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5 Eigenvalues and Diagonalization

In this chapter, we will discuss eigenvalues and eigenvectors: these are �characteristic values� (and �characteristic
vectors�) associated to a linear operator T : V → V that will allow us to study T in a particularly convenient way.
Our ultimate goal is to describe methods for �nding a basis for V such that the associated matrix for T has an
especially simple form.

We will �rst describe diagonalization, the procedure for (trying to) �nd a basis such that the associated matrix for
T is a diagonal matrix, and characterize the linear operators that are diagonalizable. Then we will discuss a few
applications of diagonalization, including the Cayley-Hamilton theorem that any matrix satis�es its characteristic
polynomial, and close with a brief discussion of non-diagonalizable matrices.

5.1 Eigenvalues, Eigenvectors, and The Characteristic Polynomial

• Suppose that we have a linear transformation T : V → V from a (�nite-dimensional) vector space V to itself.

We would like to determine whether there exists a basis β of V such that the associated matrix [T ]ββ is a
diagonal matrix.

◦ Ultimately, our reason for asking this question is that we would like to describe T in as simple a way as
possible, and it is unlikely we could hope for anything simpler than a diagonal matrix.

◦ So suppose that β = {v1, . . . ,vn} and the diagonal entries of [T ]ββ are {λ1, . . . , λn}.
◦ Then, by assumption, we have T (vi) = λivi for each 1 ≤ i ≤ n: the linear transformation T behaves like
scalar multiplication by λi on the vector vi.

◦ Conversely, if we were able to �nd a basis β of V such that T (vi) = λivi for some scalars λi, with

1 ≤ i ≤ n, then the associated matrix [T ]ββ would be a diagonal matrix.

◦ This suggests we should study vectors v such that T (v) = λv for some scalar λ.
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5.1.1 Eigenvalues and Eigenvectors

• De�nition: If T : V → V is a linear transformation, a nonzero vector v with T (v) = λv is called an eigenvector
of T , and the corresponding scalar λ is called an eigenvalue of T .

◦ Important note: We do not consider the zero vector 0 an eigenvector. (The reason for this convention is
to ensure that if v is an eigenvector, then its corresponding eigenvalue λ is unique.)

◦ Terminology notes: The term �eigenvalue� derives from the German �eigen�, meaning �own� or �charac-
teristic�. The terms characteristic vector and characteristic value are occasionally used in place of �eigen-
vector� and �eigenvalue�. When V is a vector space of functions, we often use the word eigenfunction in
place of �eigenvector�.

• Here are a few examples of linear transformations and eigenvectors:

◦ Example: If T : R2 → R2 is the map with T (x, y) = 〈2x+ 3y, x+ 4y〉, then the vector v = 〈3,−1〉 is an
eigenvector of T with eigenvalue 1, since T (v) = 〈3,−1〉 = v.

◦ Example: If T : R2 → R2 is the map with T (x, y) = 〈2x+ 3y, x+ 4y〉, the vector w = 〈1, 1〉 is an
eigenvector of T with eigenvalue 5, since T (w) = 〈5, 5〉 = 5w.

◦ Example: If T :M2×2(R)→M2×2(R) is the transpose map, then the matrix

[
1 1
1 3

]
is an eigenvector

of T with eigenvalue 1.

◦ Example: If T :M2×2(R)→M2×2(R) is the transpose map, then the matrix

[
0 −2
2 0

]
is an eigenvector

of T with eigenvalue −1.
◦ Example: If T : P (R) → P (R) is the map with T (f(x)) = xf ′(x), then for any integer n ≥ 0, the
polynomial xn is an eigenfunction of T with eigenvalue n, since T (xn) = x · nxn−1 = nxn.

◦ Example: If V is the space of in�nitely-di�erentiable functions and D : V → V is the di�erentiation
operator, the function f(x) = erx is an eigenfunction with eigenvalue r, for any real number r, since
D(erx) = rerx.

◦ Example: If T : V → V is any linear transformation and v is a nonzero vector in ker(T ), then v is an
eigenvector of V with eigenvalue 0. In fact, the eigenvectors with eigenvalue 0 are precisely the nonzero
vectors in ker(T ).

• Finding eigenvectors is a generalization of computing the kernel of a linear transformation, but, in fact, we can
reduce the problem of �nding eigenvectors to that of computing the kernel of a related linear transformation:

• Proposition (Eigenvalue Criterion): If T : V → V is a linear transformation, the nonzero vector v is an
eigenvector of T with eigenvalue λ if and only if v is in ker(λI − T ), where I is the identity transformation
on V .

◦ This criterion reduces the computation of eigenvectors to that of computing the kernel of a collection of
linear transformations.

◦ Proof: Assume v 6= 0. Then v is an eigenvalue of T with eigenvalue λ ⇐⇒ T (v) = λv ⇐⇒
(λI)v − T (v) = 0 ⇐⇒ (λI − T )(v) = 0 ⇐⇒ v is in the kernel of λI − T .

• We will remark that some linear operators may have no eigenvectors at all.

• Example: If I : P (R)→ P (R) is the integration operator I(p) =
´ x
0
p(t) dt, show that I has no eigenvectors.

◦ Suppose that I(p) = λp, so that
´ x
0
p(t) dt = λp(x).

◦ Then, di�erentiating both sides with respect to x and applying the fundamental theorem of calculus
yields p(x) = λp′(x).

◦ If p had positive degree n, then λp′(x) would have degree at most n− 1, so it could not equal p(x).

◦ Thus, p must be a constant polynomial. But the only constant polynomial with I(p) = λp is the zero
polynomial, which is by de�nition not an eigenvector. Thus, I has no eigenvectors.
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• Computing eigenvectors of general linear transformations on in�nite-dimensional spaces can be quite di�cult.

◦ For example, if V is the space of in�nitely-di�erentiable functions, then computing the eigenvectors of
the map T : V → V with T (f) = f ′′ + xf ′ requires solving the di�erential equation f ′′ + xf ′ = λf for
an arbitrary λ.

◦ It is quite hard to solve that particular di�erential equation for a general λ (at least, without resorting
to using an in�nite series expansion to describe the solutions), and the solutions for most values of λ are
non-elementary functions.

• In the �nite-dimensional case, however, we can recast everything using matrices.

• Proposition: Suppose V is a �nite-dimensional vector space with ordered basis β and that T : V → V is linear.
Then v is an eigenvector of T with eigenvalue λ if and only if [v]β is an eigenvector of left-multiplication by

[T ]ββ with eigenvalue λ.

◦ Proof: Note that v 6= 0 if and only if [v]β 6= 0, so now assume v 6= 0.

◦ Then v is an eigenvector of T with eigenvalue λ ⇐⇒ T (v) = λv ⇐⇒ [T (v)]β = [λv]β ⇐⇒
[T ]ββ [v]β = λ[v]β ⇐⇒ [v]β is an eigenvector of left-multiplication by [T ]ββ with eigenvalue λ.

5.1.2 Eigenvalues and Eigenvectors of Matrices

• We will now study eigenvalues and eigenvectors of matrices. For convenience, we restate the de�nition for
this setting:

• De�nition: For A an n× n matrix, a nonzero vector x with Ax = λx is called1 an eigenvector of A, and the
corresponding scalar λ is called an eigenvalue of A.

◦ Example: If A =

[
2 3
1 4

]
, the vector x =

[
3
−1

]
is an eigenvector of A with eigenvalue 1, because

Ax =

[
2 3
1 4

] [
3
−1

]
=

[
3
−1

]
= x.

◦ Example: If A =

 2 −4 5
2 −2 5
2 1 2

, the vector x =

 1
2
2

 is an eigenvector of A with eigenvalue 4, because

Ax =

 2 −4 5
2 −2 5
2 1 2

 1
2
2

 =

 4
8
8

 = 4x.

• Eigenvalues and eigenvectors can involve complex numbers, even if the matrix A only has real-number entries.
We will always work with complex numbers unless speci�cally indicated otherwise.

◦ Example: If A =

 6 3 −2
−2 0 0
6 4 2

, the vector x =

 1− i
2i
2

 is an eigenvector of A with eigenvalue 1+ i,

because Ax =

 6 3 −2
−2 0 0
6 4 −2

 1− i
2i
2

 =

 2
−2 + 2i
2 + 2i

 = (1 + i)x.

• It may at �rst seem that a given matrix may have many eigenvectors with many di�erent eigenvalues. But
in fact, any n × n matrix can only have a few eigenvalues, and there is a simple way to �nd them all using
determinants:

• Proposition (Computing Eigenvalues): If A is an n× n matrix, the scalar λ is an eigenvalue of A if and only
det(λI −A) = 0.

1Technically, such a vector x is a �right eigenvector� of A: this stands in contrast to a vector y with yA = λy, which is called

a �left eigenvector� of A. We will only consider right-eigenvectors in our discussion: we do not actually lose anything by ignoring

left-eigenvectors, because a left-eigenvector of A is the same as the transpose of a right-eigenvector of AT .
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◦ Proof: Suppose λ is an eigenvalue with associated nonzero eigenvector x.

◦ Then Ax = λx, or as we observed earlier, (λI −A)x = 0.

◦ But from our results on invertible matrices, the matrix equation (λI − A)x = 0 has a nonzero solution
for x if and only if the matrix λI − A is not invertible, which is in turn equivalent to saying that
det(λI −A) = 0.

• When we expand the determinant det(tI − A), we will obtain a polynomial of degree n in the variable t, as
can be veri�ed by an easy induction.

• De�nition: For an n×nmatrixA, the degree-n polynomial p(t) = det(tI−A) is called the characteristic polynomial
of A, and its roots are precisely the eigenvalues of A.

◦ Some authors instead de�ne the characteristic polynomial as the determinant of the matrix A− tI rather
than tI −A. We de�ne it this way because then the coe�cient of tn will always be 1, rather than (−1)n.

• To �nd the eigenvalues of a matrix, we need only �nd the roots of its characteristic polynomial.

• When searching for roots of polynomials of small degree, the following case of the rational root test is often
helpful.

• Proposition: Suppose the polynomial p(t) = tn+ · · ·+b has integer coe�cients and leading coe�cient 1. Then
any rational number that is a root of p(t) must be an integer that divides b.

◦ The proposition cuts down on the amount of trial and error necessary for �nding rational roots of
polynomials, since we only need to consider integers that divide the constant term.

◦ Of course, a generic polynomial will not have a rational root, so to compute eigenvalues in practice
one generally needs to use some kind of numerical approximation procedure to �nd roots. (But we will
arrange the examples so that the polynomials will factor nicely.)

• Example: Find the eigenvalues of A =

[
3 1
2 4

]
.

◦ First we compute the characteristic polynomial det(tI −A) =
∣∣∣∣ t− 3 −1
−2 t− 4

∣∣∣∣ = t2 − 7t+ 10.

◦ The eigenvalues are then the zeroes of this polynomial. Since t2 − 7t + 10 = (t − 2)(t − 5) we see that

the zeroes are t = 2 and t = 5, meaning that the eigenvalues are 2 and 5 .

• Example: Find the eigenvalues of A =

 1 4
√
3

0 3 −8
0 0 π

.

◦ Observe that det(tI − A) =

∣∣∣∣∣∣
t− 1 −4 −

√
3

0 t− 3 8
0 0 t− π

∣∣∣∣∣∣ = (t − 1)(t − 3)(t − π) since the matrix is upper-

triangular. Thus, the eigenvalues are 1, 3, π .

• The idea from the example above works in generality:

• Proposition (Eigenvalues of Triangular Matrix): The eigenvalues of an upper-triangular or lower-triangular
matrix are its diagonal entries.

◦ Proof: If A is an n× n upper-triangular (or lower-triangular) matrix, then so is tI −A.
◦ Then by properties of determinants, det(tI−A) is equal to the product of the diagonal entries of tI−A.
◦ Since these diagonal entries are simply t− ai,i for 1 ≤ i ≤ n, the eigenvalues are ai,i for 1 ≤ i ≤ n, which
are simply the diagonal entries of A.
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• It can happen that the characteristic polynomial has a repeated root. In such cases, it is customary to note
that the associated eigenvalue has �multiplicity� and include the eigenvalue the appropriate number of extra
times when listing them.

◦ For example, if a matrix has characteristic polynomial t2(t−1)3, we would say the eigenvalues are 0 with
multiplicity 2, and 1 with multiplicity 3. We would list the eigenvalues as λ = 0, 0, 1, 1, 1.

• Example: Find the eigenvalues of A =

 1 −1 0
1 3 0
0 0 0

.
◦ By expanding along the bottom row we see det(tI − A) =

∣∣∣∣∣∣
t− 1 1 0
−1 t− 3 0
0 0 t

∣∣∣∣∣∣ = t

∣∣∣∣ t− 1 1
−1 t− 3

∣∣∣∣ =
t(t2 − 4t+ 4) = t(t− 2)2.

◦ Thus, the characteristic polynomial has a single root t = 0 and a double root t = 2, so A has an eigenvalue
0 of multiplicity 1 and an eigenvalue 2 of multiplicity 2. As a list, the eigenvalues are λ = 0, 2, 2 .

• Example: Find the eigenvalues of A =

 1 1 0
0 1 1
0 0 1

.
◦ Since A is upper-triangular, the eigenvalues are the diagonal entries, so A has an eigenvalue 1 of multi-
plicity 3. As a list, the eigenvalues are λ = 1, 1, 1 .

• Note also that the characteristic polynomial may have non-real numbers as roots, even if the entries of the
matrix are real.

◦ Since the characteristic polynomial will have real coe�cients, any non-real eigenvalues will come in
complex conjugate pairs. Furthermore, the eigenvectors for these eigenvalues will also necessarily contain
non-real entries.

• Example: Find the eigenvalues of A =

[
1 1
−2 3

]
.

◦ First we compute the characteristic polynomial det(tI −A) =
∣∣∣∣ t− 1 −1

2 t− 3

∣∣∣∣ = t2 − 4t+ 5.

◦ The eigenvalues are then the zeroes of this polynomial. By the quadratic formula, the roots are
4±
√
−4

2
= 2± i, so the eigenvalues are 2 + i, 2− i .

• Example: Find the eigenvalues of A =

 −1 2 −4
3 −2 1
4 −4 4

.
◦ By expanding along the top row,

det(tI −A) =

∣∣∣∣∣∣
t+ 1 −2 4
−3 t+ 2 −1
−4 4 t− 4

∣∣∣∣∣∣
= (t+ 1)

∣∣∣∣ t+ 2 −1
4 t− 4

∣∣∣∣+ 2

∣∣∣∣ −3 −1
−4 t− 4

∣∣∣∣+ 4

∣∣∣∣ −3 t+ 2
−4 4

∣∣∣∣
= (t+ 1)(t2 − 2t− 4) + 2(−3t+ 8) + 4(4t− 4)

= t3 − t2 + 4t− 4.

◦ To �nd the roots, we wish to solve the cubic equation t3 − t2 + 4t− 4 = 0.

◦ By the rational root test, if the polynomial has a rational root then it must be an integer dividing −4:
that is, one of ±1, ±2, ±4. Testing the possibilities reveals that t = 1 is a root, and then we get the
factorization (t− 1)(t2 + 4) = 0.

◦ The roots of the quadratic are t = ±2i, so the eigenvalues are 1, 2i, −2i .
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5.1.3 Eigenspaces

• Using the characteristic polynomial, we can �nd all the eigenvalues of a matrix A without actually determining
the associated eigenvectors. However, we often also want to �nd the eigenvectors associated to each eigenvalue.

• We might hope that there is a straightforward way to describe all the eigenvectors, and (conveniently) there
is: the set of all eigenvectors with a particular eigenvalue λ has a vector space structure.

• Proposition (Eigenspaces): If T : V → V is linear, then for any �xed value of λ, the set Eλ of vectors in V
satisfying T (v) = λv is a subspace of V . This space Eλ is called the eigenspace associated to the eigenvalue
λ, or more simply the λ-eigenspace.

◦ Notice that Eλ is precisely the set of eigenvectors with eigenvalue λ, along with the zero vector.

◦ The eigenspaces for a matrix A are de�ned in the same way: Eλ is the space of vectors v such that
Av = λv.

◦ Proof: By de�nition, Eλ is the kernel of the linear transformation λI − T , and is therefore a subspace of
V .

• Example: Find the 1-eigenspaces, and their dimensions, for A =

[
1 0
0 1

]
and B =

[
1 1
0 1

]
.

◦ For the 1-eigenspace of A, we want to �nd all vectors with

[
1 0
0 1

] [
a
b

]
=

[
a
b

]
.

◦ Clearly, all vectors satisfy this equation, so the 1-eigenspace of A is the set of all vectors

[
a
b

]
, and

has dimension 2.

◦ For the 1-eigenspace of B, we want to �nd all vectors with

[
1 1
0 1

] [
a
b

]
=

[
a
b

]
, or equivalently,[

a+ b
b

]
=

[
a
b

]
.

◦ The vectors satisfying the equation are those with b = 0, so the 1-eigenspace of B is the set of vectors of

the form

[
a
0

]
, and has dimension 1.

◦ Notice that the characteristic polynomial of each matrix is (t − 1)2, since both matrices are upper-
triangular, and they both have a single eigenvalue λ = 1 of multiplicity 2. Nonetheless, the matrices do
not have the same eigenvectors, and the dimensions of their 1-eigenspaces are di�erent.

• In the �nite-dimensional case, we would like to compute a basis for the λ-eigenspace: this is equivalent to
solving the system (λI −A)v = 0, which we can do by row-reducing the matrix λI −A.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

[
2 2
3 1

]
.

◦ We have tI −A =

[
t− 2 −2
−3 t− 1

]
, so p(t) = det(tI −A) = (t− 2)(t− 1)− (−2)(−3) = t2 − 3t− 4.

◦ Since p(t) = t2 − 3t− 4 = (t− 4)(t+ 1), the eigenvalues are λ = −1, 4 .

◦ For λ = −1, we want to �nd the nullspace of

[
−1− 2 −2
−3 −1− 1

]
=

[
−3 −2
−3 −2

]
. By row-reducing

we �nd the row-echelon form is

[
−3 −2
0 0

]
, so the (−1)-eigenspace is 1-dimensional and is spanned by[

−2
3

]
.
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◦ For λ = 4, we want to �nd the nullspace of

[
4− 2 −2
−3 4− 1

]
=

[
2 −2
−3 3

]
. By row-reducing we �nd

the row-echelon form is

[
1 −1
0 0

]
, so the 4-eigenspace is 1-dimensional and is spanned by

[
1
1

]
.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

 1 0 1
−1 1 3
−1 0 3

.

◦ First, we have tI−A =

 t− 1 0 −1
1 t− 1 −3
1 0 t− 3

, so p(t) = (t−1) ·
∣∣∣∣ t− 1 −3

0 t− 3

∣∣∣∣+(−1) ·
∣∣∣∣ 1 t− 1
1 0

∣∣∣∣ =
(t− 1)2(t− 3) + (t− 1).

◦ Since p(t) = (t− 1) · [(t− 1)(t− 3) + 1] = (t− 1)(t− 2)2, the eigenvalues are λ = 1, 2, 2 .

◦ For λ = 1 we want to �nd the nullspace of

 1− 1 0 −1
1 1− 1 −3
1 0 1− 3

 =

 0 0 −1
1 0 −3
1 0 −3

. This matrix's

reduced row-echelon form is

 1 0 0
0 0 1
0 0 0

, so the 1-eigenspace is 1-dimensional and spanned by

 0
1
0

 .
◦ For λ = 2 we want to �nd the nullspace of

 2− 1 0 −1
1 2− 1 −3
1 0 2− 3

 =

 1 0 −1
1 1 −3
1 0 −1

. This matrix's re-

duced row-echelon form is

 1 0 −1
0 1 −2
0 0 0

, so the 2-eigenspace is 1-dimensional and spanned by

 1
2
1

 .

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

 0 0 0
1 0 −1
0 1 0

.

◦ We have tI −A =

 t 0 0
−1 t 1
0 −1 t

, so p(t) = det(tI −A) = t ·
∣∣∣∣ t 1
−1 t

∣∣∣∣ = t · (t2 + 1).

◦ Since p(t) = t · (t2 + 1), the eigenvalues are λ = 0, i, −i .

◦ For λ = 0 we want to �nd the nullspace of

 0 0 0
−1 0 1
0 −1 0

. This matrix's reduced row-echelon form is

 1 0 −1
0 1 0
0 0 0

, so the 0-eigenspace is 1-dimensional and spanned by

 1
0
1

 .
◦ For λ = i we want to �nd the nullspace of

 i 0 0
−1 i 1
0 −1 i

. This matrix's reduced row-echelon form is

 1 0 0
0 1 −i
0 0 0

, so the i-eigenspace is 1-dimensional and spanned by

 0
i
1

 .
◦ For λ = −i we want to �nd the nullspace of

 −i 0 0
−1 −i 1
0 −1 −i

. This matrix's reduced row-echelon form
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is

 1 0 0
0 1 i
0 0 0

, so the (−i)-eigenspace is 1-dimensional and spanned by

 0
−i
1

 .
• Notice that in the example above, with a real matrix having complex-conjugate eigenvalues, the associated
eigenvectors were also complex conjugates. This is no accident:

• Proposition (Conjugate Eigenvalues): If A is a real matrix and v is an eigenvector with a complex eigenvalue
λ, then the complex conjugate v is an eigenvector with eigenvalue λ. In particular, a basis for the λ-eigenspace
is given by the complex conjugate of a basis for the λ-eigenspace.

◦ Proof: The �rst statement follows from the observation that the complex conjugate of a product or sum
is the appropriate product or sum of complex conjugates, so if A and B are any matrices of compatible
sizes for multiplication, we have A ·B = A · B.
◦ Thus, if Av = λv, taking complex conjugates gives Av = λv, and since A = A because A is a real
matrix, we see Av = λv: thus, v is an eigenvector with eigenvalue λ.

◦ The second statement follows from the �rst, since complex conjugation does not a�ect linear independence
or dimension.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

[
3 −1
2 5

]
.

◦ We have tI − A =

[
t− 3 1
−2 t− 5

]
, so p(t) = det(tI − A) = (t − 3)(t − 5) − (−2)(1) = t2 − 8t + 17, so

the eigenvalues are λ = 4± i .

◦ For λ = 4+ i, we want to �nd the nullspace of

[
t− 3 1
−2 t− 5

]
=

[
1 + i 1
−2 −1 + i

]
. Row-reducing this

matrix yields [
1 + i 1
−2 −1 + i

]
R2+(1−i)R1−−−−−−−−→

[
1 + i 1
0 0

]

from which we can see that the (4 + i)-eigenspace is 1-dimensional and spanned by

[
1

−1− i

]
.

◦ For λ = 4 − i we can simply take the conjugate of the calculation we made for λ = 4 + i: thus, the

(4− i)-eigenspace is also 1-dimensional and spanned by

[
1

−1 + i

]
.

• We will mention one more result about eigenvalues that can be useful in double-checking calculations:

• Theorem (Eigenvalues, Trace, and Determinant): The product of the eigenvalues of A is the determinant of
A, and the sum of the eigenvalues of A equals the trace of A.

◦ Recall that the trace of a matrix is de�ned to be the sum of its diagonal entries.

◦ Proof: Let p(t) be the characteristic polynomial of A.

◦ If we expand out the product p(t) = (t− λ1) · (t− λ2) · · · (t− λn), we see that the constant term is equal
to (−1)nλ1λ2 · · ·λn.
◦ But the constant term is also just p(0), and since p(t) = det(tI − A) we have p(0) = det(−A) =
(−1)n det(A): thus, λ1λ2 · · ·λn = det(A).

◦ Furthermore, upon expanding out the product p(t) = (t − λ1) · (t − λ2) · · · (t − λn), we see that the
coe�cient of tn−1 is equal to −(λ1 + · · ·+ λn).

◦ If we expand out the determinant det(tI − A) to �nd the coe�cient of tn−1, we can show (with a little
bit of e�ort) that the coe�cient is the negative of the sum of the diagonal entries of A.

◦ Thus, setting the two expressions equal shows that the sum of the eigenvalues equals the trace of A.
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• Example: Find the eigenvalues of the matrix A =

 2 1 1
−2 −1 −2
2 2 −3

, and verify the formulas for trace and

determinant in terms of the eigenvalues.

◦ By expanding along the top row, we can compute

det(tI −A) = (t− 2)

∣∣∣∣ t+ 1 2
−2 t+ 3

∣∣∣∣− (−1)
∣∣∣∣ 2 2
−2 t+ 3

∣∣∣∣+ (−1)
∣∣∣∣ 2 t+ 1
−2 −2

∣∣∣∣
= (t− 2)(t2 + 4t+ 7) + (2t+ 10)− (2t− 2) = t3 + 2t2 − t− 2.

◦ To �nd the eigenvalues, we wish to solve the cubic equation t3 + 2t2 − t− 2 = 0.

◦ By the rational root test, if the polynomial has a rational root then it must be an integer dividing −2:
that is, one of ±1, ±2. Testing the possibilities reveals that t = 1, t = −1, and t = −2 are each roots,
from which we obtain the factorization (t− 1)(t+ 1)(t+ 2) = 0.

◦ Thus, the eigenvalues are t = −2,−1, 1.
◦ We see that tr(A) = 2 + (−1) + (−3) = −2, while the sum of the eigenvalues is (−2) + (−1) + 1 = −2.
◦ Also, det(A) = 2, and the product of the eigenvalues is (−2)(−1)(1) = 2.

• In all of the examples above, the dimension of each eigenspace was less than or equal to the multiplicity of
the eigenvalue as a root of the characteristic polynomial. This is true in general:

• Theorem (Eigenvalue Multiplicity): If λ is an eigenvalue of the matrix A which appears exactly k times as a
root of the characteristic polynomial, then the dimension of the eigenspace corresponding to λ is at least 1
and at most k.

◦ Remark: The number of times that λ appears as a root of the characteristic polynomial is sometimes called
the �algebraic multiplicity� of λ, and the dimension of the eigenspace corresponding to λ is sometimes
called the �geometric multiplicity� of λ. In this language, the theorem above says that the geometric
multiplicity is less than or equal to the algebraic multiplicity.

◦ Example: If the characteristic polynomial of a matrix is (t − 1)3(t − 3)2, then the eigenspace for λ = 1
is at most 3-dimensional, and the eigenspace for λ = 3 is at most 2-dimensional.

◦ Proof: The statement that the eigenspace has dimension at least 1 is immediate, because (by assumption)
λ is a root of the characteristic polynomial and therefore has at least one nonzero eigenvector associated
to it.

◦ For the other statement, observe that the dimension of the λ-eigenspace is the dimension of the solution
space of the homogeneous system (λI − A)x = 0. (Equivalently, it is the dimension of the nullspace of
the matrix λI −A.)
◦ If λ appears k times as a root of the characteristic polynomial, then when we put the matrix λI −A into
its reduced row-echelon form B, we claim that B must have at most k rows of all zeroes.

◦ Otherwise, the matrix B (and hence λI −A too, since the nullity and rank of a matrix are not changed
by row operations) would have 0 as an eigenvalue more than k times, because B is in echelon form and
therefore upper-triangular.

◦ But the number of rows of all zeroes in a square matrix in reduced row-echelon form is the same as
the number of nonpivotal columns, which is the number of free variables, which is the dimension of the
solution space.

◦ So, putting all the statements together, we see that the dimension of the eigenspace is at most k.

5.2 Diagonalization

• Let us now return to our original question that motivated our discussion of eigenvalues and eigenvectors in
the �rst place: given a linear operator T : V → V on a vector space V , can we �nd a basis β of V such that
the associated matrix [T ]ββ is a diagonal matrix?
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• De�nition: A linear operator T : V → V on a �nite-dimensional vector space V is diagonalizable if there
exists a basis β of V such that the associated matrix [T ]ββ is a diagonal matrix.

◦ We can also formulate essentially the same de�nition for matrices: if A is an n×n matrix, then A is the
associated matrix of the linear transformation T given by left-multiplication by A.

◦ We then would like to say that A is diagonalizable when T is diagonalizable.

◦ By our results on change of basis, this is equivalent to saying that there exists an invertible matrix
Q, namely the change-of-basis matrix Q = [I]βγ , for which Q

−1AQ = [I]βγ [T ]
γ
γ [I]

γ
β = [T ]ββ is a diagonal

matrix.

• De�nition: An n×n matrix A is diagonalizable if there exists an invertible n×n matrix Q for which Q−1AQ
is a diagonal matrix.

◦ Recall that we say two n× n matrices A and B are similar if there exists an invertible n× n matrix Q
such that B = Q−1AQ.

• Our goal is to study and then characterize diagonalizable linear transformations, which (per the above dis-
cussion) is equivalent to characterizing diagonalizable matrices.

• Proposition (Characteristic Polynomials and Similarity): If A and B are similar, then they have the same
characteristic polynomial, determinant, trace, and eigenvalues (and their eigenvalues have the same multiplic-
ities).

◦ Proof: Suppose B = Q−1AQ. For the characteristic polynomial, we simply compute det(tI − B) =
det(Q−1(tI)Q−Q−1AQ) = det(Q−1(tI −A)Q) = det(Q−1) det(tI −A) det(Q) = det(tI −A).
◦ The determinant and trace are both coe�cients (up to a factor of ±1) of the characteristic polynomial,
so they are also equal.

◦ Finally, the eigenvalues are the roots of the characteristic polynomial, so they are the same and occur
with the same multiplicities for A and B.

• The eigenvectors for similar matrices are also closely related:

• Proposition (Eigenvectors and Similarity): If B = Q−1AQ, then v is an eigenvector of B with eigenvalue λ if
and only if Qv is an eigenvector of A with eigenvalue λ.

◦ Proof: Since Q is invertible, v = 0 if and only if Qv = 0. Now assume v 6= 0.

◦ First suppose v is an eigenvector of B with eigenvalue λ. Then A(Qv) = Q(Q−1AQ)v = Q(Bv) =
Q(λv) = λ(Qv), meaning that Qv is an eigenvector of A with eigenvalue λ.

◦ Conversely, if Qv is an eigenvector of A with eigenvalue λ. Then Bv = Q−1A(Qv) = Q−1λ(Qv) =
λ(Q−1Qv) = λv, so v is an eigenvector of B with eigenvalue λ.

• Corollary: If B = Q−1AQ, then the eigenspaces for B have the same dimensions as the eigenspaces for A.

• As we have essentially worked out already, diagonalizability is equivalent to the existence of a basis of eigen-
vectors:

• Theorem (Diagonalizability): A linear operator T : V → V is diagonalizable if and only if there exists a basis
β of V consisting of eigenvectors of T .

◦ Proof: First suppose that V has a basis of eigenvectors β = {v1, . . . ,vn} with respective eigenvalues

λ1, · · · , λn. Then by hypothesis, T (vi) = λivi, and so [T ]ββ is the diagonal matrix with diagonal entries
λ1, . . . , λn.

◦ Conversely, suppose T is diagonalizable and let β = {v1, . . . ,vn} be a basis such that [T ]ββ is a diagonal
matrix whose diagonal entries are λ1, . . . , λn. Then by hypothesis, each vi is nonzero and T (vi) = λivi,
so each vi is an eigenvector of T .

• Although the result above does give a characterization of diagonalizable matrices, it is not entirely obvious
how to determine whether a basis of eigenvectors exists.
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◦ It turns out that we can essentially check this property on each eigenspace.

◦ As we already proved, the dimension of the λ-eigenspace of A is less than or equal to the multiplicity of
λ as a root of the characteristic polynomial.

◦ But since the characteristic polynomial has degree n, that means the sum of the dimensions of the
λ-eigenspaces is at most n, and can equal n only when each eigenspace has dimension equal to the
multiplicity of its corresponding eigenvalue.

◦ Our goal is to show that the converse holds as well: if each eigenspace has the proper dimension, then
the matrix will be diagonalizable.

• We �rst need an intermediate result about linear independence of eigenvectors having distinct eigenvalues:

• Theorem (Independent Eigenvectors): If v1,v2, . . . ,vn are eigenvectors of T associated to distinct eigenvalues
λ1, λ2, . . . , λn, then v1,v2, . . . ,vn are linearly independent.

◦ Proof: We induct on n.

◦ The base case n = 1 is trivial, since by de�nition an eigenvector cannot be the zero vector.

◦ Now suppose n ≥ 2 and that we had a linear dependence a1v1+· · ·+anvn = 0 for eigenvectors v1, . . . ,vn
having distinct eigenvalues λ1, λ2, . . . , λn,

◦ Applying T to both sides yields 0 = T (0) = T (a1v1 + · · ·+ anvn) = a1(λ1v1) + · · ·+ an(λnvn).

◦ But now if we scale the original dependence by λ1 and subtract this new relation (to eliminate v1), we
obtain a2(λ2 − λ1)v2 + a3(λ3 − λ1)v3 + · · ·+ an(λn − λ1)vn = 0.

◦ By the inductive hypothesis, all coe�cients of this dependence must be zero, and so since λk 6= λ1 for
each k, we conclude that a2 = · · · = an = 0. Then a1v1 = 0 implies a1 = 0 also, so we are done.

• Theorem (Diagonalizability Criterion): An n× n matrix is diagonalizable (over the complex numbers) if and
only if for each eigenvalue λ, the dimension of the λ-eigenspace is equal to the multiplicity of λ as a root of
the characteristic polynomial.

◦ Proof: If the n× n matrix A is diagonalizable, then by our previous theorem on diagonalizability, V has
a basis β of eigenvectors for A.

◦ For any eigenvalue λi of A, let bi be the number of elements of β having eigenvalue λi, and let di be the
multiplicity of λi as a root of the characteristic polynomial.

◦ Then
∑
i bi = n since β is a basis of V , and

∑
i di = n by our results about the characteristic polynomial,

and bi ≤ di as we proved before. Thus, n =
∑
i bi ≤

∑
di = n, so ni = di for each i.

◦ For the other direction, suppose that all eigenvalues of A lie in the scalar �eld of V , and that bi = di for all
i. Then let β be the union of bases for each eigenspace of A: by hypothesis, β contains

∑
i bi =

∑
i di = n

vectors, so to conclude it is a basis of the n-dimensional vector space V , we need only show that it is
linearly independent.

◦ Explicitly, let βi = {vi,1, . . . ,vi,ji} be a basis of the λi-eigenspace for each i, so that β = {v1,1,v1,2, . . . ,vk,j}
and Avi,j = λivi,j for each pair (i, j).

◦ Suppose we have a dependence a1,1v1,1 + · · ·+ ak,jvk,j = 0. Let wi =
∑
j ai,jvi,j , and observe that wi

has Awi = λiwi, and that w1 +w2 + · · ·+wk = 0.

◦ If any of the wi were nonzero, then we would have a nontrivial linear dependence between eigenvectors
of A having distinct eigenvalues, which is impossible by the previous theorem.

◦ Therefore, each wi = 0, meaning that ai,1vi,1 + · · · + ai,jivi,ji = 0. But then since βi is linearly
independent, all of the coe�cients ai,j must be zero. Thus, β is linearly independent and therefore is a
basis for V .

• Corollary: If A is an n× n matrix with n distinct eigenvalues, then A is diagonalizable.

◦ Proof: Every eigenvalue must occur with multiplicity 1 as a root of the characteristic polynomial, since
there are n eigenvalues and the sum of their multiplicities is also n.

◦ Then the dimension of each eigenspace is equal to 1 (since it is always between 1 and the multiplicity),
so by the theorem above, A is diagonalizable.
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• The proof of the diagonalizability theorem gives an explicit procedure for determining both diagonalizability
and the diagonalizing matrix. To determine whether a linear transformation T (or matrix A) is diagonalizable,

and if so how to �nd a basis β such that [T ]ββ is diagonal (or a matrix Q with Q−1AQ diagonal), follow these
steps:

◦ Step 1: Find the characteristic polynomial and eigenvalues of T (or A).

◦ Step 2: Find a basis for each eigenspace of T (or A).

◦ Step 3a: Determine whether T (or A) is diagonalizable. If each eigenspace is �nondefective� (i.e., its
dimension is equal to the number of times the corresponding eigenvalue appears as a root of the charac-
teristic polynomial) then T is diagonalizable, and otherwise, T is not diagonalizable.

◦ Step 3b: For a diagonalizable linear transformation T , take β to be a basis of eigenvectors for T . For a
diagonalizable matrix A, the diagonalizing matrix Q can be taken to be the matrix whose columns are
a basis of eigenvectors of A.

• Example: For T : R2 → R2 given by T (x, y) = 〈−2y, 3x+ 5y〉, determine whether T is diagonalizable and if

so, �nd a basis β such that [T ]ββ is diagonal.

◦ The associated matrix A for T relative to the standard basis is A =

[
0 −2
3 5

]
.

◦ For the characteristic polynomial, we compute det(tI−A) = t2−5t+6 = (t−2)(t−3), so the eigenvalues
are therefore λ = 2, 3. Since the eigenvalues are distinct we know that T is diagonalizable.

◦ A short calculation yields that 〈1,−1〉 is a basis for the 2-eigenspace, and that 〈−2, 3〉 is a basis for the
3-eigenspace.

◦ Thus, for β = {〈1,−1〉 , 〈−2, 3〉} , we can see that [T ]ββ =

[
2 0
0 3

]
is diagonal.

• Example: For A =

 1 −1 −1
0 1 −1
0 0 1

, determine whether there exists a diagonal matrix D and an invertible

matrix Q with D = Q−1AQ, and if so, �nd them.

◦ We compute det(tI −A) = (t− 1)3 since tI −A is upper-triangular, and the eigenvalues are λ = 1, 1, 1.

◦ The 1-eigenspace is then the nullspace of I − A =

 0 1 1
0 0 1
0 0 0

, which (since the matrix is already in

row-echelon form) is 1-dimensional and spanned by

 1
0
0

.
◦ Since the eigenspace for λ = 1 is 1-dimensional but the eigenvalue appears 3 times as a root of the

characteristic polynomial, the matrix A is not diagonalizable and there is no such Q.

• Example: For A =

 1 −1 0
0 2 0
0 2 1

, determine whether there exists a diagonal matrix D and an invertible

matrix Q with D = Q−1AQ, and if so, �nd them.

◦ We compute det(tI −A) = (t− 1)2(t− 2), so the eigenvalues are λ = 1, 1, 2.

◦ A short calculation yields that

 1
0
0

,
 0

0
1

 is a basis for the 1-eigenspace and that

 −11
2

 is a basis

for the 2-eigenspace.

◦ Since the eigenspaces both have the proper dimensions, A is diagonalizable, and we can take D = 1 0 0
0 1 0
0 0 2

 with Q =

 1 0 −1
0 0 1
0 1 2

 .
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◦ To check: we haveQ−1 =

 1 1 0
0 −2 1
0 1 0

, soQ−1AQ =

 1 1 0
0 −2 1
0 1 0

 1 −1 0
0 2 0
0 2 1

 1 0 −1
0 0 1
0 1 2

 = 1 0 0
0 1 0
0 0 2

 = D.

◦ Remark: We could (for example) also take D =

 2 0 0
0 1 0
0 0 1

 if we wanted, and the associated conju-

gating matrix could have been Q =

 −1 1 0
1 0 0
2 0 1

 instead. There is no particular reason to care much

about which diagonal matrix we want as long as we make sure to arrange the eigenvectors in the correct
order. We could also have used any other bases for the eigenspaces to construct Q.

• Knowing that a matrix is diagonalizable can be very computationally useful.

◦ For example, if A is diagonalizable with D = Q−1AQ, then it is very easy to compute any power of A.

◦ Explicitly, since we can rearrange to write A = QDQ−1, then Ak = (QDQ−1)k = Q(Dk)Q−1, since the
conjugate of the kth power is the kth power of a conjugate.

◦ But since D is diagonal, Dk is simply the diagonal matrix whose diagonal entries are the kth powers of
the diagonal entries of D.

• Example: If A =

[
−2 −6
3 7

]
, �nd a formula for the kth power Ak, for k a positive integer.

◦ First, we (try to) diagonalize A. Since det(tI − A) = t2 − 5t + 4 = (t − 1)(t − 4), the eigenvalues are 1
and 4. Since these are distinct, A is diagonalizable.

◦ Computing the eigenvectors of A yields that

[
−2
1

]
is a basis for the 1-eigenspace, and

[
−1
1

]
is a

basis for the 4-eigenspace.

◦ Then D = Q−1AQ where D =

[
1 0
0 4

]
and Q =

[
−2 −1
1 1

]
, and also Q−1 =

[
−1 −1
1 2

]
.

◦ ThenDk =

[
1 0
0 4k

]
, soAk = QDkQ−1 =

[
−2 −1
1 1

] [
1 0
0 4k

] [
−1 −1
1 2

]
=

[
2− 4k 2− 2 · 4k
−1 + 4k −1 + 2 · 4k

]
.

◦ Remark: This formula also makes sense for values of k which are not positive integers. For example, if

k = −1 we get the matrix

[
7/4 3/2
−3/4 −1/2

]
, which is actually the inverse matrix A−1. And if we set

k =
1

2
we get the matrix B =

[
0 −2
1 3

]
, whose square satis�es B2 =

[
−2 −6
3 7

]
= A.

• By diagonalizing a given matrix, we can often prove theorems in a much simpler way. Here is a typical
example:

• De�nition: If T : V → V is a linear operator and p(x) = a0 + a1x + · · · + anx
n is a polynomial, we de�ne

p(T ) = a0I + a1T + · · ·+ anT
n. Similarly, if A is an n×n matrix, we de�ne p(A) = a0In+ a1A+ · · ·+ anA

n.

◦ Since conjugation preserves sums and products, it is easy to check that Q−1p(A)Q = p(A−1AQ) for any
invertible Q.

• Theorem (Cayley-Hamilton): If p(x) is the characteristic polynomial of a matrix A, then p(A) is the zero
matrix 0.

◦ The same result holds for the characteristic polynomial of a linear operator T : V → V .
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◦ Example: For the matrix A =

[
2 2
3 1

]
, we have det(tI − A) =

∣∣∣∣ t− 2 −2
−3 t− 1

∣∣∣∣ = (t − 1)(t − 2) − 6 =

t2 − 3t− 4. We can compute A2 =

[
10 6
9 7

]
, and then indeed we have A2 − 3A− 4I2 =

[
10 6
9 7

]
−[

6 6
9 3

]
−
[

4 0
0 4

]
=

[
0 0
0 0

]
.

◦ Proof (if A is diagonalizable): If A is diagonalizable, then let D = Q−1AQ with D diagonal, and p(x) be
the characteristic polynomial of A.

◦ The diagonal entries of D are the eigenvalues λ1, · · · , λn of A, hence are roots of the characteristic
polynomial of A. So p(λ1) = · · · = p(λn) = 0.

◦ Then, because raising D to a power just raises all of its diagonal entries to that power, we can see that

p(D) = p


 λ1

. . .

λn


 =

 p(λ1)
. . .

p(λn)

 =

 0
. . .

0

 = 0.

◦ Now by conjugating each term and adding the results, we see that 0 = p(D) = p(Q−1AQ) = Q−1 [p(A)]Q.
So by conjugating back, we see that p(A) = Q · 0 ·Q−1 = 0, as claimed.

• In the case where A is not diagonalizable, the proof of the Cayley-Hamilton theorem is more di�cult. One
method is to use the Jordan canonical form, mentioned in the next section.

5.3 Applications of Diagonalization

• In this section we discuss a few applications of diagonalization. Our analysis is not intended to be a deep
survey of all the applications of diagonalization, but rather a broad overview of a few important topics, with
examples intended to convey many of the main ideas.

5.3.1 Transition Matrices and Incidence Matrices

• In many applications, we can use linear algebra to model the behavior of an iterated system. Such models
are quite common in applied mathematics, the social sciences (particularly economics), and the life sciences.

◦ For example, consider a state with two cities A and B whose populations �ow back and forth over time:
after one year passes a resident of city A has a 10% chance of moving to city B and a 90% chance of
staying in city A, while a resident of city B has a 30% change of moving to A and a 70% chance of
staying in B.

◦ We would like to know what will happen to the relative populations of cities A and B over a long period
of time.

◦ If city A has a population of Aold and city B has a population of Bold, then one year later, we can
see that city A's population will be Anew = 0.9Aold + 0.3Bold, while B's population will be Bnew =
0.1Aold + 0.7Bold.

◦ By iterating this calculation, we can in principle compute the cities' populations as far into the future
as desired, but the computations rapidly become quite messy to do exactly.

◦ For example, with the starting populations (A,B) = (1000, 3000), here is a table of the populations (to
the nearest whole person) after n years:
n 0 1 2 3 4 5 6 7 8 9 10 15 20 30

A 1000 1800 2280 2568 2741 2844 2907 2944 2966 2980 2988 2999 3000 3000

B 3000 2200 1720 1432 1259 1156 1093 1056 1034 1020 1012 1001 1000 1000

◦ We can see that the populations seem to approach (rather rapidly) having 3000 people in city A and
1000 in city B.

◦ We can do the computations above much more e�ciently by writing the iteration in matrix form:[
Anew

Bnew

]
=

[
0.9 0.3
0.1 0.7

] [
Aold

Bold

]
.
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◦ Since the population one year into the future is obtained by left-multiplying the population vector by

M =

[
0.9 0.3
0.1 0.7

]
, the population k years into the future can then be obtained by left-multiplying the

population vector by Mk.

◦ By diagonalizing this matrix, we can easily computeMk, and thus analyze the behavior of the population
as time extends forward.

◦ In this case, M is diagonalizable: M = QDQ−1 with D =

[
1 0
0 3/5

]
and Q =

[
3 −1
1 1

]
.

◦ ThenMk = QDkQ−1, and as k →∞, we see thatDk →
[

1 0
0 0

]
, soMk will approachQ

[
1 0
0 0

]
Q−1 =[

3/4 3/4
1/4 1/4

]
.

◦ From this calculation, we can see that as time extends on, the cities' populations will approach the
situation where 3/4 of the residents live in city A and 1/4 of the residents live in city B.

◦ Notice that this �steady-state� solution where the cities' populations both remain constant represents an
eigenvector of the original matrix with eigenvalue λ = 1.

• The system above, in which members of a set (in this case, residents of the cities) are identi�ed as belonging
to one of several states that can change over time, is known as a stochastic process.

◦ If, as in our example, the probabilities of changing from one state to another are independent of time,
the system is called a Markov chain.

◦ Markov chains and their continuous analogues (known as Markov processes) arise (for example) in prob-
ability problems involving repeated wagers or random walks, in economics modeling the �ow of goods
among industries and nations, in biology modeling the gene frequencies in populations, and in civil
engineering modeling the arrival of people to buildings.

◦ A Markov chain model was also used for one of the original versions of the PageRank algorithm used by
Google to rank internet search results.

• De�nition: A square matrix whose entries are nonnegative and whose columns sum to 1 is called a transition matrix
(or a stochastic matrix).

◦ Equivalently, a square matrix M is a transition matrix precisely when MTv = v, where v is the column
vector of all 1s.

◦ From this description, we can see that v is an eigenvector of MT of eigenvalue 1, and since MT and M
have the same characteristic polynomial, we conclude that M has 1 as an eigenvalue.

◦ If it were true that M were diagonalizable and every eigenvalue of M had absolute value less than 1
(except for the eigenvalue 1), then we could apply the same argument as we did in the example to
conclude that the powers of M approached a limit.

◦ Unfortunately, this is not true in general: the transition matrix M =

[
0 1
1 0

]
has M2 equal to the

identity matrix, so odd powers of M are equal to M while even powers are equal to the identity. (In this
case, the eigenvalues of M are 1 and −1.)
◦ Fortunately, the argument does apply to a large class of transition matrices:

• Theorem (Markov Chains): IfM is a transition matrix, then every eigenvalue λ ofM has |λ| ≤ 1. Furthermore,
if some power of M has all entries positive, then the only eigenvalue of M of absolute value 1 is λ = 1, and
the 1-eigenspace has dimension 1. In such a case, the �matrix limit� lim

k→∞
Mk exists and has all columns equal

to a �steady-state� solution of the Markov chain whose transition matrix is M .

◦ We will not prove this theorem, although most of the arguments (when M is diagonalizable) are similar
to the computations we did in the example above.

• Another situation, in a somewhat di�erent direction, concerns the analysis of groups in networks.
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◦ For example, suppose we have a network of people, each of whom can send direct messages to certain
other people. (In combinatorics, this object is known as a directed graph.)

◦ We would like to study the question of who can send messages (possibly using other people as interme-
diaries) to whom, and in how many di�erent possible ways.

◦ Concretely, suppose that we have �ve people 1, 2, 3, 4, and 5 where 1 can send to 2 or 4, 2 can send to
3 or 5, 3 can send to 1 or 4, 4 can send to 5, and 5 can send to 3.

◦ We can summarize all of this information using an incidence matrix M whose (i, j) entry is 1 if person i

can send a message to person j, and 0 otherwise: in this case, we have M =


0 1 0 1 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1
0 0 1 0 0

.
◦ The entries of M2 will give us information about messages that can be sent through one intermediate
person.

◦ For example, (M2)3,5 =M3,1M1,5 +M3,2M2,5 +M3,3M3,5 +M3,4M4,5 +M3,5M5,5: a term M3,kMk,5 is
equal to 1 precisely when M3,k =Mk,5 = 1, which is to say that 3 can send a message to 5 via person k.

◦ By summing, we see that the entry (M2)i,j represents the total number of ways that person i can send
a message to person j via one other person.

◦ So, since M2 =


0 0 1 0 2
1 0 1 1 0
0 1 0 1 1
0 0 1 0 0
1 0 0 1 0

, we see that (for example) there are two ways 1 can send a message

to 5 via one other person.

◦ In a similar way, (Md)i,j represents the number of ways person i can send a message to person j using
d− 1 other people in the middle.

◦ By summing, we see that (M +M2 +M3 + · · ·+Md)i,j gives the number of ways i can send a message
to j with at most d− 1 other people in the middle.

◦ In particular, for the matrix we gave above, since M +M2 +M3 +M4 =


3 2 3 5 3
2 2 4 4 5
3 1 4 4 3
1 1 1 2 2
1 1 3 2 3

, we see
that any person can send any other person a message with at most 3 intermediaries.

◦ Ultimately, to analyze this type of network, we want to study the behavior of powers of M , which
(in the event that M is diagonalizable) we can easily do by diagonalizing M : if M = Q−1DQ, then
(M +M2 + · · ·+Md) = Q−1(D +D2 + · · ·+Dd)Q.

5.3.2 Systems of Linear Di�erential Equations

• Consider the problem of solving a system of linear di�erential equations.

◦ First, observe that we can reduce any system of linear di�erential equations to a system of �rst-order
linear di�erential equations (in more variables): if we de�ne new variables equal to the higher-order
derivatives of our old variables, then we can rewrite the old system as a system of �rst-order equations.

◦ For example, to convert y′′′ + y′ = 0 into a system of 1st-order equations, we can de�ne new variables
z = y′ and w = y′′ = z′: then the single 3rd-order equation y′′′ + y′ = 0 is equivalent to the 1st-order
system y′ = z, z′ = w, w′ = −z.

• By rearranging the equations and de�ning new variables appropriately, we can put any system of linear
di�erential equations into the form

y′1 = a1,1(x) · y1 + a1,2(x) · y2 + · · ·+ a1,n(x) · yn + q1(x)

...
...

y′n = an,1(x) · y1 + an,2(x) · y2 + · · ·+ an,n(x) · yn + qn(x)
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for some functions ai,j(x) and qi(x) for 1 ≤ i, j ≤ n.

◦ We can write this system more compactly using matrices: if A =

 a1,1(x) · · · a1,n(x)
...

. . .
...

an,1(x) · · · an,n(x)

, q =

 q1(x)
...

qn(x)

, and y =

 y1(x)
...

yn(x)

 so that y′ =

 y′1(x)
...

y′n(x)

, we can write the system more compactly as

y′ = Ay + q.

◦ We say that the system is homogeneous if q = 0, and it is nonhomogeneous otherwise.

• We also have a version of the Wronskian in this setting for checking whether function vectors are linearly
independent:

• De�nition: Given n vectors v1 =

 y1,1(x)
...

y1,n(x)

, · · · , vn =

 yn,1(x)
...

yn,n(x)

 of length n with functions as entries,

their Wronskian is de�ned as the determinant W =

∣∣∣∣∣∣∣
y1,1 · · · y1,n
...

. . .
...

yn,1 · · · yn,n

∣∣∣∣∣∣∣.
◦ By our results on row operations and determinants, we immediately see that n function vectors v1, . . . ,vn
of length n are linearly independent if their Wronskian is not the zero function.

• Our goal is only to outline some of the applications of linear algebra to the study of di�erential equations, so
we will now assume that all of the entries in the matrix A are constants and that the system is homogeneous.
In this case, we have the following fundamental theorem:

• Theorem (Homogeneous Systems): If the n × n coe�cient matrix A is constant and I is any interval, then
the set of solutions y to the homogeneous system y′ = Ay on I is an n-dimensional vector space.

◦ This theorem guarantees the existence of solutions to the system y′ = Ay, and gives us some information
about the nature of the solution space (namely, that it is n-dimensional).

◦ We, of course, would actually like to write down the solutions explicitly.

• Our key observation is: if v =


c1
c2
...
cn

 is an eigenvector of A with eigenvalue λ, then y =


c1
c2
...
cn

 eλx is a

solution to y′ = Ay.

◦ This follows simply by di�erentiating y = eλxv with respect to x: we see y′ = λeλxv = λy = Ay.

◦ In the event that A has n linearly independent eigenvectors (which is to say, if A is diagonalizable), we
will therefore obtain n solutions to the di�erential equation.

◦ If these solutions are linearly independent, then since we know the solution space is n-dimensional, we
would be able to conclude that our solutions are a basis for the solution space. This turns out to be true:

• Theorem (Eigenvalue Method): If A has n linearly independent eigenvectors v1,v2, . . . ,vn with associated
eigenvalues λ1, λ2, . . . , λn, then the general solution to the matrix di�erential system y′ = Ay is given by
y = C1e

λ1xv1 + C2e
λ2xv2 + · · ·+ Cne

λnxv2, where C1, · · · , Cn are arbitrary constants.

◦ Recall that the matrix A will have n linearly independent eigenvectors precisely when it is diagonalizable,
which is equivalent to saying that the dimension of each eigenspace is equal to the multiplicity of the
corresponding eigenvalue as a root of the characteristic polynomial of A.
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◦ Proof: By the observation above, each of eλ1xv1, e
λ2xv2, · · · , eλnxvn is a solution to y′ = Ay. We claim

that they are a basis for the solution space.

◦ To show this, we know by our earlier results that the solution space of the system y′ = Ay is n-
dimensional: thus, if we can show that these solutions are linearly independent, we would be able to
conclude that our solutions are a basis for the solution space.

◦ We can compute the Wronskian of these solutions: after factoring out the exponentials from each column,

we obtain W = e(λ1+···+λn)x det(M), where M =

 | | |
v1 · · · vn
| | |

.
◦ The exponential is always nonzero and the vectors v1,v2, . . . ,vn are (by hypothesis) linearly independent,
meaning that det(M) is also nonzero. Thus, W is nonzero, so eλ1xv1, e

λ2xv2, · · · , eλnxvn are linearly
independent.

◦ Since these solutions are therefore a basis for the solution space, we immediately conclude that the general
solution to y′ = Ay has the form y = C1e

λ1xv1 + C2e
λ2xv2 + · · · + Cne

λnxv2, for arbitrary constants
C1, · · · , Cn.

• Example: Find all functions y1 and y2 such that
y′1 = y1 − 3y2
y′2 = y1 + 5y2

.

◦ The coe�cient matrix isA =

[
1 −3
1 5

]
, whose characteristic polynomial is det(tI−A) =

∣∣∣∣ t− 1 3
−1 t− 5

∣∣∣∣ =
(t− 1)(t− 5) + 3 = t2 − 6t+ 8 = (t− 2)(t− 4), so the eigenvalues of A are λ = 2, 4.

◦ Since the eigenvalues are distinct, A is diagonalizable, and some calculation will produce the eigenvectors[
−3
1

]
for λ = 2 and

[
−1
1

]
for λ = 4.

◦ Thus, the general solution to the system is

[
y1
y2

]
= C1

[
−3
1

]
e2x + C2

[
−1
1

]
e4x .

• We also remark that in the event that the coe�cient matrix has nonreal eigenvalues, by taking an appropriate
linear combination we can produce real-valued solution vectors.

• There is also another, quite di�erent, method for using diagonalization to solve a homogeneous system of
linear di�erential equations with constant coe�cients.

◦ As motivation, if we consider the di�erential equation y′ = ky with the initial condition y(0) = C, it is
not hard to verify that the general solution is y(x) = ekxC.

◦ We would like to �nd some way to extend this result to an n× n system y′ = Ay with initial condition
y(0) = c.

◦ The natural way would be to try to de�ne the �exponential of a matrix� eA in such a way that eAt has
the property that d

dt [e
At] = AeAt: then y(t) = eAtc will have y′(t) = AeAtc = Ay.

• De�nition: If A is an n× n matrix, the exponential of A is de�ned to be the in�nite sum eA =

∞∑
n=0

An

n!
.

◦ The de�nition is motivated by the Taylor series for the exponential of a real or complex number z;

namely, ez =

∞∑
n=0

zn

n!
.

◦ Like with the Taylor series, it can be shown that for any matrix A, the in�nite series

∞∑
n=0

An

n!
converges

absolutely, in the sense that the series in each of the entries of the matrix converges absolutely.

• Theorem (Exponential Solutions): For any n×n matrix A, the general solution to the matrix system y′ = Ay
on an interval I is given by y(t) = eAtc, for an arbitrary constant vector c.
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◦ Proof: Since the in�nite series for eAt converges absolutely, we can di�erentiate it term-by-term: with

eAt =

∞∑
n=0

An

n!
tn, we compute

d

dt
[eAt] =

∞∑
n=1

An

n!
(ntn−1) = A

∞∑
n=1

An−1

(n− 1)!
tn−1 = AeAt.

◦ Thus,
d

dt
[y(t)] = [AeAtc] = Ay(t), as required.

◦ Furthermore, since c is a vector of length n, the vectors of the form eAtc form an n-dimensional space,
hence are all the solutions.

• All that remains is actually to compute the exponential of a matrix, which we have not yet explained.

◦ When the matrix is diagonalizable, we can do this comparatively easily: explicitly, if A = Q−1DQ, then

eA =

∞∑
n=0

An

n!
=

∞∑
n=0

(Q−1DQ)n

n!
=

∞∑
n=0

Q−1DnQ

n!
= Q−1

[ ∞∑
n=0

Dn

n!

]
Q = Q−1eDQ.

◦ Furthermore, again from the power series de�nition, ifD =

 λ1
. . .

λn

, then eD =

 eλ1

. . .

eλn

.
◦ Thus, by using the diagonalization, we can compute the exponential of the original matrix A, and thereby
use it to solve the di�erential equation y′ = Ay.

• Example: Find all functions y1 and y2 such that
y′1 = 2y1 − y2
y′2 = −2y1 + 3y2

.

◦ The coe�cient matrix is A =

[
2 −1
−2 3

]
, with eigenvalues λ = 1, 4. Since the eigenvalues are distinct,

A is diagonalizable, and we can �nd eigenvectors

[
1
1

]
for λ = 1 and

[
1
−2

]
for λ = 4.

◦ Then with Q =

[
1 1
1 −2

]
, with Q−1 =

1

3

[
2 1
1 −1

]
, we have Q−1AQ = D =

[
1 0
0 4

]
.

◦ Thus, eAt = QeDtQ−1 = Q

[
et 0
0 e4t

]
Q−1 =

1

3

[
2et + e4t et − e4t
2et − 2e4t et + 2e4t

]
.

◦ Then

[
y1
y2

]
=

1

3

[
2et + e4t et − e4t
2et − 2e4t et + 2e4t

] [
C1

C2

]
for arbitrary constants C1 and C2.

5.3.3 Non-Diagonalizable Matrices and the Jordan Canonical Form

• As we saw in the previous section, there exist matrices which are not diagonalizable. For computational
purposes, however, we might still like to know what the simplest form such a non-diagonalizable matrix is
similar to. The answer is given by what is called the Jordan canonical form:

• De�nition: The n × n Jordan block with eigenvalue λ is the n × n matrix J having λs on the diagonal, 1s
directly above the diagonal, and zeroes elsewhere.

◦ Here are the general Jordan block matrices of sizes 2, 3, and 4:

[
λ 1
0 λ

]
,

 λ 1 0
0 λ 1
0 0 λ

,

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

.

• De�nition: A matrix is in Jordan canonical form if it is a �block-diagonal matrix� of the form


J1

J2
. . .

Jk

,
where each J1, · · · , Jk is a square Jordan block matrix (possibly with di�erent eigenvalues and di�erent sizes).
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◦ Example: The matrix

 2 0 0
0 3 0
0 0 4

 is in Jordan canonical form, with J1 = [2], J2 = [3], J3 = [4].

◦ Example: The matrix

 2 1 0
0 2 0
0 0 3

 is in Jordan canonical form, with J1 =

[
2 1
0 2

]
and J2 = [3].

◦ Example: The matrix


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 is in Jordan canonical form, with J1 = [1], J2 =

[
1 1
0 1

]
,

J3 = [1].

◦ Example: The matrix


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 is in Jordan canonical form, with J1 =

 0 1 0
0 0 1
0 0 0

 and J2 = [0].

• The main result is that, over the complex numbers, every matrix is similar to a matrix in Jordan canonical
form, and (furthermore) the Jordan canonical form is unique up to rearrangement of the Jordan blocks:

• Theorem (Jordan Canonical Form): If A is any n×n matrix, then A is similar to a matrix in Jordan canonical
form. Furthermore, the Jordan canonical form is unique up to rearrangement of the Jordan blocks.

◦ The Jordan canonical form therefore serves as an �approximate diagonalization� for non-diagonalizable
matrices, since the Jordan blocks are very close to being diagonal matrices.

◦ The idea behind the Jordan canonical form is that ultimately, a non-diagonalizable linear transformation
(or matrix) fails to have enough eigenvectors for us to construct a diagonal basis. By generalizing
the de�nition of eigenvector and eigenspace, we can �ll in these �missing� basis entries, and then by
constructing a suitable basis of �generalized eigenvectors�, we can establish the existence of the Jordan
canonical form.

• De�nition: For a linear operator T : V → V , a nonzero vector v satisfying (A− λI)kv = 0 for some positive
integer k and some scalar λ is called a generalized eigenvector of T .

◦ We take the analogous de�nition for matrices: a generalized eigenvector for A is a nonzero vector v with
(A− λI)kv = 0 for some positive integer k and some scalar λ.

◦ Observe that (regular) eigenvectors correspond to k = 1, and so every eigenvector is a generalized
eigenvector. The converse, however, is not true:

• Example: Show that v =

[
4
1

]
is a generalized 2-eigenvector for A =

[
1 −1
1 3

]
that is not a (regular)

2-eigenvector.

◦ We compute (A−2I)v =

[
1 1
−1 −1

] [
4
1

]
=

[
5
−5

]
, and since this is not zero, v is not a 2-eigenvector.

◦ However, (A − 2I)2v =

[
1 1
−1 −1

] [
5
−5

]
=

[
0
0

]
, and so v is a generalized 2-eigenvector, with

k = 2.

• Here are some of the fundamental properties of generalized eigenvectors for a linear transformation T : V → V
(the proofs of many of these properties are di�cult, and we will take them for granted):

◦ The associated constant λ for a generalized eigenvector is always an eigenvalue of T : that is, if v is a
nonzero vector with (T − λI)kv = 0 for some k and some λ, then λ is an eigenvalue of T .

◦ Generalized eigenvectors with di�erent associated eigenvalues are linearly independent.

◦ Like (regular) eigenvectors, the generalized λ-eigenvectors (together with the zero vector) also form a
subspace, called the generalized λ-eigenspace.
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◦ The generalized λ-eigenspace of T is equal to the kernel of (T − λI)d, where d is the multiplicity of λ as
a root of the characteristic polynomial of T . Furthermore, the dimension of the generalized λ-eigenspace
is equal to d.

◦ There exists a basis of V consisting of generalized eigenvectors of T .

• Example: Find a basis for each generalized eigenspace of A =

 2 0 0
−1 2 1
1 −1 0

, and verify that R3 has a basis

of generalized eigenvectors for A.

◦ By expanding along the top row, we see det(tI − A) = (t − 1)2(t − 2). Thus, the eigenvalues of A are
λ = 1, 1, 2.

◦ For the generalized 1-eigenspace, we compute the nullspace of (A − I)2 =

 1 0 0
−1 0 0
1 0 0

. Upon row-

reducing, we see that the generalized 1-eigenspace has dimension 2 and is spanned by

 0
1
0

 and

 0
0
1

.
◦ For the generalized 2-eigenspace, we compute the nullspace of A − 2I =

 0 0 0
−1 0 1
1 −1 −2

. Upon

row-reducing, we see that the generalized 2-eigenspace has dimension 1 and is spanned by

 1
−1
1

.
◦ Furthermore, the union of the bases for the eigenspaces,

 0
1
0

,
 0

0
1

,
 1
−1
1

, clearly forms a basis

for R3, as claimed. We also see that the dimension of each generalized eigenspace is indeed equal to the
multiplicity of the associated eigenvalue as a root of the characteristic polynomial.

• Now that we know that V has a basis of generalized eigenvectors of T , our goal is to �nd as simple a basis as
possible for each generalized eigenspace.

◦ As motivation, suppose that there is a basis β = {vk−1,vk−2, . . . ,v1,v0} of V such that T : V → V has

associated matrix [T ]ββ =


λ 1 0 0
0 λ 1 0

0 0
. . . 1

0 0 0 λ

, a Jordan block matrix.

◦ Then Tvk−1 = λvk−1 and T (vi) = λvi + vi+1 for each 0 ≤ i ≤ k − 2.

◦ Rearranging, we see that (T − λI)vk−1 = 0 and (T − λI)vi = vi+1 for each 0 ≤ i ≤ k − 2.

◦ Thus, by plugging these relations into one another, we see that v0 is a generalized λ-eigenvector of T
and that vi = (T − λI)iv0 for each 0 ≤ i ≤ k − 1.

◦ In other words, the basis β is composed of a �chain� of generalized eigenvectors obtained by successively
applying the operator T − λI to a particular generalized eigenvector v0.

• De�nition: Suppose T : V → V is linear and v is a generalized λ-eigenvector of T such that (T − λI)kv = 0
and k is minimal. The list {vk−1,vk−2, . . . ,v1,v0}, where vi = (T − λI)iv for each 0 ≤ i ≤ k − 1, is called a
chain of generalized eigenvectors.

◦ It can be veri�ed that any chain of generalized eigenvectors is linearly independent. By running the
calculation above in reverse, if we take β = {vk−1, . . . ,v1,v0} as an ordered basis of W = span(β), then
the matrix associated to T on W is a Jordan-block matrix.

• The �nal necessary piece for constructing the Jordan canonical form is then the following:
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• Theorem (Existence of Jordan Basis): If V is �nite-dimensional and T : V → V is linear, then V has an

ordered basis β consisting of chains of generalized eigenvectors of T , and thus the associated matrix [T ]ββ is
in Jordan canonical form. Furthermore, the number of k × k Jordan blocks with eigenvalue λ in any Jordan
canonical form of T is equal to rank((T − λI)k+1)− 2rank((T − λI)k) + rank((T − λI)k−1).

◦ The �rst part of this theorem says that the Jordan canonical form exists, while the second part guarantees
that the Jordan form is unique up to rearranging the blocks, since the number of blocks of any possible
size and eigenvalue depend only on the transformation T itself and not on the choice of basis.

• Example: Find the Jordan canonical form of A =


0 −1 3 2
1 0 −2 0
−1 0 3 1
2 −1 −3 0

.
◦ We compute det(tI −A) = t(t− 1)3, so the eigenvalues of A are λ = 0, 1, 1, 1. Since 0 is a non-repeated
eigenvalue, there can only be a Jordan block of size 1 associated to it.

◦ To �nd the Jordan blocks with λ = 1, we have A− I =


−1 −1 3 2
1 −1 −2 0
−1 0 2 1
2 −1 −3 −1

, with rank(A− I) = 3.

◦ Next, we compute (A− I)2 =


1 0 −1 −1
0 0 1 0
1 0 −2 −1
−2 0 5 2

, with rank(A− I)2 = 2.

◦ Finally, (A− I)3 =


−2 0 4 2
−1 0 2 1
−1 0 2 1
1 0 −2 −1

 so rank(A− I)3 = 1.

◦ Therefore, for λ = 1, we see that there are 2 − 2 · 3 + 4 = 0 blocks of size 1, 1 − 2 · 2 + 3 = 0 blocks of
size 2, and 1− 2 · 1 + 2 = 1 block of size 3.

◦ This means there is a Jordan 1-block of size 3 (along with the Jordan 0-block of size 1), and so the

Jordan canonical form is


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0

 .

• The Jordan canonical form has a variety of applications: its primary utility is as a general version of diago-
nalization, since the Jordan canonical form exists for all matrices, even non-diagonalizable ones.

◦ For example, we can use the Jordan canonical form (in place of the diagonalization) to prove the Cayley-
Hamilton theorem for non-diagonalizable matrices.

◦ In most practical applications, diagonalization is su�cient, so the Jordan canonical form tends to be
more useful as a theoretical tool, although it does also have some important practical applications to
performing computations with matrices as well.

◦ For example, we can give a formula for the exponential of a matrix in Jordan canonical form, which
we can use to solve systems of homogeneous �rst-order linear di�erential equations where the coe�cient
matrix is not diagonalizable.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2017. You may not reproduce or distribute this
material without my express permission.
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