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3 Inner Products

In this chapter we discuss vector spaces having an additional kind of structure called an �inner product� that
generalizes the idea of the dot product of vectors in Rn. We then use inner products to formulate notions of
�length� and �angle� in more general vector spaces, and discuss in particular the central concept of orthogonality.
We then discuss a few important applications of these ideas to least-squares problems and Fourier series.

3.1 Inner Products

• Recall that if v is a vector in Rn, then the dot product v ·v = ||v||2 is the square of the length of v, and that
for any vectors v and w, the angle θ between them satis�es the relation v ·w = ||v|| ||w|| cos θ.

◦ Our goal is to de�ne an abstract version of the dot product in a general vector space, and then use it to
discuss the notions of length and angle.

3.1.1 Inner Products and Norms

• De�nition: If V is a (real) vector space1, an inner product on V is a pairing that assigns a real number to each
ordered pair (v,w) of vectors in V . This pairing is denoted2 〈v,w〉 and must satisfy the following properties:

[I1] Linearity in the �rst argument: 〈v1 + cv2,w〉 = 〈v1,w〉+ c〈v2,w〉 for any scalar c.

[I2] Symmetry: 〈v,w〉 = 〈w,v〉.
[I3] Positive-de�niteness: 〈v,v〉 ≥ 0 for all v, and 〈v,v〉 = 0 only when v = 0.

◦ The linearity and symmetry properties are fairly clear: if we �x the second component, the inner product
behaves like a linear function in the �rst component, and we want both components to behave in the
same way.

1There is also an extremely important notion of an inner product on a complex vector space, whose scalars are the complex
numbers. The de�nition is almost identical, except with condition [I2] replaced with �conjugate-symmetry�: 〈v,w〉 = 〈w,v〉, rather
than 〈v,w〉 = 〈w,v〉.

2In this chapter, we will use angle brackets to denote inner products, and represent vectors in Rn using parentheses.
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◦ The positive-de�niteness property is intended to capture an idea about �length�: namely, the length of
a vector v should be the (inner) product of v with itself, and lengths are supposed to be nonnegative.
Furthermore, the only vector of length zero should be the zero vector.

• De�nition: A vector space V together with an inner product 〈·, ·〉 on V is called an inner product space.

◦ Any given vector space may have many di�erent inner products.

◦ When we say �suppose V is an inner product space�, we intend this to mean that V is equipped with a
particular (�xed) inner product.

• The entire purpose of de�ning an inner product is to generalize the notion of the dot product to more general
vector spaces, so we �rst observe that the dot product on Rn is actually an inner product:

• Example: Show that the standard dot product on Rn, de�ned as (x1, . . . , xn) · (y1, . . . , yn) = x1y1+ · · ·+xnyn
is an inner product.

◦ [I1]-[I2]: It is an easy algebraic computation to verify the linearity and symmetry properties.

◦ [I3]: If v = (x1, . . . , xn) then v · v = x21 + x22 + · · ·+ x2n. Since each square is nonnegative, v · v ≥ 0, and
v · v = 0 only when all of the components of v are zero.

• There are other examples of inner products on Rn beyond the standard dot product.

• Example: Show that the pairing 〈(x1, y1), (x2, y2)〉 = 3x1x2+2x1y2+2x2y1+4y1y2 on R2 is an inner product.

◦ [I1]-[I2]: It is an easy algebraic computation to verify the linearity and symmetry properties.

◦ [I3]: We have 〈(x, y), (x, y)〉 = 3x2 + 4xy + 4y2 = 2x2 + (x+ 2y)2, and since each square is nonnegative,
the inner product is always nonnegative. Furthermore, it equals zero only when both squares are zero,
and this clearly only occurs for x = y = 0.

• An important class of inner products are ones de�ned on function spaces:

• Example: Let V be the vector space of continuous (real-valued) functions on the interval [a, b]. Show that

〈f, g〉 =
´ b
a
f(x)g(x) dx is an inner product on V .

◦ [I1]: We have 〈f1 + cf2, g〉 =
´ b
a
[f1(x) + cf2(x)] g(x) dx =

´ b
a
f1(x)g(x) dx+ c

´ b
a
f2(x)g(x) dx = 〈f1, g〉+

c 〈f2, g〉.

◦ [I2]: Observe that 〈g, f〉 =
´ b
a
g(x)f(x) dx =

´ b
a
f(x)g(x) dx = 〈f, g〉.

◦ [I3]: Notice that 〈f, f〉 =
´ b
a
f(x)2 dx is the integral of a nonnegative function, so it is always nonnegative.

Furthermore (since f is assumed to be continuous) the integral of f2 cannot be zero unless f is identically
zero.

◦ Remark: More generally, if w(x) is any �xed positive (�weight�) function that is continuous on [a, b],

〈f, g〉 =
´ b
a
f(x)g(x) · w(x) dx is an inner product on V .

• Here is another example of an inner product, on the space of matrices:

• Example: Let V = Mn×n be the vector space of n × n matrices. Show that 〈A,B〉 = tr(ABT ) is an inner
product on V .

◦ [I1]: We have 〈A+ cC,B〉 = tr[(A + cC)BT ] = tr[ABT + cCBT ] = tr(ABT ) + c tr(CBT ) = 〈A,B〉 +
c 〈C,B〉, where we used the facts that tr(M +N) = tr(M) + tr(M) and tr(cM) = c tr(M).

◦ [I2]: Observe that 〈B,A〉 = tr(BAT ) = tr(BTA) = tr(ABT ) = 〈A,B〉, where we used the fact that
tr(MN) = tr(NM), which can be veri�ed by expanding both sides explicitly.

◦ [I3]: We have 〈A,A〉 =
n∑
j=1

(AAT )j,j =

n∑
j=1

n∑
k=1

Aj,kA
T
k,j =

n∑
j=1

n∑
k=1

A2
j,k ≥ 0, and equality can only occur

when each element of A is zero, since squares are always nonnegative.

◦ Remark: This inner product is often called the Frobenius inner product.
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• Our fundamental goal in studying inner products is to extend the notion of length in Rn to a more general
setting. Using the positive-de�niteness property [I3], we can de�ne a notion of length in an inner product
space.

• De�nition: If V is an inner product space, we de�ne the norm (or length) of a vector v to be ||v|| =
√
〈v,v〉.

◦ When V = Rn with the standard dot product, the norm on V reduces to the standard notion of �length�
of a vector in Rn.

• Here are a few basic properties of inner products and norms:

• Proposition: If V is an inner product space with inner product 〈·, ·〉, then the following are true:

1. For any vectors v, w1, and w2, and any scalar c, 〈v,w1 + cw2〉 = 〈v,w1〉+ c 〈v,w2〉
◦ Proof: Apply [I1] and [I2]: 〈v,w1 + cw2〉 = 〈w1 + cw2,v〉 = 〈w1,v〉+c 〈w2,v〉 = 〈v,w1〉+c 〈v,w2〉.

2. For any vector v, 〈v,0〉 = 0 = 〈0,v〉.
◦ Proof: Apply property (1) and [I2] with c = 0, using the fact that 0w = 0 for any w.

3. For any vector v, ||v|| is a nonnegative real number, and ||v|| = 0 if and only if v = 0.

◦ Proof: Immediate from [I3].

4. For any vector v and scalar c, ||cv|| = |c| · ||v||.
◦ Proof: We have ||cv|| =

√
〈cv, cv〉 =

√
c2 〈v,v〉 = |c| · ||v||, using [I2] and property (1).

3.1.2 The Cauchy-Schwarz Inequality and Applications

• In Rn, there are a number of fundamental inequalities about lengths, which generalize quite pleasantly to
general inner product spaces.

• The following result, in particular, is one of the most fundamental inequalities in all of mathematics:

• Theorem (Cauchy-Schwarz Inequality): For any v and w in an inner product space V , we have |〈v,w〉| ≤
||v|| ||w||, with equality if and only if the set {v,w} is linearly dependent.

◦ Proof: If w = 0 then the result is trivial (since both sides are zero, and {v,0} is always dependent), so
now assume w 6= 0.

◦ Let t =
〈v,w〉
〈w,w〉

. By properties of inner products and norms, we can write

||v − tw||2 = 〈v − tw,v − tw〉 = 〈v,v〉 − 2t 〈v,w〉+ t2 〈w,w〉

= 〈v,v〉 − 〈v,w〉
2

〈w,w〉
.

◦ Therefore, since ||v − tw||2 ≥ 0 and 〈w,w〉 ≥ 0, clearing denominators and rearranging yields 〈v,w〉2 ≤
〈v,v〉 〈w,w〉. Taking the square root yields the stated result.

◦ Furthermore, we will have equality if and only if ||v − tw||2 = 0, which is in turn equivalent to v−tw = 0;
namely, when v is a multiple of w. Since we also get equality if w = 0, equality occurs precisely when
the set {v,w} is linearly dependent.

◦ Remark: As written, this proof is completely mysterious: why does making that particular choice for t
work? Here is some motivation: observe that ||v − tw|| = 〈v,v〉 − 2t 〈v,w〉 + t2 〈w,w〉 is a quadratic
function of t that is always nonnegative.

◦ To decide whether a quadratic function is always nonnegative, we can complete the square to see that

〈v,v〉 − 2t 〈v,w〉+ t2 〈w,w〉 = 〈w,w〉
[
t− 〈v,w〉
〈w,w〉

]2
+

[
〈v,v〉 − 〈v,w〉

2

〈w,w〉

]
.

◦ Thus, the minimum value of the quadratic function is 〈v,v〉 − 〈v,w〉
2

〈w,w〉
, and it occurs when t =

〈v,w〉
〈w,w〉

.
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• The Cauchy-Schwarz inequality has many applications (most of which are, naturally, proving other inequali-
ties). Here are a few such applications:

• Theorem (Triangle Inequality): For any v and w in an inner product space V , we have ||v +w|| ≤ ||v||+ ||w||,
with equality if and only if one vector is a positive-real scalar multiple of the other.

◦ Proof: Using the Cauchy-Schwarz inequality and the fact that 〈v,w〉 ≤ |〈v,w〉|, we have

||v +w||2 = 〈v +w,v +w〉 = 〈v,v〉+ 2 〈v,w〉+ 〈w,w〉
≤ 〈v,v〉+ 2 |〈v,w〉|+ 〈w,w〉
≤ 〈v,v〉+ 2 ||v|| ||w||+ 〈w,w〉
= ||v||2 + 2 ||v|| ||w||+ ||w||2 .

Taking the square root of both sides yields the desired result.

◦ Equality will hold if and only if {v,w} is linearly dependent (for equality in the Cauchy-Schwarz inequal-
ity) and 〈v,w〉 is a nonnegative real number. If either vector is zero, equality always holds. Otherwise,
we must have v = cw for some nonzero constant c: then 〈v,w〉 = c 〈w,w〉 will be a nonnegative real
number if and only if c is a nonnegative real number.

• Example: Show that for any continuous function f on [0, 3], it is true that
´ 3
0
xf(x) dx ≤ 3

√´ 3
0
f(x)2 dx.

◦ Simply apply the Cauchy-Schwarz inequality to f and g(x) = x in the inner product space of continuous

functions on [0, 3] with inner product 〈f, g〉 =
´ 3
0
f(x)g(x) dx.

◦ We obtain |〈f, g〉| ≤ ||f || · ||g||, or, explicitly,
∣∣∣´ 30 xf(x) dx∣∣∣ ≤√´ 30 f(x)2 dx ·√´ 30 x2 dx = 3

√´ 3
0
f(x)2 dx.

◦ Since any real number is less than or equal to its absolute value, we immediately obtain the required

inequality
´ 3
0
xf(x) dx ≤ 3

√´ 3
0
f(x)2 dx.

• Example: Show that for any positive reals a, b, c, it is true that

√
a+ 2b

a+ b+ c
+

√
b+ 2c

a+ b+ c
+

√
c+ 2a

a+ b+ c
≤ 3.

◦ Let v = (
√
a+ 2b,

√
b+ 2c,

√
c+ 2a) and w = (1, 1, 1) in R3. By the Cauchy-Schwarz inequality, v ·w ≤

||v|| ||w||.
◦ We compute v ·w =

√
a+ 2b+

√
b+ 2c+

√
c+ 2a, along with ||v||2 = (a+ 2b) + (b+ 2c) + (c+ 2a) =

3(a+ b+ c) and ||w||2 = 3.

◦ Thus, we see
√
a+ 2b+

√
a+ 2c+

√
b+ 2c ≤

√
3(a+ b+ c)·

√
3, and upon dividing through by

√
a+ b+ c

we obtain the required inequality.

• Example (for those who like quantum mechanics): Prove the momentum-position formulation of Heisenberg's
uncertainty principle: σxσp ≥ h/2. (In words: the product of uncertainties of position and momentum is
greater than or equal to half of the reduced Planck constant.)

◦ For this derivation we require the Cauchy-Schwarz inequality in an inner product space whose scalars
are the complex numbers.

◦ It is a straightforward computation that, for two (complex-valued) observables X and Y , the pairing
〈X,Y 〉 = E[XY ], the expected value of XY , is an inner product on the space of observables.

◦ Assume (for simplicity) that x and p both have expected value 0.

◦ We assume as given the commutation relation xp− px = ih.

◦ By de�nition, (σx)
2 = E[xx] = 〈x, x〉 and (σp)

2 = E[pp] = E[pp] = 〈p, p〉 are the variances of x and p
respectively (in the statistical sense).

◦ By the Cauchy-Schwarz inequality, we can therefore write σ2
xσ

2
p = 〈x, x〉 〈p, p〉 ≥ |〈x, p〉|2 = |E[xp]|2.
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◦ We can write xp =
1

2
(xp + px) +

1

2
(xp − px), where the �rst component is real and the second is

imaginary, so taking expectations yields E[xp] =
1

2
E[xp + px] +

1

2
E[xp − px], and therefore, |E[xp]| ≥

1

2
|E[xp− px]| = 1

2

∣∣ih∣∣ = h

2
.

◦ Combining with the inequality above yields σ2
xσ

2
p ≥ h

2
/4, and taking square roots yields σxσp ≥ h/2.

3.2 Orthogonality

• Motivated by the Cauchy-Schwarz inequality, we can de�ne a notion of angle between two nonzero vectors in
an inner product space:

• De�nition: If V is an inner product space, we de�ne the angle between two nonzero vectors v and w to be

the real number θ in [0, π] satisfying cos θ =
〈v,w〉
||v|| ||w||

.

◦ By the Cauchy-Schwarz inequality, the quotient on the right is a real number in the interval [−1, 1], so
there is exactly one such angle θ.

• Example: Compute the angle between the vectors v = (3,−4, 5) and w = (1, 2,−2) under the standard dot
product on R3.

◦ We have v ·w = −15, ||v|| =
√
v · v = 5

√
2, and ||w|| =

√
w ·w = 3.

◦ Then the angle θ between the vectors satis�es cos(θ) =
−15
15
√
2
= − 1√

2
, so θ = 3π/4 .

• Example: Compute the �angle� between p = 5x2 − 3 and q = 3x− 2 in the inner product space of continuous

functions with inner product 〈f, g〉 =
´ 1
0
f(x)g(x) dx.

◦ We have 〈p, q〉 =
´ 1
0
(5x2−3)(3x−2) dx = 23/12, ||p|| =

√´ 1
0
(5x2 − 3)2 dx = 2, and ||q|| =

√´ 1
0
(3x− 2)2 dx =

1.

◦ Then the angle θ between the vectors satis�es cos(θ) =
23/12

2
=

23

24
, so θ = cos−1(

23

24
) .

◦ The fact that this angle is so close to 0 suggests that these functions are nearly �parallel� in this inner
product space. Indeed, the graphs of the two functions have very similar shapes:

• A particular case of interest is when the angle between two vectors is π/2, which we will discuss next.

3.2.1 Orthogonality, Orthonormal Bases, and the Gram-Schmidt Procedure

• De�nition: We say two vectors in an inner product space are orthogonal if their inner product is zero. We
say a set S of vectors is an orthogonal set if every pair of vectors in S is orthogonal.

◦ By our basic properties, the zero vector is orthogonal to every vector. Two nonzero vectors will be
orthogonal if and only if the angle between them is π/2. (This generalizes the idea of two vectors being
�perpendicular�.)
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◦ Example: In R3 with the standard dot product, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are orthogonal.

◦ Example: In R3 with the standard dot product, the three vectors (−1, 1, 2), (2, 0, 1), and (1, 5,−2) form
an orthogonal set, since the dot product of each pair is zero.

◦ The �rst orthogonal set above seems more natural than the second. One reason for this is that the vectors
in the �rst set each have length 1, while the vectors in the second set have various di�erent lengths (

√
6,√

5, and
√
30 respectively).

• De�nition: We say a set S of vectors is an orthonormal set if every pair of vectors in S is orthogonal, and
every vector in S has norm 1.

• Example: In R3, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is an orthonormal set, but {(−1, 1, 2), (2, 0, 1), (1, 5,−2)} is not.

• In both examples above, notice that the given orthogonal sets are also linearly independent. This feature is
not an accident:

• Proposition (Orthogonality and Independence): In any inner product space, every orthogonal set of nonzero
vectors is linearly independent.

◦ Proof: Suppose we had a linear dependence a1v1 + · · · + anvn = 0 for an orthogonal set of nonzero
vectors {v1, . . . ,vn}.
◦ Then, for any j, 0 = 〈0,vj〉 = 〈a1v1 + · · ·+ anvn,vj〉 = a1〈v1,vj〉+ · · ·+ an〈vn,vj〉 = aj〈vj ,vj〉, since
each of the inner products 〈vi,vj〉 for i 6= j is equal to zero.

◦ But now, since vj is not the zero vector, 〈vj ,vj〉 is positive, so it must be the case that aj = 0. This holds
for every j, so all the coe�cients of the linear dependence are zero. Hence there can be no nontrivial
linear dependence, so any orthogonal set is linearly independent.

• Corollary: If V is an n-dimensional vector space and S is an orthogonal set of n nonzero vectors, then S is a
basis for V . (We refer to such a basis as an orthogonal basis.)

◦ Proof: By the proposition above, S is linearly independent, and by our earlier results, a linearly-
independent set of n vectors in an n-dimensional vector space is necessarily a basis.

• If we have a basis of V , then (essentially by de�nition) every vector in V can be written as a unique linear
combination of the basis vectors.

◦ However, as we have seen, computing the coe�cients of the linear combination can be quite cumbersome.

◦ If, however, we have an orthogonal basis for V , then we can compute the coe�cients for the linear
combination much more conveniently.

• Theorem (Orthogonal Decomposition): If V is an n-dimensional vector space and S = {e1, . . . , en} is an

orthogonal basis, then for any v in S, we can write v = c1e1 + · · · + cnen, where ck =
〈v, ek〉
〈ek, ek〉

for each

1 ≤ k ≤ n. In particular, if S is an orthonormal basis, then each ck = 〈v, ek〉.

◦ Proof: Since S is a basis, there do exist such coe�cients ci and they are unique.

◦ We then compute 〈v, ek〉 = 〈c1e1 + · · ·+ cnen, ek〉 = c1 〈e1, ek〉+ · · ·+cn 〈en, ek〉 = ck 〈ek, ek〉 since each
of the inner products 〈ej , ek〉 for j 6= k is equal to zero.

◦ Therefore, we must have ck =
〈v, ek〉
〈ek, ek〉

for each 1 ≤ k ≤ n.

◦ If S is an orthonormal basis, then 〈ek, ek〉 = 1 for each k, so we get the simpler expression ck = 〈v, ek〉.

• Example: Write v = (7, 3,−4) as a linear combination of the basis vectors {(−1, 1, 2), (2, 0, 1), (1, 5,−2)} of
R3.

◦ We saw above that this set is an orthogonal basis, so let e1 = (−1, 1, 2), e2 = (2, 0, 1), and e3 = (1, 5,−2).
◦ We compute v · e1 = −12, v · e2 = 10, v · e3 = 30, e1 · e1 = 6, e2 · e2 = 5, and e3 · e3 = 30.
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◦ Thus, per the theorem, v = c1e1 + c2e2 + c3e3 where c1 =
−12
6

= −2, c2 =
10

5
= 2, and c3 =

30

30
= 1.

◦ Indeed, we can verify that (7, 3,−4) = −2(−1, 1, 2) + 2(2, 0, 1) + 1(1, 5,−2) .

• Given a basis, there exists a way to write any vector as a linear combination of the basis elements: the
advantage of having an orthogonal basis is that we can easily compute the coe�cients. We now give an
algorithm for constructing an orthogonal basis for any �nite-dimensional inner product space:

• Theorem (Gram-Schmidt Procedure): Let S = {v1,v2, . . . } be a basis of the inner product space V , and set
Vk = span(v1, . . . ,vk). Then there exists an orthogonal set of vectors {w1,w2, . . . } such that, for each k ≥ 1,
span(w1, . . . ,wk) = span(Vk) and wk is orthogonal to every vector in Vk−1. Furthermore, this sequence is
unique up to multiplying the elements by nonzero scalars.

◦ Proof: We construct the sequence {w1,w2, . . . } recursively: we start with the simple choice w1 = v1.

◦ Now suppose we have constructed {w1,w2, . . . ,wk−1}, where span(w1, . . . ,wk−1) = span(Vk−1).

◦ De�ne the next vector as wk = vk − a1w1 − a2w2 − · · · − ak−1wk−1, where aj = 〈vk,wj〉 / 〈wj ,wj〉.
◦ From the construction, we can see that each of w1, . . . ,wk is a linear combination of v1, . . . ,vk, and vice
versa. Thus, by properties of span, span(w1, . . . ,wk) = Vk.

◦ Furthermore, we can compute

〈wk,wj〉 = 〈vk − a1w1 − a2w2 − · · · − ak−1wk−1,wj〉
= 〈vk,wj〉 − a1 〈w1,wj〉 − · · · − ak−1 〈wk−1,wj〉
= 〈vk,wj〉 − aj 〈wj ,wj〉 = 0

because all of the inner products 〈wi,wj〉 are zero except for 〈wj ,wj〉.
◦ Therefore, wk is orthogonal to each ofw1, . . . ,wk−1, and is therefore orthogonal to all linear combinations
of these vectors.

◦ The uniqueness follows from the observation that (upon appropriate rescaling) we are essentially required
to choose wk = vk − a1w1 − a2w2 − · · · − ak−1wk−1 for some scalars a1, . . . ak−1: orthogonality then
forces the choice of the coe�cients aj that we used above.

• Corollary: Every �nite-dimensional inner product space has an orthonormal basis.

◦ Proof: Choose any basis {v1, . . . ,vn} for V and apply the Gram-Schmidt procedure: this yields an
orthogonal basis {w1, . . . ,wn} for V .
◦ Now simply normalize each vector in {w1, . . . ,wn} by dividing by its norm: this preserves orthogonality,
but rescales each vector to have norm 1, thus yielding an orthonormal basis for V .

• The proof of the Gram-Schmidt procedure may seem involved, but applying it in practice is fairly straight-
forward (if somewhat cumbersome computationally).

◦ We remark here that, although our algorithm above gives an orthogonal basis, it is also possible to
perform the normalization at each step during the procedure, to construct an orthonormal basis one
vector at a time.

◦ When performing computations by hand, it is generally disadvantageous to normalize at each step,
because the norm of a vector will often involve square roots (which will then be carried into subsequent
steps of the computation).

◦ When using a computer (with approximate arithmetic), however, normalizing at each step can avoid
certain numerical instability issues. The particular description of the algorithm we have discussed turns
out not to be especially numerically stable, but it is possible to modify the algorithm to avoid magnifying
the error as substantially when iterating the procedure.

• Example: For V = R3 with the standard inner product, apply the Gram-Schmidt procedure to the vectors
v1 = (2, 1, 2), v2 = (5, 4, 2), v3 = (−1, 2, 1). Use the result to �nd an orthonormal basis for R3.

◦ We start with w1 = v1 = (2, 1, 2) .
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◦ Next, w2 = v2 − a1w1, where a1 =
v2 ·w1

w1 ·w1
=

(5, 4, 2) · (2, 1, 2)
(2, 1, 2) · (2, 1, 2)

=
18

9
= 2. Thus, w2 = (1, 2,−2) .

◦ Finally, w3 = v3 − b1w1 − b2w2 where b1 =
v3 ·w1

w1 ·w1
=

(−1, 2, 1) · (2, 1, 2)
(2, 1, 2) · (2, 1, 2)

=
2

9
, and b2 =

v3 ·w2

w2 ·w2
=

(−1, 2, 1) · (1, 2,−2)
(1, 2,−2) · (1, 2,−2)

=
1

9
. Thus, w3 = (−14

9
,
14

9
,
7

9
) .

◦ For the orthonormal basis, we simply divide each vector by its length.

◦ We get
w1

||w1||
= (

2

3
,
1

3
,
2

3
),

w2

||w2||
= (

1

3
,
2

3
,−2

3
), and

w3

||w3||
= (−2

3
,
2

3
,
1

3
).

• Example: For V = P (R) with inner product 〈f, g〉 =
´ 1
0
f(x)g(x) dx, apply the Gram-Schmidt procedure to

the polynomials p1 = 1, p2 = x, p3 = x2.

◦ We start with w1 = p1 = 1 .

◦ Next, w2 = p2 − a1w1, where a1 =
〈p2,w1〉
〈w1,w1〉

=

´ 1
0
x dx´ 1

0
1 dx

=
1

2
. Thus, w2 = x− 1

2
.

◦ Finally, w3 = p3 − b1w1 − b2w2 where b1 =
〈p3,w1〉
〈w1,w1〉

=

´ 1
0
x2 dx´ 1

0
1 dx

=
1

3
, and b2 =

〈p3,w2〉
〈w2,w2〉

=

´ 1
0
x2(x− 1/2) dx´ 1

0
(x− 1/2)2 dx

=
1/12

1/12
= 1. Thus, w3 = x2 − x+

1

6
.

3.2.2 Orthogonal Complements and Orthogonal Projection

• If V is an inner product space, W is a subspace, and v is some vector in V , we would like to study the problem
of �nding a �best approximation� of v in W .

◦ For two vectors v and w, the distance between v and w is ||v −w||, so what we are seeking is a vector
w in S that minimizes the quantity ||v −w||.
◦ As a particular example, suppose we are given a point P in R2 and wish to �nd the minimal distance
from P to a particular line in R2. Geometrically, the minimal distance is achieved by the segment PQ,
where Q is chosen so that PQ is perpendicular to the line.

◦ In a similar way, the minimal distance between a point in R3 and a given plane will also be minimized
by �nding the segment perpendicular to the plane.

◦ Both of these problems suggest that the solution to this optimization problem will involve some notion
of �perpendicularity� to the subspace W .

• De�nition: Let V be an inner product space. If S is a nonempty subset of V , we say a vector v in V is
orthogonal to S if it is orthogonal to every vector in S. The set of all vectors orthogonal to S is denoted S⊥

(�S-perpendicular�, or often �S-perp� for short).

◦ We will typically be interested in the case where S is a subspace of V . It is easy to see via the subspace
criterion that S⊥is always a subspace of V , even if S itself is not.

◦ Example: In R3, if W is the xy-plane consisting of all vectors of the form (x, y, 0), then W⊥ is the z-axis,
consisting of the vectors of the form (0, 0, z).

◦ Example: In R3, if W is the x-axis consisting of all vectors of the form (x, 0, 0), then W⊥ is the yz-plane,
consisting of the vectors of the form (0, y, z).

◦ Example: In any inner product space V , V ⊥ = {0} and {0}⊥ = V .

• When V is �nite-dimensional, we can use the Gram-Schmidt process to compute an explicit basis of W⊥:

• Theorem (Basis for Orthogonal Complement): SupposeW is a subspace of the �nite-dimensional inner product
space V , and that S = {e1, . . . , ek} is an orthonormal basis forW . If {e1, . . . , ek, ek+1, . . . , en} is any extension
of S to an orthonormal basis for V , the set {ek+1, . . . , en} is an orthonormal basis for W⊥. In particular,
dim(V ) = dim(W ) + dim(W⊥).
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◦ Remark: It is always possible to extend the orthonormal basis S = {e1, . . . , ek} to an orthonormal basis
for V : simply extend the linearly independent set S to a basis {e1, . . . , ek,xk+1, . . . ,xn} of V , and then
apply the Gram-Schmidt process to generate an orthonormal basis {e1, . . . , ek, ek+1, . . . , en}.
◦ Proof: For the �rst statement, the set {ek+1, . . . , en} is orthonormal and hence linearly independent.
Since each vector is orthogonal to every vector in S, each of ek+1, . . . , en is in W⊥, and so it remains to
show that {ek+1, . . . , en} spans W⊥.
◦ So let v be any vector in W⊥. Since {e1, . . . , ek, ek+1, . . . , en} is an orthonormal basis of V , by the
orthogonal decomposition we know that v = 〈v, e1〉 e1+ · · ·+〈v, ek〉 ek+〈v, ek+1〉 ek+1+ · · ·+〈v, en〉 en.
◦ But since v is in W⊥, 〈v, e1〉 = · · · = 〈v, ek〉 = 0: thus, v = 〈v, ek+1〉 ek+1 + · · · + 〈v, en〉 en, and
therefore v is contained in the span of {ek+1, . . . , en}, as required.
◦ The statement about dimensions follows immediately from our explicit construction of the basis of V as
a union of the basis for W and the basis for W⊥.

• Example: If W = span[
1

3
(1, 2,−2), 1

3
(−2, 2, 1)] in R3 with the standard dot product, �nd a basis for W⊥.

◦ Notice that the vectors e1 =
1

3
(1, 2,−2) and e2 =

1

3
(−2, 2, 1) form an orthonormal basis for W .

◦ It is straightforward to verify that if v3 = (1, 0, 0), then {e1, e2,v3} is a linearly independent set and
therefore a basis for R3.

◦ Applying Gram-Schmidt to the set {e1, e2,v3} yields w1 = e1, w2 = e2, and w3 = v3 − 〈v3,w1〉w1 −
〈v3,w2〉w2 =

1

9
(4, 2, 4).

◦ Normalizing w3 produces the orthonormal basis {e1, e2, e3} for V , with e3 =
1

3
(2, 1, 2).

◦ By the theorem above, we conclude that {e3} = {1
3
(2, 1, 2)} is an orthonormal basis of W⊥.

◦ Alternatively, we could have computed a basis forW⊥ by observing that dim(W⊥) = dim(V )−dim(W ) =

1, and then simply �nding one nonzero vector orthogonal to both
1

3
(1, 2,−2) and 1

3
(−2, 2, 1). (For this,

we could have either solved the system of equations explicitly, or computed the cross product of the two
given vectors.)

• We can give a simpler (although ultimately equivalent) method for �nding a basis for W⊥ using matrices:

• Theorem (Orthogonal Complements and Matrices): If A is an m× n matrix, then the rowspace of A and the
nullspace of A are orthogonal complements of one another in Rn, with respect to the standard dot product.

◦ Proof: Let A be an m× n matrix, so that the rowspace and nullspace are both subspaces of Rn.
◦ By de�nition, any vector in rowspace(A) is orthogonal to any vector in nullspace(A), so rowspace(A) ⊆
nullspace(A)⊥ and nullspace(A) ⊆ rowspace(A)⊥.

◦ Furthermore, since dim(rowspace(A)) + dim(nullspace(A)) = n from our results on the respective di-
mensions of these spaces, we see that dim(rowspace(A)) = dim(nullspace(A)⊥) and dim(nullspace(A)) =
dim(rowspace(A)⊥).

◦ Since all these spaces are �nite-dimensional, we must therefore have equality everywhere, as claimed.

• From the theorem above, when W is a subspace of Rn with respect to the standard dot product, we can easily
compute a basis for W⊥ by computing the nullspace of the matrix whose rows are a spanning set for W .

◦ Although this method is much faster, it will not produce an orthonormal basis of W . It can also be
adapted for subspaces of an arbitrary �nite-dimensional inner product space, but this requires having an
orthonormal basis for the space computed ahead of time.

• Example: If W = span[(1, 1,−1, 1), (1, 2, 0,−2)] in R4 with the standard dot product, �nd a basis for W⊥.
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◦ We row-reduce the matrix whose rows are the given basis for W :[
1 1 −1 1
1 2 0 −2

]
R2−R1−→

[
1 1 −1 1
0 1 1 −3

]
R1−R2−→

[
1 0 −2 4
0 1 1 −3

]
.

◦ From the reduced row-echelon form, we see that {(−4, 3, 0, 1), (2,−1, 1, 0)} is a basis for the nullspace

and hence of W⊥.

• As we might expect from geometric intuition, if W is a subspace of the (�nite-dimensional) inner product
space V , we can decompose any vector uniquely as the sum of a component in W with a component in W⊥:

• Theorem (Orthogonal Components): Let V be an inner product space andW be a �nite-dimensional subspace.
Then every vector v ∈ V can be uniquely written in the form v = w +w⊥ for some w ∈ W and w⊥ ∈ W⊥,
and furthermore, we have the Pythagorean relation ||v||2 = ||w||2 +

∣∣∣∣w⊥∣∣∣∣2.
◦ Proof: First, we show that such a decomposition exists. Since W is �nite-dimensional, it has some
orthonormal basis {e1, . . . , ek}.
◦ Now set w = 〈v, e1〉 e1 + 〈v, e2〉 e2 + · · ·+ 〈v, ek〉 ek, and then w⊥ = v −w.

◦ Clearly w ∈W and v = w +w⊥, so we need only check that w⊥ ∈W⊥.
◦ To see this, �rst observe that 〈w, ei〉 = 〈v, ei〉 since {e1, . . . , ek} is an orthonormal basis. Then, we
see that

〈
w⊥, ei

〉
= 〈v −w, ei〉 = 〈v, ei〉 − 〈w, ei〉 = 0. Thus, w⊥ is orthogonal to each vector in the

orthonormal basis of W , so it is in W⊥.

◦ For the uniqueness, suppose we had two decompositions v = w1 +w⊥1 and v = w2 +w⊥2 .

◦ By subtracting and rearranging, we see that w1 −w2 = w⊥2 −w⊥1 . Denoting this common vector by x,
we see that x is in both W and W⊥: thus, x is orthogonal to itself, but the only such vector is the zero
vector. Thus, w1 = w2 and w⊥1 = w⊥2 , so the decomposition is unique.

◦ For the last statement, since
〈
w,w⊥

〉
= 0, we have ||v||2 = 〈v,v〉 =

〈
w +w⊥,w +w⊥

〉
= 〈w,w〉 +〈

w⊥,w⊥
〉
= ||w||2 +

∣∣∣∣w⊥∣∣∣∣2 , as claimed.

• De�nition: If V is an inner product space and W is a �nite-dimensional subspace with orthonormal basis
{e1, . . . , ek}, the orthogonal projection of v into W is the vector projW (v) = 〈v, e1〉 e1 + 〈v, e2〉 e2 + · · · +
〈v, ek〉 ek.

◦ If instead we only have an orthogonal basis {u1, . . . ,uk} of W , the corresponding expression is instead

projW (v) =
〈v,u1〉
〈u1,u1〉

u1 +
〈v,u2〉
〈u2,u2〉

u2 + · · ·+
〈v,u2〉
〈uk,uk〉

uk.

• Example: For W = span[(1, 0, 0),
1

5
(0, 3, 4)] in R3 under the standard dot product, compute the orthogonal

projection of v = (1, 2, 1) into W , and verify the relation ||v||2 = ||w||2 +
∣∣∣∣w⊥∣∣∣∣2.

◦ Notice that the vectors e1 = (1, 0, 0) and e2 =
1

5
(0, 3, 4) form an orthonormal basis for W .

◦ Thus, the orthogonal projection is w = projW (v) = 〈v, e1〉 e1 + 〈v, e2〉 e2 = 1 (1, 0, 0) + 2 (0, 3/5, 4/5) =

(1, 6/5, 8/5) .

◦ We see that w⊥ = v−w = (0, 4/5,−3/5) is orthogonal to both (1, 0, 0) and (0, 3/5, 4/5), so it is indeed

in W⊥. Furthermore, ||v||2 = 6, while ||w||2 = 5 and
∣∣∣∣w⊥∣∣∣∣2 = 1, so indeed ||v||2 = ||w||2 +

∣∣∣∣w⊥∣∣∣∣2.
• The orthogonal projection gives the answer to the approximation problem we posed earlier:

• Corollary (Best Approximations): If W is a �nite-dimensional subspace of the inner product space V , then
for any vector v in V , the projection of v into W is closer to v than any other vector in W . Explicitly, if w
is the projection, then for any other w′ ∈W , we have ||v −w|| < ||v −w′||.
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◦ Proof: By the theorem on orthogonal complements, we can write v = w + w⊥ where w ∈ W and
w⊥ ∈W⊥. Now, for any other vector w′ ∈W , we can write v−w′ = (v−w) + (w−w′), and observe
that v −w = w⊥ is in W⊥, and w −w′ is in W (since both w and w′ are, and W is a subspace).

◦ Thus, v−w′ = (v−w)+ (w−w′) is a decomposition of v−w′ into orthogonal vectors. Taking norms,

we see that ||v −w′||2 = ||v −w||2 + ||w −w′||2.
◦ Then, if w′ 6= w, since the norm of ||w −w′|| is positive, we conclude that ||v −w|| < ||v −w′||.

• Example: Find the best approximation to v = (3,−3, 3) lying in the subspaceW = span[
1

3
(1, 2,−2), 1

3
(−2, 2, 1)],

where distance is measured under the standard dot product.

◦ Notice that the vectors e1 =
1

3
(1, 2,−2) and e2 =

1

3
(−2, 2, 1) form an orthonormal basis for W .

◦ Thus, the desired vector, the orthogonal projection, is projW (v) = 〈v, e1〉 e1+ 〈v, e2〉 e2 = −3e1−3e2 =

(1,−4, 1) .

• Example: Find the best approximation to the function f(x) = sin(πx/2) that lies in the subspace P2(R),
under the inner product 〈f, g〉 =

´ 1
−1 f(x)g(x) dx.

◦ First, by applying Gram-Schmidt to the basis {1, x, x2}, we can generate an orthogonal basis of P2(R)
under this inner product: the result (after rescaling to eliminate denominators) is {1, x, 3x2 − 1}.
◦ Now, with p1 = 1, p2 = x, p3 = 3x2 − 1 we can compute 〈f, p1〉 = 0, 〈f, p2〉 = 8/π2, 〈f, p3〉 = 0, and also
〈p1, p1〉 = 2, 〈p2, p2〉 = 2/3, and 〈p3, p3〉 = 8/5.

◦ Thus, the desired orthogonal projection is projP1(R)(f) =
〈f, p1〉
〈p1, p1〉

p1 +
〈f, p2〉
〈p2, p2〉

p2 +
〈f, p3〉
〈p3, p3〉

p3 =
12

π2
x .

◦ We can see from a plot of the orthogonal projection polynomial and f on [−1, 1] that this line is a
reasonably accurate approximation of sin(x) on the interval [−1, 1]:

• Example: Find the linear polynomial p(x) that minimizes the expression
´ 1
0
(p(x)− ex)2 dx.

◦ Observe that the minimization problem is asking us to �nd the orthogonal projection of ex into P1(R)
under the inner product 〈f, g〉 =

´ 1
0
f(x)g(x) dx.

◦ First, by applying Gram-Schmidt to the basis {1, x}, we can generate an orthogonal basis of P1(R) under
this inner product: the result (after rescaling to clear denominators) is {1, 2x− 1}.
◦ Now, with p1 = 1 and p2 = 2x − 1, we can compute 〈ex, p1〉 = e − 1, 〈ex, p2〉 = 3 − e, 〈p1, p1〉 = 1, and
〈p2, p2〉 = 1/3.

◦ Then projP2(R)(e
x) =

〈ex, p1〉
〈p1, p1〉

p1 +
〈ex, p2〉
〈p2, p2〉

p2 = (10− 4e) + (18− 6e)x ≈ 0.873 + 1.690x .

◦ We can see from a plot (see above) of the orthogonal projection polynomial and ex on [0, 1] that this line
is indeed a very accurate approximation of ex on the interval [0, 1].
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3.3 Applications of Inner Products

• In this section we discuss several practical applications of inner products and orthogonality.

3.3.1 Least-Squares Estimates

• A fundamental problem in applied mathematics and statistics is data �tting: �nding a model that well
approximates some set of experimental data. Problems of this type are ubiquitous in the physical sciences,
social sciences, life sciences, and engineering.

◦ A common example is that of �nding a linear regression: a line y = mx + b that best �ts a set of
2-dimensional data points {(x1, y1), . . . , (xn, yn)} when plotted in the plane.

◦ Of course, in many cases a linear model is not appropriate, and other types of models (polynomials,
powers, exponential functions, logarithms, etc.) are needed instead.

◦ The most common approach to such regression analysis is the method of �least squares�, which minimizes
the sum of the squared errors (the error being the di�erence between the model and the actual data).

• As we will discuss, many of these questions ultimately reduce to the following: if A is an m× n matrix such
that the matrix equation Ax = c has no solution, what vector x̂ is the closest approximation to a solution?

◦ In other words, we are asking for the vector x̂ that minimizes the vector norm ||Ax̂− c||.
◦ Since the vectors of the form Ax̂ are precisely those in the column space of A, from our analysis of best
approximations in the previous section we see that the vector w = Ax̂ will be the projection of c into
the column space of A.

◦ Then, by orthogonal decomposition, we know that w⊥ = c−Ax̂ is in the orthogonal complement of the
column space of A.

◦ Since the column space of A is the same as the row space of AT , by our theorem on orthogonal comple-
ments we know that the orthogonal complement of the column space of A is the nullspace of AT .

◦ Therefore, w⊥ is in the nullspace of AT , so ATw⊥ = 0.

◦ Explicitly, this means AT (c− Ax̂) = 0, or ATAx̂ = AT c: this is an explicit matrix system that we can
solve for x̂.

• De�nition: If A is an m× n matrix with m > n, a least-squares solution to the matrix equation Ax = c is a
vector x̂ satisfying ATAx̂ = AT c.

◦ The system ATAx̂ = AT c for x̂ is always consistent for any matrix A, although it is possible for there
to be in�nitely many solutions (a trivial case would be when A is the zero matrix). Even in this case,
the orthogonal projection w = Ax̂ onto the column space of A will always be unique.

• In typical cases, the rank of A is often equal to n. In this case, the matrix ATA will always be invertible, and
there is a unique least-squares solution:

• Proposition (Least-Squares Solution): If A is an m× n matrix and rank(A) = n, then ATA is invertible and
the unique least-squares solution to Ax = c is x̂ = (ATA)−1AT c.

◦ Proof: Suppose that the rank of A is equal to n.

◦ We claim that the nullspace of ATA is the same as the nullspace of A. Clearly, if Ax = 0 then
(ATA)x = 0, so it remains to show that if (ATA)x = 0 then Ax = 0.

◦ Notice that the dot product x · y is the same as the matrix product yTx, if x and y are column vectors.

◦ Now suppose that (ATA)x = 0: then xT (ATA)x = 0, or equivalently, (Ax)T (Ax) = 0.

◦ But this means (Ax) · (Ax) = 0, so that the dot product of Ax with itself is zero.

◦ Since the dot product is an inner product, this means Ax must itself be zero, as required.

◦ Thus, the nullspace of ATA is the same as the nullspace of A. Since the dimension of the nullspace is the
number of columns minus the rank, and ATA and A both have n columns, rank(ATA) = rank(A) = n.
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◦ But since ATA is an n × n matrix, this means ATA is invertible. The second statement then follows
immediately upon left-multiplying Ax = c by (ATA)−1.

• Example: Find the least-squares solution to the inconsistent system x+ 2y = 3, 2x+ y = 4, x+ y = 2.

◦ In this case, we have A =

 1 2
2 1
1 1

 and c =

 3
4
2

. Since A clearly has rank 2, ATA will be invertible

and there will be a unique least-squares solution.

◦ We compute ATA =

[
6 5
5 6

]
, which is indeed invertible and has inverse (ATA)−1 =

1

11

[
6 −5
−5 6

]
.

◦ The least-squares solution is therefore x̂ = (ATA)−1AT c =

[
3
−1

]
.

◦ In this case, we see Ax̂ =

 2
5
2

, so the error vector is c − Ax̂ =

 2
1
0

. Our analysis above indicates

that this error vector has the smallest possible norm.

• We can apply these ideas to the problem of �nding an optimal model for a set of data points.

◦ For example, suppose that we wanted to �nd a linear model y = mx + b that �ts a set of data points
{(x1, y1), . . . , (xn, yn)}, in such a way as to minimize the sum of the squared errors (y1 −mx1 − b)2 +
· · ·+ (yn −mxn − b)2.
◦ If the data points happened to �t exactly on a line, then we would be seeking the solution to the system
y1 = mx1 + b, y2 = mx2 + b, ... , yn = mxn + b.

◦ In matrix form, this is the system Ax = c where A =


1 x1
1 x2
...

...
1 xn

, x =

[
b
m

]
, and c =


y1
y2
...
yn

.
◦ Of course, due to experimental errors and other random noise, it is unlikely for the data points to �t the
model exactly. Instead, the least-squares estimate x̂ will provide the values of m and b that minimize
the sum of the squared errors.

◦ In a similar way, to �nd a quadratic model y = ax2+bx+c for a data set {(x1, y1), . . . , (xn, yn)}, we would

use the least-squares estimate for Ax = c, with A =


1 x1 x21
1 x2 x22
...

...
...

1 xn x2n

, x =

 c
b
a

, and c =


y1
y2
...
yn

.
◦ In general, to �nd a least-squares model of the form y = a1f1(x) + · · · + amfm(x) for a data set
{(x1, y1), . . . , (xn, yn)}, we would want the least-squares estimate for the system Ax = c, with A = f1(x1) · · · fm(x1)

...
. . .

...
f1(xn) · · · fm(xn)

, x =

 a1
...
am

, and c =

 y1
...
yn

.
• Example: Use least-squares estimation to �nd the line y = mx+ b that is the best model for the data points
{(9, 24), (15, 45), (21, 49), (25, 55), (30, 60)}.

◦ We seek the least-squares solution for Ax = c, where A =


1 9
1 15
1 21
1 25
1 30

, x =

[
b
m

]
, and c =


24
45
49
55
60

.

◦ We compute ATA =

[
5 100

100 2272

]
, so the least-squares solution is x̂ = (ATA)−1AT c ≈

[
14.615
1.599

]
.
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◦ Thus, to three decimal places, the desired line is y = 1.599x+ 14.615 . From a plot, we can see that
this line is fairly close to all of the data points:

• Example: Use least-squares estimation to �nd the quadratic function y = ax2+ bx+ c best modeling the data
points {(−2, 19), (−1, 7), (0, 4), (1, 2), (2, 7)}.

◦ We seek the least-squares solution for Ax = c, with A =


1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

, x =

 c
b
a

, c =


19
7
4
2
7

.

◦ We compute ATA =

 5 0 10
0 10 0
10 0 34

, so the least-squares solution is x̂ = (ATA)−1AT c =

 2.8
−2.9
2.5

.
◦ Thus, the desired quadratic polynomial is y = −2.5x2 − 2.9x+ 2.8 . From a plot (see above), we can
see that this quadratic function is fairly close to all of the data points.

• Example: Use least-squares estimation to �nd the trigonometric function y = a + b sin(x) + c cos(x) best
modeling the data points {(π/2, 8), (π,−4), (3π/2, 2), (2π, 10)}.

◦ We seek the least-squares solution for Ax = c, with A =


1 1 0
1 0 −1
1 −1 0
1 0 1

, x =

 a
b
c

, c =


8
−4
2
10

.
◦ We compute ATA =

 4 0 0
0 2 0
0 0 2

, so the least-squares solution is x̂ = (ATA)−1AT c =

 4
3
7

.
◦ Thus, the desired function is y = 4 + 3 sin(x) + 7 cos(x) . In this case, the model predicts the points

{(π/2, 7), (π,−3), (3π/2, 1), (2π, 11)}, so it is a good �t to the original data:
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3.3.2 Fourier Series

• Another extremely useful application of the general theory of orthonormal bases is that of Fourier series.

◦ Fourier analysis, broadly speaking, studies the problem of approximating a function on an interval by
trigonometric functions. This problem is very similar to the question, studied in calculus, of approximat-
ing a function by a polynomial (the typical method is to use Taylor polynomials, although as we have
already discussed, least-squares estimates provide another potential avenue).

◦ Fourier series have a tremendously wide variety of applications, ranging from to solving partial di�erential
equations (in particular, the famous wave equation and heat equation), studying acoustics and optics
(decomposing an acoustic or optical waveform into simpler waves of particular frequencies), electical
engineering, and quantum mechanics.

• Although a full discussion of Fourier series belongs more properly to analysis, we can give some of the ideas.

◦ A typical scenario in Fourier analysis is to approximate a continuous function on [0, 2π] using a trigono-
metric polynomial: a function that is a polynomial in sin(x) and cos(x).

◦ Using trigonometric identities, this question is equivalent to approximating a function f(x) by a (�nite)
Fourier series of the form s(x) = a0 + b1 cos(x) + b2 cos(2x) + · · · + bk cos(kx) + c1 sin(x) + c2 sin(2x) +
· · ·+ ck sin(kx).

◦ Notice that, in the expression above, s(0) = s(2π) since each function in the sum has period 2π. Thus,
we can only realistically hope to get close approximations to functions satisfying f(0) = f(2π).

• Let V be the vector space of continuous, real-valued functions on the interval [0, 2π] having equal values at 0

and 2π, and de�ne an inner product on V via 〈f, g〉 =
´ 2π
0
f(x)g(x) dx.

• Proposition: The functions {ϕ0, ϕ1, ϕ2, . . . } are an orthonormal set on V , where ϕ0(x) =
1√
2π

, and ϕ2k−1(x) =

1√
π
cos(kx) and ϕ2k(x) =

1√
π
sin(kx) for each k ≥ 1.

◦ Proof: Using the product-to-sum identities, such as sin(ax) sin(bx) =
1

2
[cos(a− b)x− cos(a+ b)x], it is

a straightforward exercise in integration to verify that 〈ϕi, ϕj〉 = 0 for each i 6= j.

◦ Furthermore, we have 〈ϕ0, ϕ0〉 =
1

2π

´ 2π
0

1dx = 1, 〈ϕ2k−1, ϕ2k−1〉 =
1

π

´ 2π
0

cos2(kx) dx = 1, and

〈ϕ2k, ϕ2k〉 =
1

π

´ 2π
0

sin2(kx) dx = 1. Thus, the set is orthonormal.

• If it were the case that S = {ϕ0, ϕ1, ϕ2, . . . } were an orthonormal basis for V , then, given any other function
f(x) in V , we could write f as a linear combination of functions in {ϕ0, ϕ1, ϕ2, . . . }, where we can compute
the appropriate coe�cients using the inner product on V .

◦ Unfortunately, S does not span V : we cannot, for example, write the function g(x) =

∞∑
n=1

1

2n
sin(nx) as

a �nite linear combination of {ϕ0, ϕ1, ϕ2, . . . }, since doing so would require each of the in�nitely many
terms in the sum.

◦ Ultimately, the problem, as exempli�ed by the function g(x) above, is that the de�nition of �basis� only
allows us to write down �nite linear combinations.

◦ On the other hand, the �nite sums

k∑
j=0

ajϕj(x) for k ≥ 0, where aj = 〈f, ϕj〉, will represent the best

approximation to f(x) inside the subspace of V spanned by {ϕ0, ϕ1, . . . , ϕk}. Furthermore, as we increase
k, we are taking approximations to f that lie inside larger and larger subspaces of V , so as we take k →∞,
these partial sums will yield better and better approximations to f .

◦ Provided that f is a su�ciently nice function, it can be proven that in the limit, our formulas for the
coe�cients do give a formula for f(x) as an in�nite sum:

15



• Theorem (Fourier Series): Let f(x) be a twice-di�erentiable function on [0, 2π] satisfying f(0) = f(2π), and

de�ne the Fourier coe�cients of f as aj = 〈f, ϕj〉 =
´ 2π
0
f(x)ϕj(x) dx, for the trigonometric functions ϕj(x)

de�ned above. Then f(x) is equal to its Fourier series

∞∑
j=0

ajϕj(x) for every x in [0, 2π].

◦ This result can be interpreted as a �limiting version� of the theorem we stated earlier giving the coe�cients
for the linear combination of a vector in terms of an orthonormal basis: it gives an explicit way to write
the function f(x) as an �in�nite linear combination� of the orthonormal basis elements {ϕ0, ϕ1, ϕ2, . . . }.

• Example: Compute the Fourier coe�cients and Fourier series for f(x) = (x− π)2 on the interval [0, 2π], and
compare the partial sums of the Fourier series to the original function.

◦ First, we have a0 =
´ 2π
0
f(x)

1√
2π

dx =
1√
18
π5/2.

◦ For k odd, after integrating by parts twice, we have a2k−1 =
´ 2π
0
f(x)

1√
π
cos(kx) dx =

4
√
π

k2
.

◦ For k even, in a similar manner we see a2k =
´ 2π
0
f(x)

1√
π
sin(kx) dx = 0.

◦ Therefore, the Fourier series for f(x) is
1

6
π2 +

∞∑
k=1

4

k2
cos(kx) .

◦ Here are some plots of the partial sums (up to the term involving cos(nx)) of the Fourier series along
with f . As is clearly visible from the graphs, the partial sums give increasingly close approximations to
the original function f(x) as we sum more terms:

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2017. You may not reproduce or distribute this
material without my express permission.
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