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3 Vector Spaces and Linear Transformations

In this chapter we will introduce the notion of an abstract vector space, which is, ultimately, a generalization of
the ideas inherent in studying vectors in 2- or 3-dimensional space. We will study vector spaces from an axiomatic
perspective, discuss the notions of span and linear independence, and ultimately explain why every vector space
possesses a linearly independent spanning set called a �basis�. We will then discuss linear transformations, which
are the most natural kind of a map from one vector space to another, and show how they are intimately related
with matrices.

In our discussions we will give concrete examples as often as possible, and use the general properties we have shown
about vector spaces to motivate results relevant to solving systems of linear equations and solving di�erential
equations.

3.1 Review of Vectors in Rn

• A vector, as we typically think of it, is a quantity which has both a magnitude and a direction. This is in
contrast to a scalar, which carries only a magnitude.

◦ Real-valued vectors are extremely useful in just about every aspect of the physical sciences, since just
about everything in Newtonian physics is a vector � position, velocity, acceleration, forces, etc. There
is also �vector calculus� � namely, calculus in the context of vector �elds � which is typically part of a
multivariable calculus course; it has many applications to physics as well.

• We often think of vectors geometrically, as a directed line segment (having a starting point and an endpoint).

• Algebraically, we write a vector as an ordered tuple of coordinates: we denote the n-dimensional vector from
the origin to the point (a1, a2, · · · , an) as v = 〈a1, a2, · · · , an〉, where the ai are real-number scalars.
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◦ Some vectors: 〈1, 2〉, 〈3, 5,−1〉,
〈
−π, e2, 27, 3, 4

3
, 0, 0,−1

〉
.

◦ Notation: We use angle brackets 〈·〉 rather than parentheses (·) so as to draw a visual distinction between
a vector and the coordinates of a point in space. We also draw arrows above vectors (as ~v) or typeset
them in boldface (as v) in order to set them apart from scalars. Boldface is hard to produce without a
computer, so it is highly recommended to use the arrow notation ~v when writing by hand.

◦ Note: Vectors are a little bit di�erent from directed line segments, because we don't care where a vector
starts: we only care about the di�erence between the starting and ending positions. Thus: the directed
segment whose start is (0, 0) and end is (1, 1) and the segment starting at (1, 1) and ending at (2, 2)
represent the same vector 〈1, 1〉.

• We can add vectors (provided they are of the same length!) in the obvious way, one component at a time: if
v = 〈a1, · · · , an〉 and w = 〈b1, · · · , bn〉 then v +w = 〈a1 + b1, · · · , an + bn〉.

◦ We can justify this using our geometric idea of what a vector does: v moves us from the origin to the point
(a1, · · · , an). Then w tells us to add 〈b1, · · · , bn〉 to the coordinates of our current position, and so w
moves us from (a1, · · · , an) to (a1+b1, · · · , an+bn). So the net result is that the sum vector v+w moves
us from the origin to (a1 + b1, · · · , an + bn), meaning that it is just the vector 〈a1 + b1, · · · , an + bn〉.
◦ Geometrically, we can think of vector addition using a parallelogram whose pairs of parallel sides are v
and w and whose diagonal is v +w:

• We can also 'scale' a vector by a scalar, one component at a time: if r is a scalar, then we have r v =
〈ra1, · · · , ran〉.

◦ Again, we can justify this by our geometric idea of what a vector does: if v moves us some amount in a

direction, then
1

2
v should move us half as far in that direction. Analogously, 2v should move us twice

as far in that direction, while −v should move us exactly as far, but in the opposite direction.

• Example: If v = 〈−1, 2, 2〉 andw = 〈3, 0,−4〉 then 2w = 〈6, 0,−8〉 , and v+w = 〈2, 2,−2〉 . Furthermore,v−

2w = 〈−7, 2, 10〉 .

• The arithmetic of vectors in Rn satis�es several algebraic properties that follow more or less directly from the
de�nition:

◦ Addition of vectors is commutative and associative.

◦ There is a zero vector (namely, the vector with all entries zero), and every vector has an additive inverse.

◦ Scalar multiplication distributes over addition of both vectors and scalars.

3.2 The Formal De�nition of a Vector Space

• The two operations of addition and scalar multiplication (and the various algebraic properties they satisfy)
are the key properties of vectors in Rn. We would like to investigate other collections of things which possess
those same properties.
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• De�nition: A (real) vector space is a collection V of vectors together with two binary operations, addition of
vectors (+) and scalar multiplication of a vector by a real number (·), satisfying the following axioms:

◦ Let v, v1, v2, v3 be any vectors in V and α, α1,α2 be any (real number) scalars.

◦ Note: The statement that + and · are binary operations means that v1+v2 and α ·v are always de�ned;
that is, they are both vectors in V .

◦ [A1] Addition is commutative: v1 + v2 = v2 + v1.

◦ [A2] Addition is associative: (v1 + v2) + v3 = v1 + (v2 + v3).

◦ [A3] There exists a zero vector 0, with v + 0 = v.

◦ [A4] Every vector v has an additive inverse −v, with v + (−v) = 0.

◦ [M1] Scalar multiplication is consistent with regular multiplication: α1 · (α2 · v) = (α1α2) · v.
◦ [M2] Addition of scalars distributes: (α1 + α2) · v = α1 · v + α2 · v.
◦ [M3] Addition of vectors distributes: α · (v1 + v2) = α · v1 + α · v2.

◦ [M4] The scalar 1 acts like the identity on vectors: 1 · v = v.

• Remark: One may also consider vector spaces where the collection of scalars is something other than the real
numbers: for example, there exists an equally important notion of a complex vector space, whose scalars are
the complex numbers. (The axioms are the same, except we allow the scalars to be complex numbers.)

◦ We will primarily work with real vector spaces, in which the scalars are the real numbers.

◦ The most general notion of a vector space involves scalars from a �eld, which is a collection of numbers
which possess addition and multiplication operations which are commutative, associative, and distribu-
tive, with an additive identity 0 and multiplicative identity 1, such that every element has an additive
inverse and every nonzero element has a multiplicative inverse.

◦ Aside from the real and complex numbers, another example of a �eld is the rational numbers (�fractions�).

◦ One can formulate an equally interesting theory of vector spaces over any �eld.

• Here are some examples of vector spaces:

• Example: The vectors in Rn are a vector space, for any n > 0. (This had better be true!)

◦ For simplicity we will demonstrate all of the axioms for vectors in R2; there, the vectors are of the form
〈x, y〉 and scalar multiplication is de�ned as α · 〈x, y〉 = 〈αx, αy〉.
◦ [A1]: We have 〈x1, y1〉+ 〈x2, y2〉 = 〈x1 + x2, y1 + y2〉 = 〈x2, y2〉+ 〈x1, y1〉.
◦ [A2]: We have (〈x1, y1〉+ 〈x2, y2〉)+〈x3, y3〉 = 〈x1 + x2 + x3, y1 + y2 + y3〉 = 〈x1, y1〉+(〈x2, y2〉+ 〈x3, y3〉).
◦ [A3]: The zero vector is 〈0, 0〉, and clearly 〈x, y〉+ 〈0, 0〉 = 〈x, y〉.
◦ [A4]: The additive inverse of 〈x, y〉 is 〈−x,−y〉, since 〈x, y〉+ 〈−x,−y〉 = 〈0, 0〉.
◦ [M1]: We have α1 · (α2 · 〈x, y〉) = 〈α1α2x, α1α2y〉 = (α1α2) · 〈x, y〉.
◦ [M2]: We have (α1 + α2) · 〈x, y〉 = 〈(α1 + α2)x, (α1 + α2)y〉 = α1 · 〈x, y〉+ α2 · 〈x, y〉.
◦ [M3]: We have α · (〈x1, y1〉+ 〈x2, y2〉) = 〈α(x1 + x2), α(y1 + y2)〉 = α · 〈x1, y1〉+ α · 〈x2, y2〉.
◦ [M4]: Finally, we have 1 · 〈x, y〉 = 〈x, y〉.

• Example: The set of m× n matrices for any m and any n, forms a vector space.

◦ The various algebraic properties we know about matrix addition give [A1] and [A2] along with [M1],
[M2], [M3], and [M4].

◦ The �zero vector� in this vector space is the zero matrix (with all entries zero), and [A3] and [A4] follow
easily.

◦ Note of course that in some cases we can also multiply matrices by other matrices. However, the
requirements for being a vector space don't care that we can multiply matrices by other matrices! (All
we need to be able to do is add them and multiply them by scalars.)
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• Example: The complex numbers (the numbers of the form a+ bi for real a and b, and where i2 = −1) are a
vector space.

◦ The axioms all follow from the standard properties of complex numbers. As might be expected, the �zero
vector� is just the complex number 0 = 0 + 0i.

◦ Again, note that the complex numbers have �more structure� to them, because we can also multiply
two complex numbers, and the multiplication is also commutative, associative, and distributive over
addition. However, the requirements for being a vector space don't care that the complex numbers have
these additional properties.

• Example: The collection of all real-valued functions on any part of the real line is a vector space, where we
de�ne the �sum� of two functions as (f + g)(x) = f(x) + g(x) for every x, and �scalar multiplication� as
(α · f)(x) = α f(x).

◦ To illustrate: if f(x) = x and g(x) = x2, then f + g is the function with (f + g)(x) = x+ x2, and 2f is
the function with (2f)(x) = 2x.

◦ The axioms follow from the properties of functions and real numbers. The �zero vector� in this space is
the zero function; namely, the function z which has z(x) = 0 for every x.

◦ For example (just to demonstrate a few of the axioms), for any value x in [a, b] and any functions f and
g, we have

∗ [A1]: (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

∗ [M2]: α · (f + g)(x) = α f(x) + α g(x) = (αf)(x) + (αg)(x).

∗ [M4]: (1 · f)(x) = f(x).

• Example: The �zero space� with a single element 0, with 0 + 0 = 0 and α · 0 = 0 for every α, is a vector
space.

◦ All of the axioms in this case eventually boil down to 0 = 0.

◦ This space is rather boring: since it only contains one element, there's really not much to say about it.

• There are many simple algebraic properties that can be derived from the axioms, which necessarily hold in
every vector space. For example:

1. Addition has a cancellation law: for any vector v, if a+ v = b+ v then a = b.

◦ By [A1]-[A4] we have (a+ v) + (−v) = a+ (v + (−v)) = a+ 0 = a.

◦ Similarly we also have (b+ v) + (−v) = b+ (v + (−v)) = b+ 0 = b.

◦ Finally, since a+ v = b+ v then a = (a+ v) + (−v) = (b+ v) + (−v) = b so a = b.

2. The zero vector is unique: for any vector v, if a+ v = v, then a = 0.

◦ This follows from property (1) applied when b = 0, along with a use of [A3].

3. The additive inverse is unique: for any vector v, if a+ v = 0 then a = −v.
◦ This follows from property (1) applied when b = −v, along with a use of [A4].

4. The scalar 0 times any vector gives the zero vector: 0 · v = 0 for any vector v.

◦ Expand v = (1 + 0) · v = v + 0 · v via [M2], [M4] and then apply property (2).

5. Any scalar times the zero vector is the zero vector: α · 0 = 0 for any scalar α.

◦ Expand α · 0 = α · (0+ 0) = α · 0+ α · 0 via [M1] and then apply property (1).

6. The scalar −1 times any vector gives the additive inverse: (−1) · v = −v for any vector v.

◦ Use property (3) and [M2]-[M4] to write 0 = 0 · v = (1 + (−1)) · v = v + (−1) · v, and then use
property (1) with a = −v.

7. The additive inverse of the additive inverse is the original vector: − (−v) = v for any vector v.

◦ Idea: Use property (5) and [M1], [M4] to write −(−v) = (−1)2 · v = 1 · v = v.
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• At the moment, we cannot say very much about abstract properties of a general vector space.

◦ It might seem that the axioms we have imposed do not really impose much structure aside from rather
simple properties like the ones listed above: after all, each individual axiom does not say very much on
its own.

◦ But in fact, we will show that the axioms taken collectively force V to have a very strong and regular
structure. In particular, we will be able to describe all of the elements of any vector space in a precise
and simple way.

3.3 Subspaces

• De�nition: A subspaceW of a vector space V is a subset of the vector space V which, under the same addition
and scalar multiplication operations as V , is itself a vector space.

• Example: Show that the set of diagonal 2× 2 matrices is a subspace of the vector space of all 2× 2 matrices.

◦ To do this directly from the de�nition, we need to verify that all of the vector space axioms hold for the

matrices of the form

[
a 0
0 b

]
for some a, b.

◦ First we need to check that the addition operation and scalar multiplication operations actually make

sense: we see that

[
a 0
0 b

]
+

[
c 0
0 d

]
=

[
a+ c 0
0 b+ d

]
is also a diagonal matrix, and p ·

[
a 0
0 b

]
=[

pa 0
0 pb

]
is a diagonal matrix too, so the sum and scalar multiplication operations are well-de�ned.

◦ Then we have to check the axioms, which is rather tedious. Here are some of the veri�cations:

◦ [A1] Addition is commutative:

[
a 0
0 b

]
+

[
c 0
0 d

]
=

[
c 0
0 d

]
+

[
a 0
0 b

]
.

◦ [A3] The zero element is the zero matrix, since

[
a 0
0 b

]
+

[
0 0
0 0

]
=

[
a 0
0 b

]
.

◦ [A4] The additive inverse of

[
a 0
0 b

]
is

[
−a 0
0 −b

]
since

[
a 0
0 b

]
+

[
−a 0
0 −b

]
=

[
0 0
0 0

]
.

◦ [M1] Scalar multiplication is consistent with regular multiplication: p · q ·
[
a 0
0 b

]
=

[
pqa 0
0 pqb

]
=

pq ·
[
a 0
0 b

]
.

• Very often, if we want to check that something is a vector space, it is often much easier to verify that it is a
subspace of something else we already know is a vector space.

◦ We will make use of this idea later when we talk about the solutions to a homogeneous linear di�erential
equation: we will show that the solutions form a vector space merely by checking that they are a subspace
of the vector space of all real-valued functions, rather than �reinventing the wheel� (so to speak) by going
through all of the axioms individually.

3.3.1 The Subspace Criterion

• It is very time-consuming to verify all of the axioms for a subspace, and much of the work seems to be
redundant. It would be convenient if we could clean up the repetitive nature of the veri�cations:

• Theorem (Subspace Criterion): A subset W of a vector space V is a subspace of V if and only if W has the
following three properties:

◦ [S1] W contains the zero vector of V .

◦ [S2] W is closed under addition: For any w1 and w2 in W , the vector w1 +w2 is also in W .
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◦ [S3] W is closed under scalar multiplication: For any scalar α and w in W , the vector α ·w is also in W .

• The reason we don't need to check everything to verify that a collection of vectors forms a subspace is that
most of the axioms will automatically be satis�ed in W because they're true in V .

◦ As long as all of the operations are de�ned, axioms [A1]-[A2] and [M1]-[M4] will hold in W because they
hold in V . But we need to make sure that we can always add and scalar-multiply two elements of W
and obtain a result that is in W , which is why we need [S2] and [S3].

◦ In order to get axiom [A3] for W , we need to know that the zero vector is in W , which is why we need
[S1].

◦ In order to get axiom [A4] for W we can use the result that (−1) ·w = −w, to see that the closure under
scalar multiplication automatically gives additive inverses.

• Any vector space automatically has two subspaces: the entire space V , and the �trivial� subspace consisting
only of the zero vector.

◦ These examples are rather uninteresting, since we already know V is a vector space, and the subspace
consisting only of the zero vector has very little structure.

• By using the subspace criterion, it is straightforward to check whether a subset is actually a subspace. In
order to show that a subset is not a subspace, it is su�cient to �nd a single example in which any one of the
three criteria fails.

• Example: Determine whether the set of vectors of the form 〈t, t, t〉 forms a subspace of R3.

◦ We check the parts of the subspace criterion.

◦ [S1]: The zero vector is of this form: take t = 0.

◦ [S2]: We have 〈t1, t1, t1〉 + 〈t2, t2, t2〉 = 〈t1 + t2, t1 + t2, t1 + t2〉, which is again of the same form if we
take t = t1 + t2.

◦ [S3]: We have α · 〈t1, t1, t1〉 = 〈αt1, αt1, αt1〉, which is again of the same form if we take t = αt1.

◦ All three parts are satis�ed, so this subset is a subspace .

• Example: Determine whether the set of vectors of the form
〈
t, t2

〉
forms a subspace of R2.

◦ We try checking the parts of the subspace criterion.

◦ [S1]: The zero vector is of this form: take t = 0.

◦ [S2]: For this criterion we try to write
〈
t1, t

2
1

〉
+
〈
t2, t

2
2

〉
=
〈
t1 + t2, t

2
1 + t22

〉
, but this does not have the

correct form, because in general t21 + t22 6= (t1 + t2)
2. (These quantities are only equal if 2t1t2 = 0.)

◦ From here we can �nd a speci�c counterexample: the vectors 〈1, 1〉 and 〈2, 4〉 are in the subset, but their

sum 〈3, 5〉 is not. Thus, this subset is not a subspace .

◦ Note that all we actually needed to do here was �nd a single counterexample, of which there are many.
Had we noticed earlier that 〈1, 1〉 and 〈2, 4〉 were in the subset but their sum 〈3, 5〉 was not, that would
have been su�cient to conclude that the given set was not a subspace.

• Example: Determine whether the set of vectors of the form 〈s, t, 0〉 forms a subspace of R3.

◦ We check the parts of the subspace criterion.

◦ [S1]: The zero vector is of this form: take s = t = 0.

◦ [S2]: We have 〈s1, t1, 0〉 + 〈s2, t2, 0〉 = 〈s1 + s2, t1 + t2, 0〉, which is again of the same form, if we take
s = s1 + s2 and t = t1 + t2.

◦ [S3]: We have α · 〈s1, t1, 0〉 = 〈αs1, αt1, 0〉, which is again of the same form, if we take s = αs1 and
t = αt1.

◦ All three parts are satis�ed, so this subset is a subspace .
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• Example: Determine whether the set of vectors of the form 〈x, y, z〉 where 2x − y + z = 0 forms a subspace
of R3.

◦ [S1]: The zero vector is of this form, since 2(0)− 0 + 0 = 0.

◦ [S2]: If 〈x1, y1, z1〉 and 〈x2, y2, z2〉 have 2x1−y1+z1 = 0 and 2x2−y2+z2 = 0 then adding the equations
shows that the sum 〈x1 + x2, y1 + y2, z1 + z2〉 also lies in the space.

◦ [S3]: If 〈x1, y1, z1〉 has 2x1 − y1 + z1 = 0 then scaling the equation by α shows that 〈αx1, αx2, αx3〉 also
lies in the space.

◦ All three parts are satis�ed, so this subset is a subspace .

• Example: Determine whether the set of vectors of the form 〈x, y, z〉 where x, y, z ≥ 0 forms a subspace of R3.

◦ [S1]: The zero vector is of this form: take t = 0.

◦ [S2]: If 〈x1, y1, z1〉 and 〈x2, y2, z2〉 have x1, y1, z1 ≥ 0 and x2, y2, z2 ≥ 0, then x1 + x2 ≥ 0, y1 + y2 ≥ 0,
and z1 + z2 ≥ 0, so 〈x1 + x2, y1 + y2, z1 + z2〉 also lies in the space.

◦ [S3]: If 〈x, y, z〉 has x, y, z ≥ 0, then it is not necessarily true that αx, αy, αz ≥ 0: speci�cally, this is not
true when α = −1.

◦ From here we can �nd a speci�c counterexample: the vector 〈1, 1, 1〉 is in the subset, but the scalar

multiple −1 · 〈1, 1, 1〉 = 〈−1,−1,−1〉 is not in the subset. Thus, this subset is not a subspace .

• Example: Determine whether the set of 2 × 2 matrices of trace zero is a subspace of the space of all 2 × 2
matrices.

◦ [S1]: The zero matrix has trace zero.

◦ [S2]: Since tr(A+B) = tr(A) + tr(B), we see that if A and B have trace zero then so does A+B.

◦ [S3]: Since tr(αA) = αtr(A), we see that if A has trace zero then so does αA.

◦ All three parts are satis�ed, so this subset is a subspace .

• Example: Determine whether the set of 2 × 2 matrices of determinant zero is a subspace of the space of all
2× 2 matrices.

◦ [S1]: The zero matrix has determinant zero.

◦ [S3]: Since det(αA) = α2 det(A) when A is a 2 × 2 matrix, we see that if A has determinant zero then
so does αA.

◦ [S2]: If A and B have determinant zero, then there does not appear to be a nice way to compute the
determinant of A+B in general.

◦ We can in fact �nd a counterexample: if A =

[
0 1
0 0

]
and B =

[
0 0
1 0

]
then det(A) = det(B) = 0,

but det(A+B) = −1. Thus, this subset is not a subspace .

3.3.2 Additional Examples of Subspaces

• Here are a few more examples of subspaces of vector spaces which will be of interest to us:

• Example: The collection of solution vectors 〈x1, · · · , xn〉 to any homogeneous system of linear equations forms
a subspace of Rn.

◦ It is possible to check this directly by working with equations. But it is much easier to use matrices:

write the system in matrix form, as Ax = 0, where x =

 x1
...
xn

 is a solution vector.

◦ [S1]: We have A0 = 0, by the properties of the zero vector.
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◦ [S2]: If x and y are two solutions, the properties of matrix arithmetic imply A(x + y) = Ax + Ay =
0+ 0 = 0 so that x+ y is also a solution.

◦ [S3]: If α is a scalar and x is a solution, then A(α · x) = α · (Ax) = α · 0 = 0, so that α · x is also a
solution.

• Example: The collection of continuous functions on [a, b] is a subspace of the space of all functions on [a, b].

◦ [S1]: The zero function is continuous.

◦ [S2]: The sum of two continuous functions is continuous, from basic calculus.

◦ [S3]: The product of continuous functions is continuous, so in particular a constant times a continuous
function is continuous.

• Example: The collection of n-times di�erentiable functions on [a, b] is a subspace of the space of continuous
functions on [a, b], for any positive integer n.

◦ The zero function is di�erentiable, as are the sum and product of any two functions which are di�eren-
tiable n times.

• Example: The collection of all polynomials is a vector space.

◦ Observe that polynomials are functions on the entire real line. Therefore, it is su�cient to verify the
subspace criteria.

◦ The zero function is a polynomial, as is the sum of two polynomials, and any scalar multiple of a
polynomial.

• Example: The collection of solutions to the (homogeneous, linear) di�erential equation y′′+6y′+5y = 0 form
a vector space.

◦ We show this by verifying that the solutions form a subspace of the space of all functions.

◦ [S1]: The zero function is a solution.

◦ [S2]: If y1 and y2 are solutions, then y′′1 + 6y′1 + 5y1 = 0 and y′′2 + 6y′2 + 5y2 = 0, so adding and using
properties of derivatives shows that (y1+ y2)

′′+6(y1+ y2)
′+5(y1+ y2) = 0, so y1+ y2 is also a solution.

◦ [S3]: If α is a scalar and y1 is a solution, then scaling y′′1 + 6y′1 + 5y1 = 0 by α and using properties of
derivatives shows that (αy1)

′′ + 6(αy1)
′ + 5(αy1) = 0, so αy1 is also a solution.

◦ Note that we did not need to know how to solve the di�erential equation to answer the question.

◦ For completeness, the solutions are y = Ae−x+Be−5x for any constants A and B. (From this description,
if we wanted to, we could directly verify that such functions form a vector space.)

• This last example should help explain how the study of vector spaces and linear algebra is useful for the study
of di�erential equations: namely, because the solutions to the given homogeneous linear di�erential equation
form a vector space.

◦ It is true more generally that the solutions to an arbitrary homogeneous linear di�erential equation

y
(n)
1 + Pn(x) · y(n−1)1 + · · ·+ P1(x) · y1 = 0 will form a vector space.

◦ Most of the time we cannot explicitly write down the solutions to this di�erential equation; nevertheless,
if we can understand the structure of a general vector space, we can still say something about what the
solutions look like.

3.4 Span, Linear Independence, Bases, Dimension

• One thing we would like to know, now that we have the de�nition of a vector space and a subspace, is what
else we can say about elements of a vector space: that is, we would like to know what kind of structure the
elements of a vector space have.

• In some of the earlier examples we saw that, in Rn and a few other vector spaces, subspaces could all be
written down in terms of one or more parameters. In order to discuss this idea more precisely, we �rst need
some terminology.
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3.4.1 Linear Combinations and Span

• De�nition: Given a set v1,v2, . . . ,vn of vectors in a vector space V , we say a vectorw in V is a linear combination
of v1,v2, . . . ,vn if there exist scalars a1, · · · , an such that w = a1 · v1 + a2 · v2 + · · ·+ an · vn.

◦ Example: In R2, the vector 〈1, 1〉 is a linear combination of 〈1, 0〉 and 〈0, 1〉, because 〈1, 1〉 = 1 · 〈1, 0〉+
1 · 〈0, 1〉.
◦ Example: In R4, the vector 〈4, 0, 5, 9〉 is a linear combination of 〈1, 0, 0, 1〉, 〈0, 1, 0, 0〉, and 〈1, 1, 1, 2〉,
because 〈4, 0, 5, 9〉 = 1 · 〈1,−1, 2, 3〉 − 2 · 〈0, 1, 0, 0〉+ 3 · 〈1, 1, 1, 2〉.

◦ Non-Example: In R3, the vector 〈0, 0, 1〉 is not a linear combination of 〈1, 1, 0〉 and 〈0, 1, 1〉 because there
exist no scalars a1 and a2 for which a1 · 〈1, 1, 0〉 + a2 · 〈0, 1, 1〉 = 〈0, 0, 1〉: this would require a common
solution to the three equations a1 = 0, a1 + a2 = 0, and a2 = 1, and this system has no solution.

• De�nition: We de�ne the span of a collection of vectors v1,v2, . . . ,vn in V , denoted span(v1,v2, . . . ,vn), to
be the set W of all vectors which are linear combinations of v1,v2, . . . ,vn. Explicitly, the span is the set of
vectors of the form a1 · v1 + · · ·+ an · vn, for some scalars a1, · · · , an.

◦ For technical reasons, we de�ne the span of the empty set to be the zero vector.

• Example: The span of the vectors 〈1, 0, 0〉 and 〈0, 1, 0〉 in R3 is the set of vectors of the form a · 〈1, 0, 0〉+ b ·
〈0, 1, 0〉 = 〈a, b, 0〉.

◦ Equivalently, the span of these vectors is the set of vectors whose z-coordinate is zero, which (geometri-
cally) forms the plane z = 0.

• Example: Determine whether the vectors 〈2, 3, 3〉 and 〈4,−1, 3〉 are in span(v,w), where v = 〈1,−1, 2〉 and
w = 〈2, 1,−1〉.

◦ For 〈2, 3, 3〉 we must determine whether it is possible to write 〈2, 3, 3〉 = a · 〈1,−1, 2〉 + b · 〈2, 1,−1〉 for
some a and b.

◦ Equivalently, we want to solve the system 2 = a+ 2b, 3 = −a+ b, 3 = 2a− b.
◦ Row-reducing the associated coe�cient matrix gives 1 2

−1 1
2 −1

∣∣∣∣∣∣
2
3
3

 R2+R1−→
R3−2R1

 1 2
0 3
0 −5

∣∣∣∣∣∣
2
5
−3

 R3+
5
3R1−→

 1 2
0 3
0 0

∣∣∣∣∣∣
2
5

16/3


and we obtain a contradiction. Thus, 〈2, 3, 3〉 is not in the span .

◦ Similarly, for 〈4,−1, 3〉 we want to solve 〈4,−1, 3〉 = c · 〈1,−1, 2〉+ d · 〈2, 1,−1〉.
◦ Row-reducing the associated coe�cient matrix gives 1 2

−1 1
2 −1

∣∣∣∣∣∣
4
−1
3

 R2+R1−→
R3−2R1

 1 2
0 3
0 −5

∣∣∣∣∣∣
4
3
−5

 R3+
5
3R1−→

 1 2
0 3
0 0

∣∣∣∣∣∣
4
3
0


from which we can easily obtain the solution d = 1, c = 2.

◦ Since 〈4,−1, 3〉 = 2 · 〈1,−1, 2〉+ 1 · 〈2, 1,−1〉 we see that 〈4,−1, 3〉 is in the span .

• Here are some basic properties of the span:

• Proposition: For any vectors v1, . . . ,vn in V , the set span(v1, . . . ,vn) is a subspace of V .

◦ Proof: We check the subspace criterion.

◦ [S1] The zero vector can be written as 0 · v1 + · · ·+ 0 · vn.

◦ [S2] The span is closed under addition because (a1 · v1 + · · · + an · vn) + (b1 · v1 + · · · + bn · vn) =
(a1 + b1) · v1 + · · ·+ (an + bn) · vn.

9



◦ [S3] The span is closed under scalar multiplication because α · (a1v1 + · · · + anvn) = (αa1) · v1 + · · · +
(αan) · vn.

• Proposition: For any vectors v1, . . . ,vn in V , if W is any subspace of V that contains v1, . . . ,vn, then W
contains span(v1, . . . ,vn). In other words, the span is the smallest subspace containing the vectors v1, . . . ,vn.

◦ Proof: Consider any element of the span: by de�nition, it can be written as w = a1 · v1 + · · · + an · vn

for some scalars a1, · · · , an.
◦ Because W is a subspace, it is closed under scalar multiplication, so each of a1 ·v1, · · · , an ·vn lies in W .

◦ Furthermore, also becauseW is a subspace, it is closed under addition. Thus, the sum a1 ·v1+· · ·+an ·vn

lies in W .

◦ Thus, every element of the span lies in W , as claimed.

• De�nition: Given a vector space V , if the span of vectors v1, . . . ,vn is all of V , we say that v1, . . . ,vn form
a spanning set (or generating set) for V .

◦ There are a number of di�erent phrases we use for this idea: we also say that the vectors v1, . . . ,vn span
or generate the vector space V .

◦ Spanning sets are very useful because they allow us to describe every vector in V in terms of the vectors
v1, . . . ,vn.

◦ Explicitly: if v1, . . . ,vn span V , then every vector in V is a linear combination of the vectors v1, . . . ,vn,
which is to say, every vector w in V can be written in the form w = a1 ·v1+ · · ·+an ·vn for some scalars
a1, . . . , an.

• Example: Show that the vectors 〈1, 0, 0〉, 〈0, 1, 0〉, and 〈0, 0, 1〉 span R3.

◦ For any vector 〈a, b, c〉, we can write 〈a, b, c〉 = a · 〈1, 0, 0〉 + b · 〈0, 1, 0〉 + c · 〈0, 0, 1〉, so it is a linear
combination of the three given vectors.

• Example: Show that the matrices

[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
span the vector space of 2× 2 matrices of

trace zero.

◦ Recall that we showed earlier that the space of matrices of trace zero is a vector space (since it is a
subspace of the vector space of all 2× 2 matrices).

◦ A 2× 2 matrix

[
a b
c d

]
has trace zero when a+ d = 0, or equivalently when d = −a.

◦ So any matrix of trace zero has the form

[
a b
c −a

]
= a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
.

◦ Since any matrix of trace zero is therefore a linear combination of the matrices

[
1 0
0 −1

]
,

[
0 1
0 0

]
,[

0 0
1 0

]
, we conclude that they are a spanning set.

• Example: Determine whether the vectors 〈1, 2〉, 〈2, 4〉, 〈3, 1〉 span R2.

◦ For any vector 〈p, q〉, we want to determine whether there exist some scalars a, b, c such that 〈p, q〉 =
a · 〈1, 2〉+ b · 〈2, 4〉+ c · 〈3, 1〉.
◦ Equivalently, we want to check whether the system p = a+2b+3c, q = 2a+4b+ c has solutions for any
p, q.

◦ Row-reducing the associated coe�cient matrix gives[
1 2 3
2 4 1

∣∣∣∣ pq
]

R2−2R1−→
[

1 2 3
0 0 −5

∣∣∣∣ p
q − 2p

]
and since this system is non-contradictory, there is always a solution: indeed, there are in�nitely many.

(One solution is c =
2

5
p− 1

5
q, b = 0, a = −1

5
p+

3

5
q.)
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◦ Since there is always a solution for any p, q, we conclude that these vectors do span R2 .

• Example: Determine whether the vectors 〈1,−1, 3〉, 〈2, 2,−1〉, 〈3, 4, 7〉 span R3.

◦ For any vector 〈p, q, r〉, we want to determine whether there exist some scalars a, b, c such that 〈p, q, r〉 =
a · 〈1,−1, 3〉+ b · 〈2, 2,−1〉+ c · 〈3, 1, 2〉.

◦ Row-reducing the associated coe�cient matrix gives 1 1 −1
−1 0 2
3 1 −5

∣∣∣∣∣∣
p
q
r

 R2+R1−→
R3−3R1

 1 1 −1
0 1 1
0 −2 −2

∣∣∣∣∣∣
p

q + p
r − 3p

 R3+2R2−→

 1 1 −1
0 1 1
0 0 0

∣∣∣∣∣∣
p

q + p
r + 2q − p

 .
◦ Now, if r+2q− p 6= 0, the �nal column will have a pivot and the system will be contradictory. This can
certainly occur: for example, we could take r = 1 and p = q = 0.

◦ Since there is no way to write an arbitrary vector in R3 as a linear combination of the given vectors, we

conclude that these vectors do not span R3 .

• We can generalize the idea in the above examples to give a method for determining whether a collection of
vectors in Rn will span Rn.

• Theorem (Spanning Sets in Rn): A collection of k vectors v1, . . . ,vk in Rn will span Rn if and only if, for
every vector b, there is at least one vector x satisfying the matrix equation Mx = b, where M is the matrix
whose columns are the vectors v1, . . . ,vk. Such a solution x exists for any b if and only if M has rank n:
that is, when a row-echelon form of M has n pivotal columns.

◦ Proof: Write each vi =

 m1,i

...
mn,i

 as a column matrix.

◦ Then a1·v1+· · ·+ak·vk =

 m1,1

...
mn,1

 a1+· · ·+
 m1,k

...
mn,k

 ak =M

 a1
...
ak

, whereM =

 m1,1 · · · m1,k

...
. . .

...
mn,1 · · · mn,k


is the matrix whose columns are the vectors v1, . . . ,vk.

◦ So the statement that, for any b, there exist scalars a1, . . . , ak such that a1 · v1 + · · · + ak · vk = b is

equivalent to the statement that there is a solution x =

 a1
...
ak

 to the matrix equation Mx = b.

◦ For the second part of the theorem, consider the matrix equation Mx = b, and perform row operations
to put M in row-echelon form.

◦ By our theorems on systems of linear equations, this system will have at least one solution precisely when
there is no pivot in the augmented column of coe�cients.

◦ Since b can be chosen arbitrarily, so can the column of constants in the augmented matrix once we put
it in row-echelon form.

◦ Since the augmented matrix has at most n pivots (since it has n rows), the only way we can prevent
having a pivot in the column of constants is to have all the pivots in the matrix M itself: thus, M must
have n pivots. From the de�nition of rank, this is equivalent to saying M has rank n.

3.4.2 Linear Independence and Linear Dependence

• De�nition: We say a �nite set of vectors v1, . . . ,vn is linearly independent if a1 ·v1+ · · ·+an ·vn = 0 implies
a1 = · · · = an = 0. Otherwise, we say the collection is linearly dependent.

◦ Note: For an in�nite set of vectors, we say it is linearly independent if every �nite subset is linearly
independent, per the de�nition above. Otherwise, if some �nite subset displays a dependence, we say
the in�nite set is dependent. We will generally focus only on �nite sets of vectors in our discussion.
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◦ In other words, v1, . . . ,vn are linearly independent precisely when the only way to form the zero vector as
a linear combination of v1, . . . ,vn is to have all the scalars equal to zero (the �trivial� linear combination).
If there is a nontrivial linear combination giving the zero vector, then v1, . . . ,vn are linearly dependent.

◦ An equivalent way of thinking of linear (in)dependence is that a set is dependent if one of the vectors is a
linear combination of the others (i.e., it �depends� on the others). Explicitly, if a1·v1+a2·v2+· · ·+an·vn =

0 and a1 6= 0, then we can rearrange to see that v1 = − 1

a1
(a2 · v2 + · · ·+ an · vn).

• Example: Determine whether the vectors 〈1, 1, 0〉, 〈0, 2, 1〉 in R3 are linearly dependent or linearly independent.

◦ Suppose that we had scalars a and b with a · 〈1, 1, 0〉+ b · 〈0, 2, 1〉 = 〈0, 0, 0〉.
◦ Comparing the two sides requires a = 0, a+ 2b = 0, b = 0, which has only the solution a = b = 0.

◦ Thus, by de�nition, these vectors are linearly independent .

• Example: Determine whether the vectors 〈1, 1, 0〉, 〈2, 2, 0〉 in R3 are linearly dependent or linearly independent.

◦ Suppose that we had scalars a and b with a · 〈1, 1, 0〉+ b · 〈2, 2, 0〉 = 〈0, 0, 0〉.
◦ Comparing the two sides requires a+ 2b = 0, a+ 2b = 0, 0 = 0, which has (for example) the nontrivial
solution a = 1, b = −2.
◦ Thus, we see that we can write 2 · 〈1, 1, 0〉 + (−1) · 〈2, 2, 0〉 = 〈0, 0, 0〉, and this is a nontrivial linear

combination giving the zero vector meaning that these vectors are linearly dependent .

• There is an easy general way to determine whether two vectors are linearly independent:

• Proposition: In any vector space V , the two vectors v1 and v2 are linearly dependent if one is a scalar multiple
of the other, and they are linearly independent otherwise.

◦ Proof: If v1 = α · v2 then we can write 1 · v1 + (−α) · v2 = 0, and similarly if v2 = α · v1 then we can
write (−α) · v1 + 1 · v2 = 0. In either case the vectors are linearly dependent.

◦ If the vectors are dependent, then suppose a · v1 + b · v2 = 0 where a, b are not both zero. If a 6= 0 then
we can write v1 = (−b/a) · v2, and if b 6= 0 then we can write v2 = (−a/b) · v1. At least one of these
cases must occur, so one of the vectors is a scalar multiple of the other as claimed.

• It is more a delicate problem to determine whether a larger set of vectors is linearly independent.

• Example: Determine whether the vectors 〈1, 0, 2, 2〉, 〈2,−2, 3, 0〉, 〈0, 3, 1, 3〉, and 〈0, 4, 1, 2〉 in R4 are linearly
dependent or linearly independent.

◦ Suppose that we had scalars a,b,c,d with a · 〈1, 0, 2, 2〉 + b · 〈2,−2, 3, 0〉 + c · 〈0, 3, 1, 3〉 + d · 〈0, 4, 1, 2〉 =
〈0, 0, 0, 0〉.

◦ This is equivalent to saying a+ 2b = 0, −2b+ 3c+ 4d = 0, 2a+ 3b+ c+ d = 0, and 2a+ 3c+ 2d = 0.

◦ To search for solutions we can convert this system into matrix form and then row-reduce it:
1 2 0 0
0 −2 3 4
2 3 1 1
2 0 3 2

∣∣∣∣∣∣∣∣
0
0
0
0

 R3−2R1−→
R4−2R1


1 2 0 0
0 −2 3 4
0 −1 1 1
0 −4 3 2

∣∣∣∣∣∣∣∣
0
0
0
0

 −→ · · · −→


1 0 0 −2
0 1 0 1
0 0 1 2
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0


from which we can obtain a nonzero solution d = 1, c = −2, b = −1, a = 2.

◦ So we see 2 · 〈1, 0, 2, 2〉 + (−1) · 〈2,−2, 0, 3〉 + (−2) · 〈0, 3, 3, 1〉 + 1 · 〈0, 4, 2, 1〉 = 〈0, 0, 0, 0〉, and this is a

nontrivial linear combination giving the zero vector meaning that these vectors are linearly dependent .

• We can generalize the idea in the above example to give a method for determining whether a collection of
vectors in Rn is linearly independent:
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• Theorem (Dependence of Vectors in Rn): A collection of k vectors v1, . . . ,vk in Rn is linearly dependent if
and only if there is a nonzero vector x satisfying the matrix equation Mx = 0, where M is the matrix whose
columns are the vectors v1, . . . ,vk.

◦ Proof: Write each vi =

 m1,i

...
mn,i

 as a column matrix.

◦ Then a1·v1+· · ·+ak·vk =

 m1,1

...
mn,1

 a1+· · ·+
 m1,k

...
mn,k

 ak =M

 a1
...
ak

, whereM =

 m1,1 · · · m1,k

...
. . .

...
mn,1 · · · mn,k


is the matrix whose columns are the vectors v1, . . . ,vk.

◦ So the linear combination a1 · v1 + · · · + ak · vk is the zero vector precisely when the matrix product

Mx = 0, where x =

 a1
...
ak

.
◦ By de�nition, the vectors v1, . . . ,vk will be linearly dependent when there is a nonzero x satisfying this
matrix equation, and they will be linearly independent when the only solution is x = 0.

• We can also ask about linear independence of functions:

• Example: Determine whether the functions ex and e2x are linearly independent in the vector space of all
real-valued functions.

◦ Suppose that we had scalars a and b with a · ex + b · e2x = 0 for all x.

◦ Taking the derivative of both sides with respect to x yields a · ex + b · 2e2x = 0.

◦ Subtracting the original equation from this one produces b · e2x = 0, and since x is a variable we must
have b = 0.

◦ The �rst equation then gives a · ex = 0 so it must also be true that a = 0.

◦ Thus, by de�nition, these functions are linearly independent .

• We can generalize the idea in the above example to give a method for determining whether a collection of
functions is linearly independent:

• De�nition: For n functions y1(x), y2(x), · · · , yn(x) which are each di�erentiable n− 1 times, their Wronskian

is de�ned to be W (y1, y2, · · · , yn) = det


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

. (Note that the Wronskian will

also be a function of x.)

◦ Example: The Wronskian of ex, e2x is W (ex, e2x) =

∣∣∣∣ ex e2x

ex 2e2x

∣∣∣∣ = e3x.

• Theorem (Linear Independence of Functions): Suppose that n functions y1, y2, . . . , yn which are each di�eren-
tiable n−1 times have a Wronskian that is not the zero function. Then the functions are linearly independent
in the vector space of real-valued functions.

◦ Proof: Suppose that the functions are linearly dependent with

n∑
j=1

ajyj = 0, then by di�erentiating the

appropriate number of times we see that

n∑
j=1

ajy
(i)
j = 0 for any 0 ≤ i ≤ n.

◦ Hence, in particular, the rows of the Wronskian matrix are linearly dependent (as vectors), and so the
determinant of the matrix is zero.
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◦ Therefore, if the Wronskian determinant is not zero, the functions cannot be dependent.

◦ Important Warning: The converse of this theorem is false! As shown below, there exist examples of
linearly independent functions y1, y2, · · · , yn whose Wronskian is the zero function.

• Example: Show that the functions sin(x) and cos(x) are linearly independent using the Wronskian.

◦ We compute W (sin(x), cos(x)) =

∣∣∣∣ sin(x) cos(x)
cos(x) − sin(x)

∣∣∣∣ = −1, which is not the zero function.

• Example: Determine whether the functions 1 + x, 2 − x, and 3 + 4x are linearly dependent or linearly
independent.

◦ We compute W (1, x, 1 + x) =

∣∣∣∣∣∣
1 + x 2− x 3 + 4x
1 −1 4
0 0 0

∣∣∣∣∣∣ = 0, by expanding along the bottom row.

◦ Because these functions are in�nitely di�erentiable and have Wronskian equal to the zero function, they

are linearly dependent .

◦ A little searching will produce the explicit linear dependence −11(1 + x) + (2− x) + 3(3 + 4x) = 0.

• Example: Compute the Wronskian of the functions x2 and x |x|. Are they linearly dependent or linearly
independent?

◦ We compute W (x2, x |x|) =
∣∣∣∣ x2 x |x|
2x 2 |x|

∣∣∣∣ = 2x2 |x| − 2x2 |x| = 0, which is the zero function. (One can

verify using the de�nition of the derivative that x |x| is di�erentiable everywhere and that its derivative
is 2 |x|.)
◦ This suggests these functions are linearly dependent. But in fact, they are linearly independent: if
a · x2 + b · x |x| = 0, then setting x = 1 produces a+ b = 0 and setting x = −1 produces a− b = 0, and
the only solution is a = b = 0.

◦ A natural guess is that the issue occurs because x |x| is not twice-di�erentiable. However, there are
versions of this counterexample involving functions that are in�nitely di�erentiable.

• The terminology of �linear dependence� arises from the fact that if a set of vectors is linearly dependent, one
of the vectors is necessarily a linear combination of the others (i.e., it �depends� on the others):

• Proposition (Dependence and Linear Combinations): If the vectors v1, . . . ,vn are linearly dependent, then for
some 1 ≤ i ≤ n the vector vi can be written as a linear combination of the vectors v1, . . .vi−1,vi+1, . . . ,vn.

◦ Proof: By the de�nition of linear dependence, there is some dependence a1 ·v1 + · · ·+ an ·vn = 0 where
not all of the coe�cients are zero: say, speci�cally, that ai 6= 0.

◦ Then we can rearrange the statement a1 · v1 + · · ·+ an · vn = 0 to read

ai · vi = (−a1) · v1 + · · ·+ (−ai−1) · vi−1 + (−ai+1) · vi+1 + · · ·+ (−an) · vn

and upon multiplying by 1/ai we see that

vi = (−a1
ai

) · v1 + · · ·+ (−ai−1
ai

) · vi−1 + (−ai+1

ai
) · vi+1 + · · ·+ (−an

ai
) · vn.

◦ Thus, vi can be written as a linear combination of the other vectors, as claimed.

• Example: Write one of the linearly dependent vectors 〈1,−1〉, 〈2, 2〉, 〈2, 1〉 as a linear combination of the
others.

◦ If we search for a linear dependence, we require a 〈1,−1〉+ b 〈2, 2〉+ c 〈2, 1〉 = 〈0, 0〉.
◦ By row-reducing the appropriate matrix we can �nd the solution 2 〈1,−1〉+ 3 〈2, 2〉 − 4 〈2, 1〉 = 〈0, 0〉.

◦ By rearranging we can then write 〈1,−1〉 = −3

2
〈2, 2〉+ 2 〈2, 1〉 .
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• Here is a useful result about the span of a linearly independent set of vectors:

• Theorem (Characterization of Linear Independence): The vectors v1, . . . ,vn are linearly independent if and
only if every vector w in the span of v1, . . . ,vn may be uniquely written as a sum w = a1 · v1 + · · ·+ an · vn:
that is, the scalars a1, a2, . . . , an are unique.

◦ Proof: First suppose the decomposition is always unique: then a1 · v1 + · · · + an · vn = 0 implies
a1 = · · · = an = 0, because 0 · v1 + · · ·+ 0 · vn = 0 is by assumption the only decomposition of 0. So we
see that the vectors are linearly independent.

◦ Now suppose that we had two ways of decomposing a vector w, say as w = a1 · v1 + · · ·+ an · vn and as
w = b1 · v1 + · · ·+ bn · vn.

◦ Then subtracting and then rearranging the di�erence between these two equations yields w − w =
(a1 − b1) · v1 + · · ·+ (an − bn) · vn.

◦ Now w −w is the zero vector, so we have (a1 − b1) · v1 + · · ·+ (an − bn) · vn = 0.

◦ But now because v1, . . . ,vn are linearly independent, we see that all of the scalar coe�cients a1 −
b1, · · · , an − bn are zero. But this says a1 = b1, a2 = b2, . . . , an = bn, which is to say that the two
decompositions are actually the same.

3.4.3 Bases and Dimension

• We will now combine the ideas of a spanning set and a linearly independent set:

• De�nition: A linearly independent set of vectors which spans V is called a basis for V .

◦ Terminology Note: The plural form of the (singular) word �basis� is �bases�.

• Example: Show that the vectors 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉 form a basis for R3.

◦ The vectors certainly span R3, since we can write any vector 〈a, b, c〉 = a · 〈1, 0, 0〉+b · 〈0, 1, 0〉+c · 〈0, 0, 1〉
as a linear combination of these vectors.

◦ Furthermore, the vectors are linearly independent, because a · 〈1, 0, 0〉+ b · 〈0, 1, 0〉+ c · 〈0, 0, 1〉 = 〈a, b, c〉
is the zero vector only when a = b = c = 0.

◦ Thus, these three vectors are a linearly independent spanning set for R3, so they form a basis.

• A particular vector space can have several di�erent bases:

• Example: Show that the vectors 〈1, 1, 1〉, 〈2,−1, 1〉, 〈1, 2, 1〉 also form a basis for R3.

◦ Solving the system of linear equations determined by x · 〈1, 1, 1〉+ y · 〈2,−1, 1〉+ z · 〈1, 2, 1〉 = 〈a, b, c〉 for
x, y, z will yield the solution x = −3a− b+ 5c, y = a− c, z = 2a+ b− 3c.

◦ Therefore, 〈a, b, c〉 = (−3a− b+ 5c) · 〈1, 1, 1〉+ (a− c) · 〈2,−1, 1〉+ (2a+ b− 3c) · 〈1, 2, 1〉, so these three
vectors span R3.

◦ Furthermore, solving the system x · 〈1, 1, 1〉+ y · 〈2,−1, 1〉+ z · 〈1, 2, 1〉 = 〈0, 0, 0〉 yields only the solution
x = y = z = 0, so these three vectors are also linearly independent.

◦ So 〈1, 1, 1〉, 〈2,−1, 1〉, 〈1, 2, 1〉 are a linearly independent spanning set for R3, meaning that they form a
basis.

• Example: Find a basis for the vector space of 2× 3 (real) matrices.

◦ A general 2× 3 matrix has the form

[
a b c
d e f

]
= a

[
1 0 0
0 0 0

]
+ b

[
0 1 0
0 0 0

]
+ c

[
0 0 1
0 0 0

]
+

d

[
0 0 0
1 0 0

]
+ e

[
0 0 0
0 1 0

]
+ f

[
0 0 0
0 0 1

]
.

◦ This decomposition suggests that we can take the set of six matrices[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 1
0 0 0

]
,

[
0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

]
as a basis.
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◦ Indeed, they certainly span the space of all 2×3 matrices, and they are also linearly independent, because
the only linear combination giving the zero matrix is the one with a = b = c = d = e = f = 0.

• Non-Example: Show that the vectors 〈1, 1, 0〉 and 〈1, 1, 1〉 are not a basis for R3.

◦ These vectors are linearly independent, since neither is a scalar multiple of the other.

◦ However, they do not span R3 since, for example, it is not possible to obtain the vector 〈1, 0, 0〉 as a
linear combination of 〈1, 1, 0〉 and 〈1, 1, 1〉.
◦ Explicitly, since a · 〈1, 1, 0〉+ b · 〈1, 1, 1〉 = 〈a+ b, a+ b, b〉, there are no possible a, b for which this vector
can equal 〈1, 0, 0〉, since this would require a+ b = 1 and a+ b = 0 simultaneously.

• Non-Example: Show that the vectors 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 1〉 are not a basis for R3.

◦ These vectors do span V , since we can write any vector 〈a, b, c〉 = a · 〈1, 0, 0〉+ b · 〈0, 1, 0〉+ c · 〈0, 0, 1〉+
0 · 〈1, 1, 1〉.

◦ However, these vectors are not linearly independent, since we have the explicit linear dependence 1 ·
〈1, 0, 0〉+ 1 · 〈0, 1, 0〉+ 1 · 〈0, 0, 1〉+ (−1) · 〈1, 1, 1〉 = 〈0, 0, 0〉.

• Having a basis allows us to describe all the elements of a vector space in a particularly convenient way:

• Proposition (Characterization of Bases): The set of vectors v1,v2, . . . ,vn forms a basis of the vector space V
if and only if every vector w in V can be uniquely written in the form w = a1 · v1 + a2 · v2 + · · ·+ an · vn for
scalars a1, a2, . . . , an.

◦ In particular, this proposition says that if we have a basis v1,v2, . . . ,vn for V , then we can describe all
of the other vectors in V in a particularly simple way (as a linear combination of v1,v2, . . . ,vn) that is
unique. A useful way to interpret this idea is to think of the basis vectors v1,v2, . . . ,vn as �coordinate
directions� and the coe�cients a1, a2, . . . , an as �coordinates�.

◦ Proof: Suppose v1,v2, . . . ,vn is a basis of V . Then by de�nition, the vectors v1,v2, . . . ,vn span the
vector space V : every vector w in V can be written in the form w = a1 · v1 + a2 · v2 + · · ·+ an · vn for
some scalars a1, a2, . . . , an.

◦ Furthermore, since the vectors v1,v2, . . . ,vn are linearly independent, by our earlier proposition every
vector w in their span (which is to say, every vector in V ) can be uniquely written in the form w =
a1 · v1 + a2 · v2 + · · ·+ an · vn, as claimed.

◦ Conversely, suppose every vector w in V can be uniquely written in the form w = a1 ·v1+a2 ·v2+ · · ·+
an · vn. Then by de�nition, the vectors v1,v2, . . . ,vn span V .

◦ Furthermore, by our earlier proposition, because every vector in span(v1,v2, . . . ,vn) can be uniquely
written as a linear combination of v1,v2, . . . ,vn, the vectors v1,v2, . . . ,vn are linearly independent:
thus, they are a linearly independent spanning set for V , so they form a basis.

• If we have a general description of the elements of a vector space, we can often extract a basis by direct
analysis.

• Example: Find a basis for the space W of polynomials p(x) of degree ≤ 3 such that p(1) = 0.

◦ We remark that W is a subspace of the vector space V of polynomials, as it satis�es the subspace
criterion. (We omit the veri�cation.)

◦ A polynomial of degree ≤ 3 has the form p(x) = ax3 + bx2 + cx+ d for constants a, b, c, d.

◦ Since p(1) = a+ b+ c+ d, the condition p(1) = 0 gives a+ b+ c+ d = 0, so d = −a− b− c.
◦ Thus, we can write p(x) = ax3+ bx2+ cx+(−a− b− c) = a(x3−1)+ b(x2−1)+ c(x−1), and conversely,
any such polynomial has p(1) = 0.

◦ Since every polynomial in W can be uniquely written as a(x3 − 1) + b(x2 − 1) + c(x − 1), we conclude

that the set {x3 − 1, x2 − 1, x− 1} is a basis of W .

• A basis from a vector space can be obtained from a spanning set:
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• Theorem (Spanning Sets and Bases): If V is a vector space, then any spanning set for V contains a basis of
V .

◦ Proof: We show that we can �reduce� any spanning set by removing elements until the spanning set
becomes linearly independent.

◦ In the event that the spanning set is in�nite, the argument is rather delicate and technical, so we will
only treat the case of a �nite spanning set consisting of the vectors v1,v2, . . . ,vn.

◦ Start with an empty collection S of elements. Now, for each 1 ≤ i ≤ n, perform the following procedure:

∗ Check whether the vector vi is contained in the span of S. (Note that the span of the empty set is
the zero vector.)

∗ If vi is not in the span of S, then add it to S. Otherwise, do nothing.

◦ We claim that at the end of this procedure, S is a basis for V . Roughly speaking, the idea is that the
collection of elements which we have not thrown away will still be a generating set (since removing a
dependent element will not change the span), but the collection will also now be linearly independent
(since we threw away elements which were dependent).

◦ To see that S is linearly independent, observe that if vi is added to the set S, then vi is linearly
independent from the vectors already in S (as it is not in the span of S). Thus, each vector added to S
preserves the linear independence of S, so when the procedure terminates S will be linearly independent.

◦ To see that S spans V , the idea is to observe that the span of S is the same as the span of v1,v2, . . . ,vn.

◦ Explicitly, consider any vector vi that is not in S: it was not added to S during the construction of S,
so it must have been contained in the span of the vectors already in S. Therefore, adding vi to S will
not change the span. Doing this for each vector vi not in S will not change the span and will yield the
set {v1,v2, . . . ,vn}, so we conclude span(S) = span(v1,v2, . . . ,vn) = V .

• We can also obtain a basis of a vector space by building up a linearly-independent set of vectors:

• Theorem (Independent Sets and Bases): Given any linearly independent set of vectors in V , there exists a
basis of V containing those vectors. In short, any linearly independent set of vectors can be extended to a
basis.

◦ Proof: Let S be a set of linearly independent vectors. (In any vector space, the empty set is always
linearly independent.)

1. If S spans V , then we are done, because then S is a linearly independent generating set; i.e., a basis.

2. If S does not span V , there is an element v in V which is not in the span of S. Put v in S: then by
hypothesis, the new S will still be linearly independent.

3. Repeat the above two steps until S spans V .

◦ If V is ��nite-dimensional� (see below), then we will always be able to construct a basis in a �nite number
of steps. In the case where V is �in�nite-dimensional�, matters are trickier, and we will omit the very
delicate technical details required to deal with this case.

• By building up from the empty set, we can construct a basis for any vector space. Furthermore, any two bases
have the same size:

• Theorem (Bases of Vector Spaces): Every vector space V has a basis, and any two bases of V contain the
same number of elements.

◦ Remark: That a basis always exists is incredibly useful, and it is without a doubt the most useful fact
about vector spaces. Vector spaces in the abstract are very hard to think about, but a vector space with
a basis is something very concrete, since then we know exactly what the elements of the vector space
look like.

◦ Proof: To see that every vector space has a basis, let S be any set of linearly independent vectors in V .
(One possibility is to take S to be the empty set.) Then since S is linearly independent, there exists a
basis of V containing S by our earlier result.
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◦ Another method would be to take S to be any spanning set for V . (One possibility is to take S to be
the set of all vectors in V .) Then since S is linearly independent, it contains a basis of V by our earlier
result.

◦ For the second part of the theorem, we will show that if A is a set of vectors with m elements and B is
a basis with n elements, with m > n, then A is linearly dependent.

◦ This implies the stated result because A cannot be linearly independent and hence not be a basis if it
has more elements than B does. The same argument applies if we interchange the roles of A and B, so
A and B must have the same number of elements.

◦ So suppose B is a basis with n elements and A is a set of m vectors with m > n. Then by de�nition we

can write every element ai in A as a linear combination of the elements of B, say as ai =

n∑
j=1

ci,j · bj for

1 ≤ i ≤ m.

◦ We would like to see that there is some choice of scalars dk, not all zero, such that

n∑
k=1

dk · ak = 0: this

will show that the vectors ai are linearly dependent.

◦ So consider a linear conbination

n∑
k=1

dk · ak = 0: if we substitute in for the vectors in B, then we obtain

a linear combination of the elements of B equalling the zero vector. Since B is a basis, this means each
coe�cient of bj in the resulting expression must be zero.

◦ If we tabulate the resulting system, we can check that it is equivalent to the matrix equation Cd = 0,

where C is the m × n matrix of coe�cients with entries ci,j , and d =

 d1
...
dn

 is the n × 1 matrix with

entries the scalars dk.

◦ Since C is a matrix which has more rows than columns, by the assumption that m > n, we see that the
homogeneous system Cd = 0 has a nonzero solution for d. (There is at most one pivot per column, and
so there must be at least one row that does not have a pivot.)

◦ But then we have

n∑
k=1

dk · ak = 0 for some scalars dk not all of which are zero, meaning that the set A

is linearly dependent.

• De�nition: If V is a vector space, the number of elements in any basis of V is called the dimension of V and
is denoted dim(V ).

◦ The theorem above assures us that this quantity is always well-de�ned: every vector space has a basis,
and any other basis will have the same number of elements.

• Example: The dimension of Rn is n, since the n standard unit vectors form a basis.

◦ This says that the term �dimension� is reasonable, since it is the same as our usual notion of dimension.

• Example: The dimension of the vector space of m × n matrices is mn, because there is a basis consisting of
the mn matrices Ei,j , where Ei,j is the matrix with a 1 in the (i, j)-entry and 0s elsewhere.

• Example: The dimension of the vector space of all polynomials is∞, because the (in�nite list of) polynomials
1, x, x2, x3, · · · are a basis for the space.

• Proposition: If W is a subspace of V , then dim(W ) ≤ dim(V ).

◦ Proof: Consider any basis of W . It is a linearly independent set of vectors in V , so it is contained in
some basis of V . The result follows immediately.
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3.4.4 Finding Bases for Rn, Row Spaces, Column Spaces, and Nullspaces

• The fact that every vector space has a basis is extremely useful from a theoretical standpoint. We will now
discuss some practical methods for �nding bases for particular vector spaces that often arise in linear algebra.

◦ Our results are very explicit and give two di�erent methods for constructing a basis for a given vector
space.

◦ One way is to �build� a linearly independent set of vectors into a basis by adding new vectors one at a
time (choosing a vector not in the span of the previous vectors) until a basis is obtained.

◦ Another way is to �reduce� a spanning set by removing linearly dependent vectors one at a time (�nding
and removing a vector that is a linear combination of the others) until a basis is obtained.

• Proposition (Bases, Span, Dependence): If V is an n-dimensional vector space, then any set of fewer than n
vectors cannot span V , and any set of more than n vectors is linearly dependent.

◦ Proof: Suppose �rst that S is a set of fewer than n vectors in V .

◦ Then since S spans span(S) by de�nition, S contains a basis T for span(S), and T is a linearly independent
set of fewer than n vectors in V .

◦ Thus, we can extend T to a basis of V , which necessarily contains n elements, strictly more than in T .
So there is some vector v in this extended basis that is not in T : then v is not in span(S), so S does not
span V .

◦ Now suppose that S is a set of more than n vectors in V that is linearly independent. We would then
be able to extend S to a basis of V , but this is impossible because any basis contains only n elements.

• Example: Determine whether the vectors 〈1, 2, 2, 1〉, 〈3,−1, 2, 0〉, 〈−3, 2, 1, 1〉 span R4.

◦ They do not span : since R4 is a 4-dimensional space, any spanning set must contain at least 4 vectors.

• Example: Determine whether the vectors 〈1, 2, 1〉, 〈1, 0, 3〉, 〈−3, 2, 1〉, 〈1, 1, 4〉 are linearly independent.

◦ They are not linearly independent : since R3 is a 3-dimensional space, any 4 vectors in R3 are automat-

ically linearly dependent.

• We can also characterize bases of Rn:

• Theorem (Bases of Rn): A collection of k vectors v1, . . . ,vk in Rn is a basis if and only if k = n and the n×n
matrix B, whose columns are the vectors v1, . . . ,vn, is an invertible matrix.

◦ Remark: The statement that B is invertible is equivalent to saying that det(B) 6= 0. This gives a rapid
computational method for determining whether a given set of vectors forms a basis.

◦ Proof: Since Rn has a basis with n elements, any basis must have n elements by our earlier results, so
k = n.

◦ Now suppose v1, . . . ,vn are vectors in Rn. For any vector w in Rn, consider the problem of �nding
scalars a1, · · · , an such that a1 · v1 + · · ·+ an · vn = w.

◦ This vector equation is the same as the matrix equation Ba = w, where B is the matrix whose columns
are the vectors v1, . . . ,vn, a is the column vector whose entries are the scalars a1, . . . , an, and w is
thought of as a column vector.

◦ By our earlier results, v1, . . . ,vn is a basis of Rn precisely when the scalars a1 . . . , an are unique. In turn
this is equivalent to the statement that Ba = w has a unique solution a for any w.

◦ From our study of matrix equations, this equation has a unique solution precisely when B is an invertible
matrix, as claimed.

• Example: Determine whether the vectors 〈1, 2, 1〉, 〈2,−1, 2〉, 〈3, 3, 1〉 form a basis of R3.

◦ By the theorem, we only need to determine whether the matrix M =

 1 2 3
2 −1 3
1 2 1

 is invertible.
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◦ We compute det(M) = 1

∣∣∣∣ −1 3
2 1

∣∣∣∣− 2

∣∣∣∣ 2 3
1 1

∣∣∣∣+ 3

∣∣∣∣ 2 −1
1 2

∣∣∣∣ = 10 which is nonzero.

◦ Thus, M is invertible, so these vectors do form a basis of R3 .

• Associated to any matrix M are three spaces that often arise when doing matrix algebra and studying the
solutions to systems of linear equations.

• De�nition: If M is an m × n matrix, the row space of M is the subspace of Rn spanned by the rows of M ,
the column space of M is the subspace of Rm spanned by the columns of M , and the nullspace of M is the
set of vectors x in Rn for which Mx = 0.

◦ By de�nition the row space and column spaces are subspaces of Rn and Rm respectively, since the span
of any set of vectors is a subspace.

◦ It is also simple to verify that the nullspace is a subspace of Rm via the subspace criterion.

• We have already studied in detail the procedure for solving a matrix equation Mx = 0, which requires
row-reducing the matrix M . It turns out that we can obtain a basis for the row and column spaces from a
row-echelon form of M as well:

• Theorem (Bases for Row and Column Spaces): If M is an m × n matrix, let E be any row-echelon form of
M . If k is the number of pivots in E, then the row space and column space are both k-dimensional and the
nullspace is (n − k)-dimensional. Furthermore, a basis for the row space is given by the nonzero rows of E,
while a basis for the column space is given by the columns of M that correspond to the pivotal columns of E.

◦ For the column space, we also remark that another option would be to row-reduce the transpose matrix
MT , since the columns of M are the rows of MT . This in general will produce a basis that is easier to
work with, but it is not actually necessary.

◦ Proof: First consider the row space, which by de�nition is spanned by the rows of M .

◦ Observe that each elementary row operation does not change the span of the rows of M : for any
vectors vi and vj , we have span(vj ,vi) = span(vj ,vi), span(rv) = span(v) for any nonzero r, and
span(vi,vj) = span(vi + avj ,vj) for any a.

◦ So we may put M into a row-echelon form E without altering the span. Now we claim that the nonzero
rows r1, . . . , rk of E are linearly independent. Ultimately, this is because of the presence of the pivot
elements: if a1 · r1 + · · · + ak · rk = 0 then each of the vectors r1, ... , rk will have a leading coe�cient
in an entry that is zero in all of the subsequent vectors, so the only solution to the associated system of
linear equations is a1 = · · · = ak = 0.

◦ Now consider the column space. Observe �rst that the set of solutions x to the matrix equation Mx = 0
is the same as the set of solutions to the equation Ex = 0 (by our analysis of row-operations).

◦ Now if we write x =

 a1
...
an

 and expand out each matrix product in terms of the columns of M and E,

we will see that Mx = a1 · c1 + · · ·+ an · cn and Ex = a1 · e1 + · · ·+ an · en where the ci are the columns
of M and the ei are the columns of E.

◦ Combining these two observations shows that, for any scalars a1, . . . , an, we have a1 ·c1+ · · ·+an ·cn = 0
if and only if a1 · e1 + · · ·+ an · en = 0.

◦ What this means is that any linear dependence between the columns of M gives a linear dependence
between the corresponding columns of E (with the same coe�cients), and vice versa. So it is enough
to determine a basis for the column space of E: then a basis for the column space of M is simply the
corresponding columns in M .

◦ All that remains is to observe that the set of pivotal columns for E forms a basis for the column space of
E: the pivotal columns are linearly independent by the same argument given above for rows, and every
other column lies in their span (speci�cally, any column lies in the span of the pivotal columns to its left,
since each row has a pivotal element).
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◦ Finally, the statement about the dimensions of the row and column spaces follows immediately from
our descriptions, and the statement about the dimension of the nullspace follows by observing that the
matrix equation Mx = 0 has k bound variables and n− k free variables.

• Example: Find a basis for the row space, the column space, and the nullspace of the matrixM =

 1 0 2 1
0 1 −1 2
1 1 1 3

,
as well as the dimension of each space.

◦ We begin by row-reducing the matrix M : 1 0 2 1
0 1 −1 2
1 1 1 3

 R3−R1−→

 1 0 2 1
0 1 −1 2
0 1 −1 2

 R3−R2−→

 1 0 2 1
0 1 −1 2
0 0 0 0

 .
◦ The row space is spanned by the two vectors 〈1, 0, 2, 1〉 , 〈0, 1,−1, 2〉 .

◦ Since columns 1 and 2 have pivots, the �rst two columns of M give a basis for the column space: 1
0
1

 ,
 0

1
1

 .

◦ For the nullspace, there are two free variables corresponding to columns 3 and 4. Solving the correspond-
ing system (with variables x1, x2, x3, x4 and free parameters a, b) yields the solution set 〈x1, x2, x3, x4〉 =
〈−2a− b, a− 2b, a, b〉 = a 〈−2, 1, 1, 0〉+ b 〈−1,−2, 0, 1〉.

◦ Thus, a basis for the nullspace is given by 〈−2, 1, 1, 0〉 , 〈−1,−2, 0, 1〉 .

◦ The row space, column space, and nullspace all have dimension 2 .

• Example: Find a basis for the row space, the column space, and the nullspace ofM =

 1 −1 0 2 1
−2 2 0 −3 1
1 −1 0 3 8


as well as the dimension of each space.

◦ We begin by row-reducing the matrix M : 1 −1 0 2 1
−2 2 0 −3 1
1 −1 0 3 8

 R2+2R1−→
R3−R1

 1 −1 0 2 1
0 0 0 1 3
0 0 0 2 7

 R3−2R2−→

 1 −1 0 2 1
0 0 0 1 3
0 0 0 0 1

 .
◦ The row space is spanned by the three vectors 〈1,−1, 0, 2, 1〉 , 〈0, 0, 0, 1, 3〉 , 〈0, 0, 0, 0, 1〉 .

◦ Since there are pivots in columns 1, 4, and 5, those columns of M give a basis for the column space: 1
−2
1

 ,
 2
−3
3

 ,
 1

1
8

 .

◦ For the nullspace, there are two free variables corresponding to columns 2 and 3. Solving the cor-
responding system (with variables x1, x2, x3, x4, x5 and free parameters a, b) yields the solution set
〈x1, x2, x3, x4, x5〉 = 〈a, a, b, 0, 0〉 = a 〈1, 1, 0, 0, 0〉 + b 〈0, 0, 1, 0, 0〉, so a basis for the nullspace is given

by 〈1, 1, 0, 0, 0〉 , 〈0, 0, 1, 0, 0〉 .

3.5 Linear Transformations

• Now that we have a reasonably good idea of what the structure of a vector space is, the next natural question
is: what do maps from one vector space to another look like?

• It turns out that we don't want to ask about arbitrary functions, but about functions from one vector space
to another which preserve the structure (namely, addition and scalar multiplication) of the vector space.
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3.5.1 De�nition and Examples

• De�nition: If V and W are vector spaces, we say a map T from V to W (denoted T : V → W ) is a
linear transformation if, for any vectors v, v1, v2 and any scalar α, the following two properties hold:

◦ [T1] The map respects addition of vectors: T (v1 + v2) = T (v1) + T (v2).

◦ [T2] The map respects scalar multiplication: T (α · v) = α · v.

• Warning: It is important to note that in the statement T (v1 + v2) = T (v1) + T (v2), the addition on the
left-hand side is taking place inside V , whereas the addition on the right-hand side is taking place inside W .
Likewise, in the statement T (α · v) = α · v, the scalar multiplication on the left-hand side is in V while the
scalar multiplication on the right-hand side is in W .

• Example: If V = W = R2, show that the map T which sends 〈x, y〉 to 〈x, x+ y〉 is a linear transformation
from V to W .

◦ We simply check the two parts of the de�nition.

◦ Let v = 〈x, y〉, v1 = 〈x1, y1〉, and v2 = 〈x2, y2〉, so that v1 + v2 = 〈x1 + x2, y1 + y2〉.
◦ [T1]: We have T (v1+v2) = 〈x1 + x2, x1 + x2 + y1 + y2〉 = 〈x1, x1 + y1〉+ 〈x2, x2 + y2〉 = T (v1)+T (v2).

◦ [T2]: We have T (α · v) = 〈αx, αx+ αy〉 = α · 〈x, x+ y〉 = α · T (v).

• Example: If V = M2×2(R) and W = R, determine whether the trace map is a linear transformation from V
to W .

◦ Let M =

[
a b
c d

]
, M1 =

[
a1 b1
c1 d1

]
, M2 =

[
a2 b2
c2 d2

]
so M1 +M2 =

[
a1 + a2 b1 + b2
c1 + c2 d1 + d2

]
.

◦ [T1]: We have tr(M1 +M2) = (a1 + a2) + (d1 + d2) = (a1 + d1) + (a2 + d2) = tr(M1) + tr(M2).

◦ [T2]: We have tr(α ·M) = αa+ αd = α · (a+ d) = α · tr(M).

◦ Both parts of the de�nition are satis�ed, so the trace is a linear transformation .

• Example: If V = M2×2(R) and W = R, determine whether the determinant map is a linear transformation
from V to W .

◦ Let M1 =

[
a1 b1
c1 d1

]
, M2 =

[
a2 b2
c2 d2

]
so M1 +M2 =

[
a1 + a2 b1 + b2
c1 + c2 d1 + d2

]
.

◦ [T1]: We have det(M1 +M2) = (a1 + a2)(d1 + d2) − (b1 + b2)(c1 + c2), while det(M1) + det(M2) =
(a1d1 − b1c1) + (a2d2 − b2c2).
◦ When we expand out the products in det(M1 +M2) we will quickly see that the expression is not the
same as det(M1) + det(M2).

◦ An explicit example is M1 =

[
1 0
0 0

]
and M2 =

[
0 0
0 1

]
: det(M1) = det(M2) = 0, while M1 +M2 =[

1 0
0 1

]
has determinant 1.

◦ The �rst part of the de�nition does not hold, so the determinant is not a linear transformation . (In
fact, the second part fails as well.)

• Example: If V is the vector space of all di�erentiable functions and W is the vector space of all functions,
determine whether the derivative map D sending a function to its derivative is a linear transformation from
V to W .

◦ [T1]: We have D(f1 + f2) = (f1 + f2)
′ = f ′1 + f ′2 = D(f1) +D(f2).

◦ [T2]: Also, D(α · f) = (αf)′ = α · f ′ = α ·D(f).

◦ Since both parts of the de�nition are satis�ed, the derivative is a linear transformation .
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◦ Remark: More generally, on the vector space of n-times di�erentiable functions, the map T which sends
a function y to the function y(n) + Pn(x) y

(n−1) + · · ·+ P2(x) y
′ + P1(x) y is a linear transformation, for

any functions Pn(x), · · · , P1(x).

• Like with the de�nition of a vector space, we can prove a few simple algebraic properties of linear transfor-
mations:

• Proposition: Any linear transformation T : V →W sends the zero vector of V to the zero vector of W .

◦ Proof: Let v be any vector in V . Since 0 · v = 0V from basic properties, applying [T2] yields 0 · T (v) =
T (0V ).

◦ But 0 · T (v) = 0W since scaling any vector of W by 0 gives the zero vector of W .

◦ Combining these two statements gives T (0V ) = 0 · T (v) = 0W , so T (0V ) = 0W as claimed.

• Proposition: For any vectors v1, . . . ,vn and any scalars a1, . . . , an, if T is a linear transformation then
T (a1 · v1 + · · ·+ an · vn) = a1 · T (v1) + · · ·+ an · T (vn).

◦ This result says that linear transformations can be moved through linear combinations.

◦ Proof: By applying [T1] repeatedly, we see that T (a1 · v1 + · · ·+ an · vn) = T (a1 · v1) + · · ·+ T (an · vn).

◦ Then by [T2], we have T (ai · vi) = ai · T (vi) for each 1 ≤ i ≤ n.
◦ Plugging these relations into the �rst equation gives T (a1 ·v1+ · · ·+an ·vn) = a1 ·T (v1)+ · · ·+an ·T (vn)
as required.

• Proposition: Any linear transformation is uniquely de�ned by its values on a basis of V .

◦ Proof: If V is �nite-dimensional, let v1,v2, . . . ,vn be a basis of V . Then any vector v in V can be
written as v = a1 · v1 + a2 · v2 + · · ·+ an · vn for some scalars a1, . . . , an.

◦ By the previous proposition, we then have T (v) = a1T (v1) + a2T (v2) + · · · + anT (vn), so the value of
T on any vector v in V is uniquely determined by the values of T (v1), T (v2), ... , T (vn).

◦ Conversely, for any speci�ed values w1, . . . ,wn, it is straightforward to check that the map T : V → W
de�ned by T (a1 · v1 + a2 · v2 + · · ·+ an · vn) = a1 ·w1 + · · ·+ an +wn is a linear transformation.

• Example: If V is the vector space of polynomials of degree ≤ 2 and T : V → R is the linear transformation
such that T (1) = 5, T (1 + x) = 4, and T (2 + x2) = 3, �nd T (4 + 2x+ 2x2).

◦ We simply need to express 4 + 2x+ 2x2 in terms of the basis {1, 1 + x, 2 + x2} for V .
◦ A straightforward calculation shows 4 + 2x+ 2x2 = −2(1) + 2(1 + x) + 2(2 + x2).

◦ Thus, T (4 + 2x+ 2x2) = −2T (1) + 2T (1 + x) + 2T (2 + x2) = −2(5) + 2(4) + 2(3) = 4 .

• Here are a few more examples of linear transformations:

• Example: If V =W = R2, then the map T which sends 〈x, y〉 to 〈ax+ by, cx+ dy〉for any a, b, c, d is a linear
transformation.

◦ We could simply work out the calculations explicitly. But another way we can think of this map is as a

matrix map: T sends the column vector

[
x
y

]
to the column vector

[
ax+ by
cx+ dy

]
=

[
a b
c d

] [
x
y

]
.

◦ So, in fact, this map T is really just left-multiplication by the matrix

[
a b
c d

]
. When we think of the

map in this way, it is easier to see what is happening:

◦ [T1]: We have T (v1 + v2) =

[
a b
c d

]
(v1 + v2) =

[
a b
c d

]
v1 +

[
a b
c d

]
v2 = T (v1) + T (v2).

◦ [T2]: Also, T (α · v) =
[
a b
c d

]
(αv) = α ·

([
a b
c d

]
v

)
= α · T (v).
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• Example: If V = Rm (thought of as m × 1 matrices) and W = Rn (thought of as n × 1 matrices) and A is
any n×m matrix, then the map T sending v to Av is a linear transformation.

◦ The veri�cation is exactly the same as in the previous example.

◦ [T1]: We have T (v1 + v2) = A(v1 + v2) = Av1 +Av2 = T (v1) + T (v2).

◦ [T2]: Also, T (α · v) = A · αv = α · (A · v) = α · T (v).

• This last example is very general: in fact, it is so general that every linear transformation from Rm to Rn is
of this form!

• Theorem (Linear Transformations from Rm to Rn): If T is a linear transformation from Rm to Rn, then there
is some m× n matrix A such that T (v) = Av (where we think of v as a column matrix).

◦ This result may seem unexpected at �rst glance, but it is quite natural: ultimately the idea is that the
matrix A is the m× n matrix whose rows are the vectors T (e1), T (e2), . . . , T (em), where e1, · · · , em
are the standard basis elements of Rm (ej is the vector with a 1 in the jth position and 0s elsewhere).

◦ Proof: Let the m × n matrix whose rows are the vectors T (e1), T (e2), . . . , T (em), where e1, · · · , em
are the standard basis elements of Rm (ej is the vector with a 1 in the jth position and 0s elsewhere).

◦ We claim that for any vector v, T (v) = Av.

◦ To see this, write v as a linear combination v =

m∑
j=1

aj · ej of the basis elements.

◦ Then since T is a linear transformation, we see that T (v) =

m∑
j=1

aj · T (ej). If we write down this map

one coordinate at a time, we will see that it agrees with the result of computing the matrix product of
the matrix A with the �coordinates� of v.

◦ Remark: If we write down the map T explicitly, we see that the term in each coordinate in W is a linear

function of the coordinates in V : for example, if A =

[
a b
c d

]
then the linear functions are ax+ by and

cx + dy. This is the reason that �linear transformations� are named so: they are the natural extension
of the idea of a linear function.

• This theorem underlines one of the reasons that matrices and vector spaces, which initially seem like they
have almost nothing to do with one another, are in fact very closely related: matrices describe the linear
transformations from Rn to Rm. (In fact we will soon generalize this statement even further.)

◦ Using this relationship between maps on vector spaces and matrices, it is possible to provide almost
trivial proofs of some of the algebraic properties of matrix multiplication which are hard to prove by
direct computation.

◦ Speci�cally, the idea is that multiplication of matrices can be viewed as a special case of the composition
of functions, so anything that holds for general function composition will hold for matrix multiplication.

◦ For example: linear transformations are functions, and function composition is associative. Since multi-
plication of matrices is a special case of function composition, multiplication of matrices is associative.

3.5.2 Kernel and Image

• We will now study a pair of important subspaces associated to a linear transformation.

• De�nition: If T : V → W is a linear transformation, then the kernel of T , denoted ker(T ), is the set of
elements v in V with T (v) = 0.

◦ The kernel is the elements which are sent to zero by T .

◦ In the event that T : Rn → Rm is multiplication by a matrix A, then a vector x is in the kernel precisely
when Ax = 0: in other words, the kernel of T is the nullspace of the matrix A.
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◦ In general, it is useful to view the kernel as a generalization of the nullspace to arbitrary linear transfor-
mations.

• De�nition: If T : V → W is a linear transformation, then image of T (often also called the range of T ),
denoted im(T ), is the set of elements w in W such that there exists a v in V with T (v) = w.

◦ The image is the elements in W which can be obtained as output from T .

◦ In the event that T : Rn → Rm is multiplication by a matrix A, then a vector b is in the image precisely
when there is a solution x to the matrix equation Ax = b: in other words, the image of T is the column
space of the matrix A.

• The kernel and image are subspaces of the appropriate vector space:

• Proposition: The kernel is a subspace of V .

◦ [S1] We have T (0) = 0, by simple properties of linear transformations.

◦ [S2] If v1 and v2 are in the kernel, then T (v1) = 0 and T (v2) = 0. Therefore, T (v1 + v2) = T (v1) +
T (v2) = 0+ 0 = 0.

◦ [S3] If v is in the kernel, then T (v) = 0. Hence T (α · v) = α · T (v) = α · 0 = 0.

• Proposition: The image is a subspace of W .

◦ [S1] We have T (0) = 0, by simple properties of linear transformations.

◦ [S2] If w1 and w2 are in the image, then there exist v1 and v2 such that T (v1) = w1 and T (v2) = w2.
Then T (v1 + v2) = T (v1) + T (v2) = w1 +w2, so that w1 +w2 is also in the image.

◦ [S3] If w is in the image, then there exists v with T (v) = w. Then T (α · v) = α · T (v) = α ·w, so α ·w
is also in the image.

• There is a straightforward way to �nd a spanning set for the image of a linear transformation:

• Proposition: If v1, . . . ,vn is a basis for V , then T (v1), . . . , T (vn) spans the image of any linear transformation
T .

◦ Note that in general the vectors T (v1), . . . , T (vn) are not necessarily a basis for the image since they
need not be linearly independent. (But we have already discussed methods for converting a spanning set
into a basis, so it is not hard to �nd an actual basis for the image.)

◦ Proof: Suppose w is in the image of T . Then by hypothesis, w = T (v) for some vector v.

◦ Since v1, . . . ,vn is a basis for V , there are scalars a1, . . . , an such that v = a1 · v1 + · · ·+ an · vn.

◦ Then w = T (v) = a1 · T (v1) + · · · + an · T (vn) is a linear combination of T (v1), . . . , T (vn), so it lies
in their span. This is true for any w in the image of T , so T (v1), . . . , T (vn) spans the image of T as
claimed.

◦ Remark: It is natural to wonder whether there is an equally simple way to �nd a spanning set for the
kernel of a linear transformation: unfortunately, there is not. For matrix maps, however, the kernel is
the same as the nullspace, so we can compute it using row reductions.

• Example: If T : R2 → R3 is the linear transformation with T (x, y) = (x + y, 0, 2x + 2y), �nd a basis for the
kernel and for the image of T .

◦ For the kernel, we want to �nd all (x, y, z) such that T (x, y) = (0, 0, 0), so we obtain the three equations
x + y = 0, 0 = 0, 2x + 2y = 0. These equations collectively say y = −x, so we see that the kernel is
the set of vectors of the form 〈x,−x〉 = x · 〈1,−1〉, so a basis for the kernel is given by the single vector

〈1,−1〉 .

◦ For the image, by the proposition above it is enough simply to �nd the span of T (v1), T (v2) where v1

and v2 are a basis for R2. Using the standard basis, we compute T (1, 0) = 〈1, 0, 2〉 and T (0, 1) = 〈1, 0, 2〉,
so a basis for the image is given by the single vector 〈1, 0, 2〉 .
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• Proposition (Kernel and One-to-One Maps): For any linear transformation T : V → W , the kernel ker(T )
consists of only the zero vector if and only if the map T is one-to-one: that is, if T (v1) = T (v2) implies
v1 = v2.

◦ A one-to-one linear transformation sends di�erent vectors in V to di�erent vectors in W . A one-to-one
function of a real variable is one that passes the �vertical line test�, and thus has an inverse function f−1.

◦ Proof: If T is one-to-one, then (at most) one element of V maps to 0. But since the zero vector of V is
taken to the zero vector of W , we see that T cannot send anything else to 0. Thus ker(T ) = {0}.
◦ Conversely, if ker(T ) is only the zero vector, then since T is a linear transformation, the statement
T (v1) = T (v2) is equivalent to the statement that T (v1)− T (v2) = T (v1 − v2) is the zero vector.

◦ But, by the de�nition of the kernel, T (v1−v2) = 0 precisely when v1−v2 is in the kernel. However, this
means v1 − v2 = 0, so v1 = v2. Hence T (v1) = T (v2) implies v1 = v2, which means T is one-to-one.

• We can give some intuitive explanations for what the kernel and image are measuring.

◦ The image of a linear transformation measures how close the map is to giving all of W as output: a
linear transformation with a large image hits most of W , while a linear transformation with a small
image misses most of W .

◦ The kernel of a linear transformation measures how close the map is to being the zero map: a linear
transformation with a large kernel sends many vectors to zero, while a linear transformation with a small
kernel sends few vectors to zero.

◦ We can quantify these notions of �large� and �small� using dimension:

• De�nitions: The dimension of ker(T ) is called the nullity of T , and the dimension of im(T ) is called the rank
of T .

◦ A linear transformation with a large nullity has a large kernel, which means it sends many elements to
zero (hence �nullity�).

◦ There is a very important relationship between the rank and the nullity of a linear transformation:

• Theorem (Nullity-Rank): For any linear transformation T : V → W , dim(ker(T )) + dim(im(T )) = dim(V ).
In words, the nullity plus the rank is equal to the dimension of V .

◦ Proof: Let w1, . . . ,wk be a basis for im(T ) in W .

◦ Then by the de�nition of the image, there exist v1, . . . ,vk in V such that T (vi) = wi for each 1 ≤ i ≤ k.
◦ Also let a1, . . . ,al be a basis for ker(T ). We claim that the set of vectors {v1, . . . ,vk,a1, . . . ,al} is a
basis for V .

◦ To show this, let v be an element of V . Then since T (v) lies in im(T ), there exist unique scalars β1, . . . , βk

such that T (v) =

k∑
j=1

βj ·wj .

◦ By properties of linear transformations, we then can write

T

v −
k∑

j=1

βj · vj

 = T (v)−
k∑

j=1

βj · T (vj) =

k∑
j=1

βj ·wj −
k∑

j=1

βj ·wj = 0.

◦ Therefore, v −
k∑

j=1

βj · vj is in ker(T ), so it can be written as a sum

l∑
i=1

γi · ai for unique scalars γi.

◦ Putting all this together shows v =

k∑
j=1

βj · vj +

l∑
i=1

γi · ai for scalars βj and γi, which says that

{v1, . . . ,vk,a1, . . . ,al} spans V .
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◦ Now suppose we had a dependence 0 =

k∑
j=1

βj · vj +

l∑
i=1

γi · ai.

◦ Applying T to both sides yields 0 = T (0) =

k∑
j=1

βj · T (vj) +

l∑
i=1

γi · T (ai) =
k∑

j=1

βj ·wj .

◦ Since the wj are linearly independent we conclude that all the coe�cients βj must be zero.

◦ We then obtain the relation 0 =

l∑
i=1

γi · ai, but now since the ai are linearly independent, we conclude

that all the coe�cients γi must also be zero.

◦ We conclude that {v1, . . . ,vk,a1, . . . ,al} is linearly independent, so since it also spans V , it is a basis
for V .

• In the event that the linear transformation is multiplication by a matrix, the nullity-rank theorem reduces to
a fact we already knew.

◦ Explicitly, if A is an m × n matrix, the kernel of the multiplication-by-A map is the solution space to
the homogeneous system Ax = 0, and the image is the set of vectors c such that there exists a solution
to Ax = c.

◦ The value of dim(ker(T )) is the size of a basis for the solutions to the homogeneous equation (i.e., the
nullspace), which we know is the number of nonpivotal columns in the reduced row-echelon form of A.

◦ The value of dim(im(T )) is the size of a basis for the collection of row vectors of A, since the row vectors
span the image. So the dimension of im(T ) is the number of pivotal columns in the reduced row-echelon
form of A.

◦ Therefore, the sum of these two numbers is the number of columns of the matrix A, since every column
is either pivotal or nonpivotal, which is simply n.

◦ Incidentally, we also see that the use of the word �rank� for the the dimension of im(T ) is consistent with
our use of the word �rank� to refer to the rank of a matrix (since the rank of a matrix is the same as the
number of pivot elements in its row-echelon form).

• Example: If T :M2×2(R)→ R is the trace map, �nd the nullity and the rank of T and verify the nullity-rank
theorem.

◦ We have T

(
a b
c d

)
= a+ d.

◦ First, we compute the kernel: we see that T

(
a b
c d

)
= 0 when d = −a, so the elements of the kernel

have the form

[
a b
c −a

]
= a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
.

◦ So the kernel has a basis given by the three matrices

[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
, meaning that the

nullity is 3 .

◦ For the image, we can clearly obtain any value in R, since T
(
a 0
0 0

)
= a for any a. So the image is

1-dimensional, meaning that the rank is 1 .

◦ Then the rank plus the nullity is 4, which (per the theorem) is indeed equal to the dimension of the space
of 2× 2 matrices.

3.5.3 Isomorphisms of Vector Spaces, Matrices Associated to Linear Transformations

• We will now discuss a notion of equivalence of vector spaces.
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• De�nition: A linear transformation T : V → W is called an isomorphism if T is one-to-one and onto.
Equivalently, T is an isomorphism if ker(T ) = 0 and im(T ) = W . We say that two vector spaces are
isomorphic if there exists an isomorphism between them.

◦ Saying that two spaces are isomorphic is a very strong statement: it says that the spaces V and W have
exactly the same structure, as vector spaces.

◦ Informally, saying that T : V → W is an isomorphism means that we can use T to relabel the elements
of V to have the same names as the elements of W , and that (if we do so) we cannot tell V and W apart
at all.

• Example: The space R4 is isomorphic to the space M2×2 of 2× 2 matrices, with an isomorphism T given by

T (x1, x2, x3, x4) =

[
x1 x2
x3 x4

]
.

◦ This map is a linear transformation; it clearly is additive and respects scalar multiplication.

◦ Also, ker(T ) = 0 since the only element mapping to the zero matrix is (0, 0, 0, 0). And it is also clear
that im(T ) =M2×2.

◦ Thus T is an isomorphism.

• Proposition: If T : V → W is an isomorphism, the vectors v1, . . . ,vn in V are linearly independent if and
only if T (v1), . . . , T (vn) are linearly independent in W .

◦ Proof: Because T is a linear transformation, we have a1 ·T (v1)+ · · ·+an ·T (vn) = T (a1 ·v1+ · · ·+an ·vn)
for any scalars a1, . . . , an.

◦ To see that v1, . . . ,vn independent implies T (v1), · · · , T (vn) independent:

∗ If a1 · T (v1) + · · ·+ an · T (vn) = 0, then by the above we have T (a1 · v1 + · · ·+ an · vn) = 0.

∗ But now since ker(T ) = 0, we get a1 · v1 + · · · + an · vn = 0, and independence of v1, . . . ,vn then
gives a1 = · · · = an = 0.

∗ So T (v1), · · · , T (vn) are linearly independent.

◦ To see that T (v1), . . . , T (vn) independent implies v1, . . . ,vn independent:

∗ If a1 ·v1+ · · ·+an ·vn = 0, then a1 ·T (v1)+ · · ·+an ·T (vn) = T (a1 ·v1+ · · ·+an ·vn) = T (0) = 0.

∗ But now the linear independence of T (v1), . . . , T (vn) gives a1 = · · · = an = 0, so v1, . . . ,vn are
linearly independent.

• Proposition (Inverse Maps): If T is an isomorphism, then there exists an inverse function T−1 : W → V ,
with T−1(T (v)) = v and T (T−1(w)) = w for any v in V and w in W . This inverse map T−1is also a linear
transformation.

◦ Proof: The fact that there is an inverse function T−1 : W → V follows immediately because T is
one-to-one and onto.

◦ Speci�cally, for any w in W , by the assumption that T is onto there exists a v in V with T (v) = w, and
because T is one-to-one, this vector v is unique. We then de�ne T−1(w) = v.

◦ Now we check the two properties of a linear transformation:

∗ [T1] If T (v1) = w1 and T (v2) = w2, then because T (v1 +v2) = w1 +w2, we have T
−1(w1 +w2) =

v1 + v2 = T−1(w1) + T−1(w2).

∗ [T2] If T (v) = w, then because T (α · v) = α ·w, we have T−1(α ·w) = α · v = α · T−1(w).

• It may seem that isomorphisms are hard to �nd, but this is not the case.

• Theorem (Isomorphism and Dimension): Two (�nite-dimensional) vector spaces V and W are isomorphic if
and only if they have the same dimension. In particular, any �nite-dimensional vector space is isomorphic to
Rn for some value of n.

◦ Remark: This result should be rather unexpected: it certainly doesn't seem obvious, just from the eight
axioms of a vector space, that all �nite-dimensional vector spaces are essentially �the same� as Rn for
some n. But they are!
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◦ Proof: Isomorphisms preserve linear independence, so two vector spaces can only be isomorphic if they
have the same dimension.

◦ For the other direction, choose a basis v1, . . . ,vn for V and a basis w1, . . . ,wn for W . We claim the
map T de�ned by T (a1 ·v1+ · · ·+an ·vn) = a1 ·w1+ · · ·+a1 ·wn is an isomorphism between V and W .

◦ We need to check �ve things: that T is unambiguously de�ned, that T respects addition, that T respects
scalar multiplication, that T is one-to-one, and that T is onto.

∗ [Well-de�ned]: We need to make sure that we have not made the de�nition of T ambiguous: namely,
that we have de�ned T on every element of V , and that we haven't tried to send one element of V to
two di�erent elements of W . However, we are safe because v1, . . . ,vn is a basis, which means that
for every v in V , we have a unique way of writing v as a linear combination of v1, . . . ,vn.

∗ [Addition]: If v = a1 · v1 + · · ·+ a1 · vn and ṽ = b1 · v1 + · · ·+ bn · vn, then T (v + ṽ) = (a1 + b1) ·
w1 + · · ·+ (an + bn) ·wn = T (v) + T (ṽ) by the distributive law.

∗ [Multiplication]: For any scalar β we have T (β · v) = (βa1) · w1 + · · · + (βan) · wn = β · T (v) by
consistency of multiplication.

∗ [One-to-one]: Since w1, . . . ,wn are linearly independent, the only way that a1 ·w1 + · · · + a1 ·wn

can be the zero vector is if a1 = a2 = · · · = an = 0, which means ker(T ) = 0.

∗ [Onto]: Since w1, . . . ,wn spanW , every element w inW can be written as w = a1 ·w1+ · · ·+a1 ·wn

for some scalars a1, · · · an. Then for v = a1 · v1 + · · ·+ a1 · vn, we have T (v) = w.

• Earlier, we showed that matrices completely describe the linear transformations from Rn to Rm. But by
the theorem above, every �nite-dimensional vector space is isomorphic to Rn for some value of n: so in
fact, matrices will completely describe the linear transformations from any n-dimensional vector space to any
m-dimensional vector space.

◦ More speci�cally: let V be anym-dimensional vector spaceW be any n-dimensional vector space. Choose
a basis v1, . . . ,vn for V and a basis w1, . . . ,wm for W , and let v be any element of V .

◦ If we write v = a1 · v1 + · · ·+ an · vn as a linear combination of the basis elements v1, . . . ,vm for V and
we write T (v) = b1 ·w1+ b2 ·w2+ · · ·+ bn ·wm as a linear combination of the basis elements w1, . . . ,wm

for W then, by combining our theorems, we conclude that there is a matrix C such that Ca = b, where

C =


c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n
...

...
. . .

...
cm,1 cm,1 · · · cm,n

, a =


a1
a2
...
an

, and b =


b1
b2
...
bm

.
◦ What this means is that the coe�cients of v in terms of the basis v1, . . . ,vm and the coe�cients of T (v)
in terms of the basis w1, . . . ,wm are related by multiplication by the matrix C. In a very concrete sense,
the linear transformation behaves in exactly the same way as multiplication by the matrix C.

◦ This matrix C is called the matrix associated to the linear transformation T . It implicitly depends on
the two bases v1, . . . ,vn and w1, . . . ,wm that we choose for V and W : making a di�erent choice for
either basis will yield a di�erent matrix C.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2016. You may not reproduce or distribute this
material without my express permission.
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