated to distinct eigenvalues
AL, Ao, ...y Ay, then vy, vy, ..., v, are linearly independent.

o Proof: Suppose we had a nontrivial dependence relation between v, ...,v,, say a1vy + -+ + a, v, = 0.
(Note that at least two coeflicients have to be nonzero, because none of vy, ..., v, is the zero vector.)

o Multiply both sides by the matrix A: this gives A (a;v1 + -+ apv,) =A-0=0.

o Now since vy,..., Vv, are eigenvectors this says a1 (A1v1) + -+ + an(Apvy) = 0.

But now if we scale the original equation by A; and subtract (to eliminate v1), we obtain as(Ay — A1)va +
a3(>\3 — )\1)V3 —+ 4 an()\n — )\1)Vn =0.

Since by assumption all of the eigenvalues \1, Ao, ..., A\, were different, this dependence is still nontrivial,
since each of A; — Ay is nonzero, and at least one of as, - - , a, is nonzero.

But now we can repeat the process to eliminate each of vy, vg, ... , vj,_1 in turn. Eventually we are left
with the equation bv,, = 0 for some nonzero b. But this is impossible, because it would say that v,, = 0,
contradicting our definition saying that the zero vector is not an eigenvector.



o

So there cannot be a nontrivial dependence relation, meaning that vy, ..., v, are linearly independent.

e Corollary: If A is an n X n matrix with n distinct eigenvalues A1, Ao, ..., Ay, and vy, va, ..., v, are (any)
eigenvectors associated to those respective eigenvalues, then vy, vs, ..., v, form a basis for R™.
o This result follows from the previous theorem: it guarantees that the n vectors vy, va,..., v, are linearly

independent, so they must be a basis of the n-dimensional vector space R".

e Theorem (Eigenvalues, Trace, and Determinant): The product of the eigenvalues of A is the determinant of
A, and the sum of the eigenvalues of A equals the trace of A.

o

e}

(¢]

Recall that the trace of a matrix is defined to be the sum of its diagonal entries.
Proof: Let p(t) be the characteristic polynomial of A.

If we expand out the product p(t) = (t — A1) - (£ — A2) - - (t — An), we see that the constant term is equal
to (—1)”)\1>\2 s )\n

But the constant term is also just p(0), and since p(t) = det(t] — A) we have p(0) = det(—A) =
(—1)™det(A): thus, A\Ag--- A, = det(A).

Furthermore, upon expanding out the product p(t) = (£ — A1) - (¢ — Aa) -+ (t — \p,), we see that the
coefficient of "1 is equal to —(A; + - + \y).

If we expand out the determinant det(t — A) to find the coefficient of t"~!, we can show (with a little
bit of effort) that the coefficient is the negative of the sum of the diagonal entries of A.

Thus, setting the two expressions equal shows that the sum of the eigenvalues equals the trace of A.

2 1 1

e Example: Find the eigenvalues of the matrix A = | =2 —1 -2 |, and verify the formulas for trace and

2 2 -3

determinant in terms of the eigenvalues.

o

By expanding along the top row, we can compute

det(tl — A) = (t_2)’t+1 2 2 2 2 t+1’

2 t+3'_(_1>‘2 t+3’+(_1)'2 2
= (t—-2)F+4+7)+ (2t +10) — (2t —2) =* + 2> —t — 2.

To find the eigenvalues, we wish to solve the cubic equation t3 + 2t2 — ¢t — 2 = 0.

By the rational root test, if the polynomial has a rational root then it must be an integer dividing —2:
that is, one of +1, +2. Testing the possibilities reveals that ¢ = 1, t = —1, and t = —2 are each roots,
from which we obtain the factorization (¢t — 1)(t +1)(t +2) = 0.

Thus, the eigenvalues are t = —2,—1, 1.

We see that tr(A) =2+ (—1) + (—3) = —2, while the sum of the eigenvalues is (—2) + (1) + 1 = —2.
They are indeed equal.

For the determinant, we compute

-1 -2 -2 =2
2 -3 2 -3
= 2(7)—1(10) + 1(-2) = 2.

det(4) = 2' ‘1’ ’+1‘_2 _1‘

2 2

The product of the eigenvalues is (—2)(—1)(1) = 2, so the result holds as claimed.

Well, you’re at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2016. You may not reproduce or distribute this
material without my express permission.



