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2 The Integers and Modular Arithmetic

One of the most foundational objects in mathematics is the integers, as they are used the basis and reference point
for many other topics in mathematics. Our goal in this chapter is to de�ne the integers axiomatically and to develop
some basic properties of divisibility, common divisors, primes and factorizations, and modular arithmetic as a way
of illustrating a variety of proof techniques and ideas in a familiar context.

2.1 The Integers, Axiomatically

• We are all at least a little bit familiar with the integers Z, consisting of the positive integers Z+ (1, 2, 3, 4,
. . . ), along with their negatives (−1, −2, −3, −4, . . . ) and zero (0).

◦ There are two natural binary arithmetic operations de�ned on the integers, namely addition (+) and
multiplication (·), along with the unary operation of negation (−).
◦ But it is not quite so simple to prove things about the integers without a solid set of properties to work
from.
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2.1.1 De�nition of the Integers

• �De�nition�: The integers are a set Z along with two (closed) binary1 operations + and ·, obeying the following
properties2:

[I1] The operation + is associative: a+ (b+ c) = (a+ b) + c for any integers a, b, c.

[I2] The operation + is commutative: a+ b = b+ a for any integers a, b.

[I3] There is an additive identity 0 satisfying a+ 0 = a for all integers a.

[I4] Every integer a has an additive inverse −a satisfying (−a) + a = 0.

[I5] The operation · is associative: a · (b · c) = (a · b) · c for any integers a, b, c.

[I6] The operation · is commutative: a · b = b · a for any integers a, b.

[I7] There is a multiplicative identity 1 6= 0 satisfying 1 · a = a for all integers a.

[I8] The operation · distributes over +: a · (b+ c) = a · b+ a · c for any integers a, b, c.

Furthermore, there is a subset of Z, namely the positive integers Z+, such that

[N1] For every a ∈ Z, precisely one of the following holds: a ∈ Z+, a = 0, or (−a) ∈ Z+.

[N2] The set Z+ is closed under + and ·: for any a, b ∈ Z+, both a+ b and a · b are in Z+.

[N3] Every nonempty subset S of Z+ contains a smallest element: that is, an element x ∈ S such that if
y ∈ S, then either y = x or y − x ∈ Z+.

• Remark: The axiom [N3] is called the well-ordering axiom. It is the axiom that di�erentiates the integers
from other number systems such as the rational numbers or the real numbers, both of which obey all of the
other axioms.

2.1.2 Basic Arithmetic

• Using the axioms for Z, we can establish all of the properties of basic arithmetic. Doing this is not especially
di�cult once the basic idea is identi�ed (namely, invoking the axioms judiciously, along with some case
analysis). Here are some examples:

• Proposition (Basic Arithmetic): Inside the integers Z, the following properties hold:

1. The additive and multiplicative identities are unique.

◦ Proof: Suppose we had two additive identities 0A and 0B . Then by axioms [I2] and [I3], we may
write 0A = 0A + 0B = 0B + 0A = 0B , and therefore 0A = 0B .

◦ In a similar way, if we had two multiplicative identities 1A and 1B , then by axioms [I6] and [I7], we
may write 1A = 1A · 1B = 1B · 1A = 1B , and therefore 1A = 1B .

2. Addition possesses a cancellation law: if a+ b = a+ c, then b = c.

◦ Proof: By axioms [I1], [I3], and [I4], we have b = 0 + b = [(−a) + a] + b = (−a) + (a + b) =
(−a) + (a+ c) = [(−a) + a] + c = 0 + c = c.

3. Additive inverses are unique.

◦ Proof: Suppose a had two additive inverses b and c. Then we would have a+ b = 0 = a+ c by [I2]
and [I4], and therefore by the cancellation law (2) we would have b = c.

4. For all a ∈ Z, 0 · a = 0, (−1) · a = −a, and −(−a) = a.

◦ Proof: For any element a, by [I3] and [I8] we have 0 · a+ 0 = 0 · a = (0 + 0) · a = 0 · a+ 0 · a. Then
by the cancellation law (2), we obtain 0 = 0 · a.
◦ For the second statement, by the above along with [I3], [I7], and [I8] we have 0 = 0·a = [1+(−1)]·a =
1 · a+ (−1) · a = a+ (−1) · a. Then by the uniqueness of additive inverses (3), we see (−1) · a = −a.

1The de�nition of a binary operation means that for any two integers a and b, the symbols a+ b and a · b are always de�ned and are

integers. Some authors list these properties explicitly as part of their list of axioms.
2To be a proper de�nition, we would also need to establish that there actually is a set with operations obeying these properties,

which turns out to be rather tedious. But there are various constructions for Z using set theory, which we will not detail here.
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◦ For the last statement, observe that by de�nition, −(−a) is the element which when added to −a
yields 0. But since a+ (−a) = 0 = (−a) + a by de�nition and [I2], by the uniqueness of the additive
inverse (3) we conclude −(−a) = a.

5. For any a and b, −(a+ b) = (−a) + (−b), (−a) · b = −(a · b) = a · (−b), and (−a) · (−b) = a · b.
◦ Proof: For the �rst statement, observe that by [I1]-[I4], we have [a+ b] + [(−a) + (−b)] = [a+ [b+
(−b)]] + (−a) = (a+ 0) + (−a) = a+ (−a) = 0, and so by the uniqueness of the additive inverse (3)
we see −(a+ b) = (−a) + (−b).
◦ For the second statement, by (4) and [I6] we have (−a) · b = [(−1) · a] · b = (−1) · (a · b) = −(a · b).
By essentially the same argument the other part of the second statement follows, as does the third
statement.

6. For any a and b, b · a = a+ (b− 1) · a. Thus, 2 · a = a+ a, 3 · a = a+ (a+ a), and so forth.

◦ Proof: We have b · a = [1 + (b− 1)] · a = 1 · a+ (b− 1) · a = a+ (b− 1) · a by [I7] and [I8].

◦ The second statement follows from this along with the observation that 1 · a = a.

7. The multiplicative identity 1 ∈ Z+.

◦ Proof: By [N1], one of the following things holds: either 1 ∈ Z+ (in which case we are done), or
1 = 0 (this is impossible because by [I7], 1 6= 0), or −1 ∈ Z+.

◦ If −1 ∈ Z+, then by [N2], we would see that (−1) · (−1) ∈ Z+, and by (6) we have (−1) · (−1) = 1,
so we would have 1 ∈ Z+. In all cases 1 ∈ Z+ so we are done.

8. If ab = 0, then a = 0 or b = 0.

◦ Proof: If a, b ∈ Z+ then ab ∈ Z+ and so ab 6= 0. If a,−b ∈ Z+ or −a, b ∈ Z+ then −(ab) ∈ Z+ by
(5) and (4), and if −a,−b ∈ Z+ then ab ∈ Z+ also by (5) and (4).

◦ Thus, the only case in which ab = 0 is the case where a = 0 or b = 0, as claimed.

• It is quite tedious to write every proof using only properties of the axioms, so from this point forward we will
revert to using more standard notation and language.

◦ However, it is worthwhile noting that we could (if we wanted to) always reduce every proof down to a
series of statements each of which is an application of one of the axioms.

◦ From this viewpoint, our intermediate results (our propositions, lemmas, theorems, and so forth) consist
of a sequence of applications of the axioms that we can invoke in any situation where the hypotheses
apply, and that yield the claimed result.

◦ In this way, we can �build up� from the axiomatic foundation, by �rst proving very basic properties, and
then using those results to prove more complicated properties, and so forth, until we have established
substantial results.

◦ As a matter of course, most mathematicians do not dwell much on foundational questions, and instead
take for granted all of the basic properties of numbers and arithmetic that we will examine closely.

◦ But, at least in principle, every mathematical proof can be reduced down to a sequence of axiomatic
calculations. This idea is actually the foundation of automated theorem provers, which are computer
programs that can construct and verify mathematical proofs down to the axiomatic level.

◦ We cluster these statements together to make them more readable and (vastly!) more understandable to
human readers.

• We can also de�ne some other basic arithmetic properties of the integers:

• De�nition: We can de�ne the binary operation of subtraction in terms of addition and negation by setting
a− b = a+ (−b).

◦ Notice that this operation is well-de�ned (i.e., the de�nition makes sense and there is no ambiguity),
because −b is unique as we showed above.

• De�nition: We de�ne the order relation < (less than) by saying a < b if and only if b−a ∈ Z+. We also de�ne
b > a (greater than) to mean the same thing, and likewise write a ≤ b to mean a < b or a = b, and a ≥ b to
mean a > b or a = b.
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◦ The axioms [N1] and [N2] ensure that these symbols all behave in the way we expect inequality symbols
to behave.

◦ Explicitly, [N1] implies that for any integers a and b, exactly one of a < b, a = b, or b < a holds, because
the integer b− a is either positive, zero, or negative (respectively).

◦ Also, [N2] implies that for any a, b, c with a < b and b < c, then a < c, because if b − a and c − b are
positive, then their sum (c− b) + (b− a) = c− a is also positive.

◦ Finally, [N2] also implies that for any a, b, c with a < b and 0 < c, then ac < bc, since b− a and c− 0 = c
are positive and thus have positive product.

• A seemingly obvious, yet bizarrely important, property of the integers is the following result:

• Proposition: There are no integers between 0 and 1.

◦ Observe that this proposition must rely on the well-ordering axiom, because all of the other axioms also
apply to the rational and real numbers (which certainly do have elements between 0 and 1).

◦ Proof: Let S = {r ∈ Z : 0 < r < 1} be the set of all integers between 0 and 1. If S is empty, we are
done, so assume S 6= ∅.
◦ By the well-ordering axiom [N3], S has a minimal element r.

◦ Now observe that since 0 < r < 1, we have 0 < r2 < r < 1 by appropriate uses of [N1] and [N2].

◦ But this is a contradiction, because r2 is then a positive integer less than r, but r was assumed to be
minimal.

◦ Therefore, S cannot be nonempty, so S = ∅ as claimed.

2.2 Induction

• We now discuss an important proof technique, called �proof by mathematical induction�, that will allow us to
prove propositions about all of the positive integers.

2.2.1 Mathematical Induction

• First, we use the well-ordering axiom to establish a fundamental property about sets of positive integers:

• Proposition (Proof by Induction): If S is a set of positive integers such that 1 ∈ S, and n ∈ S implies
(n+ 1) ∈ S, then S = Z+ is the set of all positive integers.

◦ Proof: Let T = Z+\S, the set of elements of Z+ not in S. If T is empty, we are done, so assume T 6= ∅.
◦ By the well-ordering axiom [N3], T has a minimal element r.

◦ Since r is positive, there are three possibilities: 0 < r < 1, r = 1, or 1 < r.

◦ Since there are no positive integers between 0 and 1, we cannot have 0 < r < 1.

◦ Furthermore, since 1 ∈ S, we cannot have r = 1.

◦ The only remaining possibility is that 1 < r. But then 0 < r − 1, so r − 1 is a positive integer.

◦ Since r − 1 < r and r is minimal, we see that r − 1 ∈ S.
◦ But then the hypotheses on S then imply r ∈ S, which is a contradiction since we assumed r ∈ T .
◦ Hence T = ∅, so S = Z+ as claimed.

• Now we can invoke the result of the proposition to give a concrete procedure for mathematical induction.

◦ Explicitly, suppose P (n) is a proposition such that the �base case� P (1) holds, and also such that the
�inductive step� holds: namely, P (n) implies P (n+ 1) for all n ≥ 1.

◦ Then we claim that P (k) is true for every positive integer k.

◦ To show this fact, let S be the set of positive integers k such that P (k) is true.
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◦ By hypothesis, 1 ∈ S, and n ∈ S implies (n+ 1) ∈ S.
◦ Therefore, by our proposition, we conclude that S is the set of all positive integers, which is to say, P (k)
is true for all positive integers k.

• The principle of mathematical induction is as follows: suppose we have a sequence of statements P (1), P (2),
P (3), and so forth. If P (1) is true, and P (n) implies P (n + 1) for every n ≥ 1, then P (k) is true for every
positive integer k.

◦ A useful analogy for understanding the inductive principle is of climbing a ladder: if we can get on the
�rst rung of the ladder, and we can always climb from one rung to the next, then we can eventually
climb to any rung of the ladder (no matter how high).

◦ We often refer to the step of showing that P (1) is true as the base case, and the step of showing that
P (n) implies P (n+ 1) for every n ≥ 1 as the inductive step.

• For example, suppose we wish to show that 1 + 2 + 3 + 4 + · · ·+ n =
1

2
n(n+ 1) for every positive integer n.

◦ Some quick numerical experimentation will suggest that this formula is correct, but is not likely to suggest
a proof.

• To prove that 1 + 2 + 3 + 4 + · · · + n =
1

2
n(n + 1) for every positive integer n, we can use the principle of

mathematical induction.

◦ If we take P (n) to be the statement �1+2+3+4+ · · ·+n =
1

2
n(n+1)�, then by the inductive principle,

all we need to do is show that P (1) is true and that P (n) implies P (n+ 1) for each n ≥ 1.

◦ The statement P (1) simply reads 1 =
1

2
· 1 · 2, which is clearly true.

◦ The statement P (n) says that 1 + 2 + 3 + 4 + · · · + n =
1

2
n(n + 1), while the statement P (n + 1) says

that 1 + 2 + 3 + 4 + · · ·+ n+ (n+ 1) =
1

2
(n+ 1)(n+ 2).

◦ To prove that P (n) implies P (n+1), we need to start from the statement 1+2+3+4+· · ·+n =
1

2
n(n+1)

and use it (somehow) to show that 1 + 2 + 3 + 4 + · · ·+ n+ (n+ 1) =
1

2
(n+ 1)(n+ 2).

◦ We can do this as follows: observe that

1 + 2 + 3 + 4 + · · ·+ n+ (n+ 1) = [1 + 2 + 3 + 4 + · · ·+ n] + (n+ 1)

=
1

2
n(n+ 1) + (n+ 1)

=
1

2
n2 +

1

2
n+ n+ 1

=
1

2
(n2 + 3n+ 2) =

1

2
(n+ 1)(n+ 2).

where we applied the �inductive hypothesis� piece of information that 1+2+3+4+ · · ·+n =
1

2
n(n+1) to

go from the �rst line to the second, and then simply did algebra to rearrange the result into the desired
expression.

◦ Since we have proven the two required pieces, namely that P (1) is true and that P (n) implies P (n+ 1),
by the principle of mathematical induction, P (k) is true for every k ≥ 1.

• Induction arguments are useful because they can convert di�cult direct proofs into (often) comparatively
routine exercises.

◦ The base case is usually an easy example where the result is obvious or almost obvious, while the inductive
step gives a clear hypothesis to start with and an equally clear goal to reach.

◦ Generally, most of the work in the proof goes into the proof of the inductive step.
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2.2.2 Examples of Induction Arguments

• Here are a few more examples of proofs by induction, written in a more typical style.

• Example: Prove that 20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1 for every positive integer n.

◦ We prove this by induction on n.

◦ For the base case n = 1, we must show that 20 = 21 − 1 which is clearly true.

◦ For the inductive step, we are given that 20 + 21 + 22 + · · · + 2n−1 = 2n − 1 and must show that
20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1.

◦ By the inductive hypothesis, we can write

20 + 21 + 22 + · · ·+ 2n = [20 + 21 + 22 + · · ·+ 2n−1] + 2n

= [2n − 1] + 2n

= 2n+1 − 1

and therefore we see 20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1, as required.

◦ By induction, 20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1 for every positive integer n.

• Example: Prove that 1 + 3 + 5 + · · ·+ (2n− 1) = n2 for every positive integer n.

◦ We prove this by induction on n.

◦ For the base case n = 1, we must show that 1 = 1 which is clearly true.

◦ For the inductive step, we are given that 1+ 3+ 5+ · · ·+ (2n− 1) = n2 and must show that 1+ 3+ 5+
· · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2.

◦ By the inductive hypothesis, we can write

1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = [1 + 3 + 5 + · · ·+ (2n− 1)] + (2n+ 1)

= n2 + 2n+ 1 = (n+ 1)2

and therefore we see 1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2, as required.

◦ By induction, 1 + 3 + 5 + · · ·+ (2n− 1) = n2 for every positive integer n.

• Example: Prove that
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)
=

n

n+ 1
for every positive integer n.

◦ We prove this by induction on n.

◦ For the base case n = 1, we must show that
1

1 · 2
=

1

2
which is clearly true.

◦ For the inductive step, we are given that
1

1 · 2
+

1

2 · 3
+ · · · + 1

n · (n+ 1)
=

n

n+ 1
and must show that

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)
+

1

(n+ 1) · (n+ 2)
=
n+ 1

n+ 2
.

◦ By the inductive hypothesis, we can write

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)
+

1

(n+ 1) · (n+ 2)
=

[
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)

]
+

1

(n+ 1) · (n+ 2)

=
n

n+ 1
+

1

(n+ 1) · (n+ 2)

=
n(n+ 2) + 1

(n+ 1)(n+ 2)
=

(n+ 1)2

(n+ 1)(n+ 2)
=
n+ 1

n+ 2

and therefore we see
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)
+

1

(n+ 1) · (n+ 2)
=
n+ 1

n+ 2
, as required.

◦ By induction,
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)
=

n

n+ 1
for every positive integer n.
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• There are various modi�cations to this �basic� form of induction. The procedure for any induction problem
is essentially the same, however: we establish a base case, and prove an inductive step.

◦ We often want to start at a di�erent base case than n = 1: frequently, we instead start at n = 0 or n = 2.

◦ As long as we establish the appropriate base case and inductive step, the inductive principle will still
work.

◦ If, for example, our base case is n = 2, then we would prove P (2) is true and that P (n) implies P (n+1),
with the conclusion being that P (k) is true for all integers k ≥ 2.

• Example: Show that 2n > n2 for all integers n ≥ 5.

◦ We prove this by induction on n.

◦ For the base case n = 5, we must show that 25 > 52, or 32 > 25, which is clearly true.

◦ For the inductive step, we are given that 2n > n2 and n ≥ 5, and must show that 2n+1 > (n+ 1)2.

◦ By the inductive hypothesis, we can write 2n+1 = 2 · 2n > 2n2.

◦ Furthermore, since n ≥ 5, 2n2 = n2 + n2 ≥ n2 + 5n ≥ n2 + 2n+ 1 = (n+ 1)2.

◦ Putting the inequalities together, we see that 2n+1 > 2n2 ≥ (n+ 1)2, so 2n+1 > (n+ 1)2 as required.

◦ Therefore, by induction, 2n > n2 for all integers n ≥ 5.

• Another �avor of induction is called �complete induction� or �strong induction�: rather than assuming the
immediately previous case, we assume all of the previous cases: the inductive step is now that P (1), P (2),
..., P (n) collectively imply P (n+ 1).

◦ It may seem like we are assuming extra information, but in fact strong induction and regular induction
are logically equivalent.

◦ The reason is that we can view any strong-induction proof as a regular-induction proof with a slightly
di�erent hypothesis.

◦ Explicitly, if we de�ne Q(n) to be the proposition Q(n) = [∀k ∈ Z+, (k ≤ n) ⇒ P (k)], which is to
say Q(n) is true whenever P (1), P (2), ..., and P (n) are all true, then a strong-induction proof of the
proposition P (n) is the same as a standard-induction proof of the proposition Q(n).

◦ Thus, it is always allowable to assume the strong induction hypothesis when writing an induction proof
(although in practice, one typically only does so when it is actually necessary).

• Example: Prove that every positive integer can be written as the sum of one or more distinct powers of 2.

◦ We will show this by (strong) induction on the integer, n.

◦ We take the base case n = 1: clearly, n = 20 = 1 has the required property, as claimed.

◦ For the inductive step, suppose that n ≥ 2 and the result holds for any positive integer less than n.

◦ If n is even, then n/2 is a positive integer with n/2 < n, so by the inductive hypothesis, n/2 can be
written as the sum of one or more distinct powers of 2, say, n/2 = 2a1 + · · ·+ 2ad .

◦ Then doubling all of the terms in this sum yields n = 2a1+1 + · · ·+2ad+1 so n is also the sum of distinct
powers of 2, as required.

◦ If n is odd, then (n − 1)/2 is a positive integer with (n − 1)/2 < n, so by the inductive hypothesis,
(n− 1)/2 can be written as the sum of one or more distinct powers of 2, say, (n− 1)/2 = 2a1 + · · ·+2ad .

◦ Then doubling all of the terms and adding 1 yields n = 20 + 2a1+1 + · · ·+ 2ad+1 so n is also the sum of
distinct powers of 2, as required.

• Example: A chocolate bar consists of A = mn identical squares of chocolate arranged in an m×n rectangular
grid. You may break any piece along any row or column along the lines separating the squares to create two
separate pieces. By repeatedly breaking pieces, one at a time, prove that the minimum number of breaks
required to separate the bar into mn separate 1× 1 squares is A− 1.

◦ We will show this by (strong) induction on the area A.
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◦ We take the base case A = 1, in which case m = n = 1. In this case, the bar is already separated into
1× 1 squares, and we have indeed used mn− 1 = 0 breaks as claimed.

◦ For the inductive step, suppose that the result holds for any bar of total area at most A−1, and suppose
we have a bar with area A.

◦ Since rows and columns are interchangeable, assume without loss of generality that we break the bar
along a column. This will produce two pieces of chocolate of sizes m× n1 and m× n2 for some positive
integers n1 and n2 with n1 + n2 = n.

◦ Since both of these pieces have area less than A (since the sum of their areas is A and they both have
positive area), the inductive hypothesis applies to both of them. Therefore, we see that breaking the
m×n1 piece of chocolate into individual squares requires mn1−1 breaks, and breaking the m×n2 piece
of chocolate into individual squares requires mn2 − 1 breaks.

◦ Therefore, the total number of breaks for the originalm×n piece of chocolate is 1+(mn1−1)+(mn2−1) =
m(n1 + n2)− 1 = mn− 1 = A− 1, as claimed. This establishes the inductive step.

◦ Hence by (strong) induction, the result holds for every positive integer area A.

• In some situations, it may be necessary to have multiple base cases depending on the structure of the induction
argument.

◦ To illustrate how this can happen, suppose that we are trying to prove P (n) for all positive integers n,
and the proof of the inductive step P (n) requires both P (n− 1) and P (n− 2) to be true.

◦ Then it is not su�cient to start with the base case P (1), because using the inductive step to establish
P (3) requires that P (1) and P (2) both be known to be true.

◦ On the other hand, if we do show both P (1) and P (2) are true, then the inductive step would tell us
that P (3) is also true.

◦ Then because we know P (2) and P (3), the inductive step would tell us that P (4) is also true, and so on
and so forth.

• Example: Let a0 = 2, a1 = 5, and, for n ≥ 2, let an = 5an−1 − 6an−2. Prove that an = 2n + 3n for all n ≥ 0.

◦ We will show this by strong induction on n.

◦ For n = 0 and n = 1, the result is obvious, since a0 = 20 + 30 and a1 = 21 + 31.

◦ Now suppose n ≥ 2. By the strong induction hypothesis and the fact that n ≥ 2, we have an−1 =
2n−1 + 3n−1 and an−2 = 2n−2 + 3n−2, and we want to show that an = 2n + 3n.

◦ By the recursion and the induction hypotheses,

an = 5an−1 − 6an−2

= 5(2n−1 + 3n−1)− 6(2n−2 + 3n−2)

= 4 · 2n−2 + 9 · 3n−2 = 2n + 3n

and therefore an = 2n + 3n as claimed.

◦ By (strong) induction, we conclude that an = 2n + 3n for all integers n ≥ 0.

• In some cases the exact nature of the cases being used in the inductive step can be non-obvious, so it is
important to be very careful, as the following (famously incorrect) argument shows:

• Incorrect Proposition: All horses are the same color.

◦ Proof: We show this result by strong induction on n, the number of horses. The base case n = 1 is
obvious, since any one horse is the same color as itself.

◦ For the inductive step, suppose it is known that any n − 1 horses are the same color, and we are given
n horses.

◦ Then the �rst n− 1 horses are the same color by the inductive hypothesis, and the last n− 1 horses are
also the same color also by the inductive hypothesis.
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◦ Therefore, every horse is the same color as the middle n − 2 horses, as required, so all n horses are the
same color.

◦ Hence by induction, the result holds for every positive integer n.

◦ Remark: Of course, the result is false, but the mistake is reasonably well-hidden: in the proof of the
inductive step, it is implicitly assumed that n− 2 is positive so that n ≥ 3, but since only the base case
n = 1 was actually established, the proof is missing an argument for what happens with n = 2. (Of
course, the result is not true for n = 2!)

• As a �nal remark, we note that it is also possible to phrase induction arguments as �smallest counterexample�
or �in�nite descent� arguments.

◦ The general idea is to work to show that P (n) is true for all positive integers n by contradiction.

◦ If P (n) is not true for all positive integers n, then by the well-ordering axiom there must exist a minimal
positive integer k such that P (k) is false: this would be a �minimal counterexample�.

◦ If one can then prove that the existence of such a counterexample would imply the existence of a
smaller counterexample (i.e., some smaller positive integer k′ such that P (k′) is false), this would yield
a contradiction.

◦ Notice that the structure of this argument is equivalent to proof by induction, since both arguments
invoke the well-ordering axiom as a way of showing that a set is equal to Z+.

◦ In certain cases it can be easier to identify salient features of the induction argument by phrasing the
problem in terms of smallest counterexamples. However, standard proof by induction tends to be more
straightforward since it is a direct proof rather than a proof by contradiction.

• Example: Prove that every positive integer can be written as the sum of one or more distinct powers of 2.

◦ Suppose otherwise, so that there is at least one positive integer that cannot be written as the sum of one
or more distinct powers of 2, and choose the smallest such integer n.

◦ Then because n is minimal and clearly n > 1, this means n− 1 can be written as the sum of one or more
distinct powers of 2. If all of these terms were even, then we could simply add 1 to the sum to obtain a
representation for n, which contradicts the assumption that n is a counterexample.

◦ This means that n− 1 must have a term of 1 in its sum, and so n is even. But now consider n/2 instead:
it is a positive integer less than n, so again by minimality we would have such a representation for n/2.
But doubling all of the terms would yield a representation for n, which is again a contradiction.

◦ We obtain a contradiction in both cases, so there cannot exist any such n.

2.3 Divisibility and the Euclidean Algorithm

• We have constructed three of the operations of standard arithmetic: +, −, and ·. We now discuss division.

◦ One caveat with division is that, unlike addition, subtraction, and multiplication, the quotient of one
integer by another (even if it is de�ned) need not be an integer.

◦ Thus, instead of discussing division, we start by discussing divisibility.

2.3.1 Divisibility and Division With Remainder

• De�nition: If a 6= 0, we say that a divides b, written a|b, if there exists an integer k with b = ka. If a|b, we
also say that b is divisible by a.

◦ Examples: 2|4 since 4 = 2 ·2, (−7)|7 since 7 = (−1) · (−7), 13|1001 since 1001 = 77 ·13, 6|0 since 0 = 0 ·6,
and 0|0 since 0 = 2019 · 0.
◦ If a does not divide b, we sometimes write a - b. For example, 2 - 3 since there is no integer k with 3 = 2k.

◦ In the particular case of divisibility by 2, we say n is even if 2|n. We will show (carefully) later that 2 - n
is equivalent to saying that 2|(n− 1), which we take as the de�nition of odd.
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• There are a number of basic properties of divisibility that follow from the de�nition and properties of arith-
metic:

• Proposition (Properties of Divisibility): For any integers a, b, c,m, x, y, the following hold:

1. If a|b, then a|bc for any c.
2. If a|b and b|c, then a|c.
3. If a|b and a|c, then a|(xb+ yc) for any x and y.

4. If a|b and b|a, then a = ±b.
5. If a|b, and a, b > 0, then a ≤ b.
6. For any m 6= 0, a|b is equivalent to (ma)|(mb).

◦ Proof: Each of these follows essentially directly from the de�nition of divisibility and the basic
properties of arithmetic.

◦ For example, (2) follows because a|b and b|c imply that there exist integers k and l such that b = ka
and c = lb, and thus c = lb = (lk)a: hence c is an integer times a, so a|c.
◦ Likewise, (5) follows because if a|b and a, b are positive, then b = ka for some positive integer k.
Since this means 1 ≤ k because there are no integers between 0 and 1, we have a ≤ ka = b, and so
a ≤ b.

• If 0 < b < a and b does not divide a, we can still attempt to divide a by b to obtain a quotient and remainder:
this is a less-explicit version of the long-division algorithm familiar from elementary school. Formally:

• Theorem (Division With Remainder): If a and b are positive integers, then there exist unique integers q and
r such that a = qb+ r with 0 ≤ r < b. Furthermore, r = 0 if and only if b|a.

◦ Proof: The second statement follows immediately from the �rst statement: if r = 0 then a = qb so b|a,
and if b|a then a = kb for some k; then the uniqueness of q and r implies that we must have q = k and
r = 0.

◦ To show existence of q and r, let T be the intersection of the set S = {a+ kb, k ∈ Z} with the positive
integers. Observe that since a ∈ S, T is nonempty.

◦ Let r be the minimal element of T : then 0 ≤ r, and since r − b is not in T by minimality, we also have
r < b. But since r is in the set S, we must have r = a− qb for some integer q. Therefore, a = qb+ r for
some integers q, r such that 0 ≤ r < b, as required.

◦ For uniqueness, suppose qb+ r = a = q′b+ r′ with 0 ≤ r, r′ < b. Then −b < r− r′ < b, but we can write
r − r′ = b(q′ − q), so dividing through by b yields −1 < q′ − q < 1. But since q′ − q is an integer and
there are no integers between 0 and 1 (or between −1 and 0), it must be the case that q′− q = 0, so that
q′ = q and then r′ = r.

◦ Example: If a = 25 and b = 4, then the set S = {. . . ,−7,−3, 1, 5, 9, 13, 17, 21, 25, 29, 33, . . . }, and T =

{1, 5, 9, 13, 17, 21, 25, 29, 33, . . . }. The minimal element of T is r = 1, and then we obtain q =
a− r
b

= 6.

And indeed, we have 25 = 6 · 4 + 1.

◦ In practice, of course, we would not actually construct the sets S and T to determine q and r: we would
just numerically compute 25/4 and round down to the nearest integer to �nd q.

• As an immediate consequence of the existence of the quotient and remainder in the division algorithm, we
see that every integer is either even (i.e., leaves a remainder of 0 when divided by 2) or odd (i.e., leaves a
remainder of 1 when divided by 2), and the uniqueness of the quotient and remainder imply that no integer
is both even and odd.

2.3.2 Greatest Common Divisors and Least Common Multiples

• We now discuss the idea of common divisors.

• De�nition: If d|a and d|b, then d is a common divisor of a and b. If a and b are not both zero, then there are
only a �nite number of common divisors: the greatest one is called the greatest common divisor, or gcd, and
denoted by gcd(a, b).

10



◦ Warning: Many authors use the notation (a, b) to denote the gcd of a and b; this stems from notation
used in abstract algebra. We will always write gcd explicitly, since otherwise it is easy to confuse the
gcd with an ordered pair (a, b).

◦ Example: The positive divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. The positive divisors of 42 are 1, 2, 3,
6, 7, 14, 21, 42. The common (positive) divisors are 1, 2, 3, and 6, and so gcd(30, 42) = 6.

• Our �rst main result about greatest common divisors is that we can write them in terms of the original
integers:

• Theorem (GCD as Linear Combination): If a and b are integers, not both zero, and d = gcd(a, b), then there
exist integers x and y with d = ax+ by: in fact, the gcd is the smallest positive such linear combination.

◦ This theorem says that the greatest common divisor of two integers is an integral linear combination of
those integers.

◦ Proof: Without loss of generality assume a 6= 0, and let S = {as+ bt : s, t ∈ Z} ∩ Z+.

◦ Clearly S 6= ∅ since one of a and −a is in S, so now let l = ax+ by be the minimal element of S.

◦ We claim that l|b. To see this, apply the division algorithm to write b = ql + r for some 0 ≤ r < l.

◦ Then r = b − ql = b − q(ax + by) = a(−qx) + b(1 − qy) is a linear combination of a and b. It is not
negative, but it also cannot be positive because otherwise it would necessarily be less than l, and l is
minimal.

◦ This leaves only the possibility r = 0, and therefore we have l|b.
◦ By a symmetric argument, l|a, and so l is a common divisor of a and b. This requires l ≤ d.
◦ But now since d|a and d|b we can write a = dka and b = dkb for some integers ka and kb. Then
l = ax+ by = dkax+ dkby = d(kax+ kby).

◦ Therefore we see also that d|l, so in particular d ≤ l since both are positive. Since l ≤ d as well from
above, we must have l = d.

• Corollary: If l|a and l|b, then l divides gcd(a, b). In other words, the gcd of a and b is divisible by every other
common divisor.

◦ Proof: Since l|a and l|b, l divides any linear combination of a and b: in particular, it divides the gcd.

• As an example: we saw above that the gcd of 30 and 42 is 6, and indeed we can see that 3 · 30 − 2 · 42 = 6.
The other common divisors are 1, 2, and 3, and indeed they all divide 6.

• As another example: because 6 · 24 − 11 · 13 = 1, we see that 24 and 13 have greatest common divisor 1,
since their gcd must divide any linear combination. Having a gcd of 1 occurs often enough that we give this
situation a name:

• De�nition: If gcd(a, b) = 1, we say a and b are relatively prime.

◦ Examples: 24 and 13 are relatively prime. 2 and 5 are relatively prime. 15 and 16 are relatively prime.

◦ Non-Example: 30 and 69 are not relatively prime, since they have the common divisor 3.

• Using all of the results we have shown above, we can collect a number of useful facts about greatest common
divisors:

• Proposition (Properties of GCDs): If m, a, b, d are integers, then the following hold:

1. If m > 0, then gcd(ma,mb) = m · gcd(a, b).
◦ Proof: As shown above, gcd(ma,mb) is the smallest positive element of the set S = {max+mby :
x, y ∈ Z}, while gcd(a, b) is the smallest positive element of the set T = {ax+ by : x, y ∈ Z}.
◦ But clearly, multiplying all of the elements of T by m yields the set S, and since this operation
preserves the identity of the smallest positive element, we must have gcd(ma,mb) = m · gcd(a, b), as
claimed.

2. If d > 0 divides both a and b, then gcd(a/d, b/d) = gcd(a, b)/d.
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◦ Proof: Applying (1) to a/d and b/d with m = d yields gcd(a, b) = d ·gcd(a/d, b/d), and then dividing
both sides by d yields the required statement.

3. There exist integers x and y with ax+ by = 1 if and only if gcd(a, b) = 1.

◦ Proof: If gcd(a, b) = 1 then we showed above that there exist integers x and y with ax+ by = 1.

◦ For the other direction, any common divisor of a and b must divide ax+ by = 1: hence the gcd must
divide 1, which leaves only the possibility that it equals 1.

4. If a and b are both relatively prime to m, then so is ab.

◦ Proof: By the linear combination property of the gcd, there exist x1, y1, x2, y2 with ax1 +my1 = 1
and bx2 +my2 = 1.

◦ Multiplying these two equations together and rearranging the results yields ab(x1x2) +m(y1bx2 +
y2ax1 +my1y2) = 1, and this implies that ab and m are relatively prime.

5. For any integer x, gcd(a, b) = gcd(a, b+ ax).

◦ Proof: Observe that the set of linear combinations of a and b is the same as the set of integral linear
combinations of a and b+ ax.

6. If a|bc and a and b are are relatively prime, then a|c.
◦ Proof 1: By (1), we have gcd(ac, bc) = c · gcd(a, b) = c. Since a|bc and a|ac, we see that a is a
common divisor of ac and bc, and therefore divides the gcd, which is c. Thus a|c as claimed.

◦ Proof 2: Since a and b are relatively prime, by (3) there exist integers x and y with ax + by = 1.
Multiplying both sides by c yields acx+ bcy = c: but now note that a divides both acx and bcy, so
a must also divide their sum c.

• Dual to the notion of the greatest common divisor is the notion of the least common multiple:

• De�nition: If a|l and b|l, l is a common multiple of a and b. Among all (nonnegative) common multiples of a
and b, the smallest such l is called the least common multiple of a and b.

◦ Example: The least common multiple of 30 and 42 is 210, as follows by noting that 210 = 7 · 30 = 5 · 42
and that none of 1 · 42, 2 · 42, 3 · 42, and 4 · 42 is divisible by 30.

◦ The least common multiple is often mentioned in elementary school in the context of adding fractions
(for �nding the �least common denominator�).

• The least common multiple has fewer nice properties than the gcd, but it turns out that we can obtain either
one from the other:

• Proposition (Properties of LCMs): If m, a, b are any positive integers, then the following hold:

1. We have lcm(ma,mb) = m · lcm(a, b).

◦ Proof: Since ma divides lcm(ma,mb), we can write lcm(ma,mb) = mk for some integer k.

◦ Then ma|mk and mb|mk, so a and b both divide k. Thus k ≥ l, where l = lcm(a, b).

◦ On the other hand, certainly ma and mb divide ml, so ml ≥ mk. We must therefore have l = k, so
lcm(ma,mb) = m · lcm(a, b) as claimed.

2. If a and b are positive integers, then gcd(a, b) · lcm(a, b) = ab.

◦ Proof: First suppose a and b are relatively prime, and let l be a common multiple. Since a|l we can
write l = ak for some integer k: then since b|ak and gcd(a, b) = 1, we conclude by properties of
divisibility that b|k, meaning that k ≥ b and thus l ≥ ab. But clearly ab is a common multiple of a
and b, so it is the least common multiple.

◦ In the general case, let d = gcd(a, b). Then gcd(a/d, b/d) = 1, so by (1) we see that lcm(a/d, b/d) =
ab/d2. Then gcd(a, b) · lcm(a, b) = d · d lcm(a/d, b/d) = ab, as desired.
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2.3.3 The Euclidean Algorithm

• Although we have identi�ed various properties of the gcd, we have not yet described a convenient procedure
for actually computing the gcd other than by writing down lists of common divisors. (Nor have we described
how to compute the gcd as a linear combination of the original integers.) Both questions turn out to have a
nice answer:

• Theorem (Euclidean Algorithm): Given integers 0 < b < a, repeatedly apply the division algorithm as follows,
until a remainder of zero is obtained:

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qk+1rk + rk+1

rk = qk+2rk+1.

Then gcd(a, b) is equal to the last nonzero remainder, rk+1. Furthermore, by successively solving for the
remainders and plugging in the previous equations, rk+1 can be explicitly written as a linear combination of
a and b.

◦ Proof: First observe that the algorithm will eventually terminate, because b > r1 > r2 > · · · ≥ 0, and the
well-ordering axiom dictates that we cannot have an in�nite decreasing sequence of nonnegative integers.

◦ We now claim that gcd(a, b) = gcd(b, r1): this follows because gcd(b, r1) = gcd(b, a − q1b) = gcd(b, a)
from the gcd properties we proved earlier.

◦ Now by an easy induction, we claim that gcd(rj , rj+1) = gcd(a, b) for each 0 ≤ j ≤ k, where we set
r0 = b and r−1 = a. The base case j = 0 follows from gcd(a, b) = gcd(b, r1) above, and the inductive
step follows by applying the same argument to see gcd(rj , rj+1) = gcd(rj+1, rj+2).

◦ We conclude that gcd(a, b) = gcd(rk+1, rk) = rk+1 since rk+1 divides rk. Hence, gcd(a, b) is the last
nonzero remainder as claimed.

◦ The correctness of the algorithm for computing the gcd also follows by an easy induction: explicitly, we
show by induction on j that there exist integers xj and yj such that rj = xja+yjb for all integers j with
0 ≤ j ≤ k + 1.

◦ The base cases j = 0 and j = 1 follow by writing r0 = b and r1 = a− q1b so we may take x0 = 0, y0 = 1,
x1 = 1, and y1 = −q1.
◦ The inductive step follows by writing rj−1 = qj+1rj + rj+1, so rearranging yields rj+1 = rj−1− qj+1rj =
(xj−1a + yj−1b) − qj+1(xja + yjb) = (xj−1 − qj+1xj)a + (yj−1 − qj+1yj)b and thus we take xj+1 =
xj−1 − qj+1xj and yj+1 = yj−1 − qj+1yj .

◦ By induction, we eventually obtain an expression gcd(a, b) = rk+1 = xk+1a+ yk+1b as required.

• Example: Find the gcd of 133 and 98 using the Euclidean algorithm, and write the gcd explicitly as a linear
combination of 133 and 98.

◦ First, we use the Euclidean algorithm:

133 = 1 · 98 + 35

98 = 2 · 35 + 28

35 = 1 · 28 + 7

28 = 4 · 7

and so the gcd is 7 .
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◦ For the linear combination, we solve for the remainders:

35 = 133− 1 · 98 = = 1 · 133− 1 · 98
28 = 98− 2 · 35 = 98− 2 · (133− 1 · 98) = −2 · 133 + 3 · 98
7 = 35− 1 · 28 = (1 · 133− 1 · 98)− 1 · (−2 · 133 + 3 · 98) = 3 · 133− 4 · 98

so we obtain 7 = 3 · 133− 4 · 98 .

• In the example above, we could simply have written down all the divisors of each number, and computed the
gcd by comparing those lists. However, if the numbers are large, this procedure becomes very ine�cient in
comparison to the Euclidean algorithm.

• Example: Find the gcd of 44773 and 2088 using the Euclidean algorithm, and use the results to write the gcd
as an explicit linear combination.

◦ Applying the Euclidean algorithm to a = 44773 and b = 2088 yields

44773 = 5 · 8537 + 2088

8537 = 4 · 2088 + 185

2088 = 11 · 185 + 53

185 = 3 · 53 + 26

53 = 2 · 26 + 1

26 = 26 · 1

◦ For the linear combination, we solve for the remainders:

2088 = = 1 · 44773− 5 · 8537
185 = 8537− 4 · 2088 = −4 · 44773 + 21 · 8537
53 = 2088− 11 · 185 = 45 · 44773− 236 · 8537
26 = 185− 3 · 53 = −139 · 44773 + 729 · 8537
1 = 53− 2 · 26 = 323 · 44773− 1694 · 8537

and therefore we can take s = 323 and t = −1694 .

2.4 Primes and Unique Factorization

• Now that we have examined divisibility and common factors, we will examine one of the other fundamental
properties of the integers, namely, the existence and uniqueness of prime factorizations.

• We begin by discussing prime numbers:

• De�nition: If p > 1 is an integer, we say it is prime if there is no integer d with 1 < d < p such that d|p. (In
other words, p is prime if p has no proper divisors.) If n > 1 is not prime, which is to say, if there exists some
integer d with 1 < d < n with d|n, we say it is composite.

◦ The �rst few primes are 2, 3, 5, 7, 11, 13, 17, 19, and so forth. 1 is neither prime nor composite.

◦ Remark: In more advanced contexts, the following equivalent de�nition of a prime is often used instead:
the integer p > 1 is prime if and only if p|ab implies that p|a or p|b.

• The prime numbers are often called the �building blocks under multiplication�, because every positive integer
can be written as the product of prime numbers in an essentially unique way. To prove this, we �rst show
that there exists at least one such factorization:

• Proposition (Existence of Prime Factorizations): Every positive integer n can be written as a product of zero
or more primes (where a �product� is allowed to have only one term, and the empty product has value 1).

◦ The representation of n as a product of primes is called the prime factorization of n. (For example, the
prime factorization of 6 is 6 = 2 · 3.) We will show in a moment that it is unique up to reordering the
terms.
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◦ Proof: We use strong induction on n. The result clearly holds if n = 1, since 1 is the empty product.

◦ Now suppose n ≥ 2. If n is prime, we are done (simply take the product n with one term), so assume
that n is not prime, hence composite.

◦ By de�nition, there exists a d with 1 < d < n such that d|n: then n/d is an integer satisfying 1 < n/d < n.

◦ By the strong induction hypothesis, both d and n/d can be written as a product of primes; multiplying
these two products then yields n as a product of primes.

• To establish the uniqueness of prime factorizations, we require the following prime divisibility property:

• Proposition (Prime Divisibility): If a and b are integers and p is a prime number with p|ab, then p|a or p|b.

◦ Proof: If p|a we are done, so assume that p - a.
◦ Consider gcd(a, p): it divides p, hence is either 1 or p since p is prime. But the gcd cannot be p because
p does not divide a.

◦ Therefore, gcd(a, p) = 1, so a and p are relatively prime.

◦ Then since p|ab and a, p are relatively prime, we see that p|b.

• Theorem (Fundamental Theorem of Arithmetic): Every positive integer can be factored into a product of
primes, and this factorization is unique up to reordering of the factors.

◦ Proof: We already showed that every positive integer has a prime factorization, so we need only show
the uniqueness.

◦ Suppose by way of contradiction that there is a positive integer with two prime factorizations. By the
well-ordering axiom, we may select the minimal such positive integer n with two di�erent factorizations:
n = p1p2 · · · pk = q1q2 · · · ql. If any of the primes pi and qi were equal, we could cancel the corresponding
terms and obtain a smaller n, so p1 6= qj for any j with 1 ≤ j ≤ l.
◦ But since p1 is prime and divides q1q2 · · · ql, by repeated application of the previous proposition we see
that p1 must divide one of q1, q2, . . . , ql: say, qi. But the only divisors of qi are 1 and qi, and p1 cannot
be either of them. This is a contradiction, so we are done.

• To save space, we group equal primes together when actually writing out the canonical prime factorization:
thus, 12 = 22 · 3, 720 = 22 · 32 · 5, and so forth. More generally, we often write the prime factorization in the
form n =

∏j
i=1 p

ni
i , where the pi are some (�nite) set of primes and the ni are their corresponding exponents

3.

• Proposition (Divisibility and Factorizations): If a =
∏j

i=1 p
ai
i and b =

∏j
i=1 p

bi
i for distinct primes pi, then

a|b if and only if ai ≤ bi for each i. In particular, gcd(a, b) =
∏j

i=1 p
min(ai,bi)
i and lcm(a, b) =

∏j
i=1 p

max(ai,bi)
i .

◦ Proof: We observe that if b = ak and k =
∏j

i=1 p
ki
i , then ai+ki = bi. Since all exponents are nonnegative,

saying that such an integer k exists is equivalent to saying that ai ≤ bi for all i.
◦ The statements about the gcd and lcm follow directly: the exponent of pi in the gcd is the largest integer
that is ≤ ai and ≤ bi , which is simply the minimum of ai and bi, and the exponent of pi in the lcm is
the least integer that is ≥ ai and ≥ bi, which is simply the maximum of ai and bi.

• Example: For a = 2331054 and b = 2433547, we have gcd(a, b) = 233354 and lcm(a, b) = 24310547.

• One question we might have is: how many primes are there? The most basic answer to this question is that
there are in�nitely many primes:

• Theorem (Euclid): There are in�nitely many prime numbers.

◦ Proof: Suppose there are only �nitely many prime numbers p1, p2, . . . , pk, and consider n = p1p2 · · · pk+
1.

◦ Since n is bigger than each pi, n cannot be prime (since it would necessarily have to be on the list).

3The notation
∏j

i=1 f(i) is shorthand for the product f(1)f(2) · · · f(j), in the same way that the notation
∑j

i=1 f(i) is shorthand

for the sum f(1) + f(2) + · · ·+ f(j).
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◦ Therefore n is composite. Consider the prime factorization of n: necessarily at least one prime on the
list must appear in it: say pi.

◦ Since pi also divides p1p2 · · · pk, we see that pi therefore divides n − p1p2 · · · pk = 1. But this is a
contradiction. Hence there are in�nitely many primes.

• At this stage, we will brie�y mention a few of the most famous results and open problems relating to prime
numbers:

◦ (Prime Number Theorem) Euclid's result, while extremely elegant, does not tell us much about the
actual primes themselves: for example, it does not say anything about how common the primes are. Are
most numbers prime? Or are most numbers composite? A more rigorous way to frame this question
is: let π(n) be the number of primes in the interval [1, n]. How fast does π(n) increase as n increases:
does it grow like n, or

√
n, or something else? The answer is given by the so-called �Prime Number

Theorem�: π(n) ∼ n

log(n)
, where log denotes the natural logarithm. (The notation f(n) ∼ g(n) means

that as n→∞, the limit lim
n→∞

f(n)/g(n) = 1.)

◦ (Twin Primes) Another question is: how close do primes get? It is obvious that 2 is the only even prime,
so aside from 2 and 3, any pair of primes has to di�er by at least 2: such pairs are called �twin primes�.
One can write down a long list of twin primes: (3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (59,61),
and so forth. Are there in�nitely many? The answer is not known, although twin primes are expected
to be quite rare. However, it has been proven (as of August 2014) that there exist in�nitely many pairs
of primes (p1, p2) such that |p2 − p1| ≤ 246.

◦ (Goldbach's Conjecture) One can observe that 2 + 2 = 4, 3 + 3 = 6, 3 + 5 = 8, 3 + 7 = 10, 5 + 7 = 12,
3 + 11 = 14, 3 + 13 = 16, 5 + 13 = 18, 7 + 13 = 20, and so forth. It appears that every even number
(bigger than 4) can be written as the sum of two primes. It is not known whether this pattern continues,
although it has been numerically veri�ed for every even integer less than 1018. In 2013, a proof that
every odd integer greater than 7 can be written as a sum of three primes was announced. (This result is
weaker than Goldbach's conjecture, but it is of the same type.)

• There are many applications of prime factorizations in elementary number theory, but one particularly famous
result is that

√
2 is irrational:

• Theorem (Irrationality of
√
2): The number

√
2 is irrational, which is to say, there do not exist integers m

and n such that
√
2 = m/n.

◦ Proof: Suppose by way of contradiction that
√
2 were rational so that

√
2 = m/n for some integers m

and n, which (by negating if needed) we may assume are positive.

◦ Squaring both sides and clearing denominators yields the equivalent equation 2n2 = m2.

◦ Now consider the prime factorizations of both sides: say m = 2m23m3 · · · and n = 2n23n3 · · · .
◦ We obtain the equality 22m2+13m3 · · · = 22n232n3 · · · , and so by the uniqueness of prime factorizations,
all of the corresponding exponents must be equal.

◦ In particular, we see that 2m2 +1 = 2n2, so that 2(n2−m2) = 1. But this is impossible, because 2 does
not divide 1.

◦ Therefore, it could not have been true that
√
2 = m/n, so

√
2 must be irrational as claimed.

2.5 Modular Congruences and The Integers Modulo m

• The ideas underlying modular arithmetic are familiar to anyone who can tell time. For example, 3 hours after
11 o'clock, it is 2 o'clock. This is quite natural despite the fact that 3+11 is 14, not 2: simply put, we identify
times that are 12 hours apart as the same time of day.
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2.5.1 Modular Congruences and Residue Classes

• Modular arithmetic is simply a formalization of this �clock arithmetic�:

• De�nition: If m is a positive integer and m divides b − a, we say that a and b are congruent modulo m (or
equivalent modulo m), and write �a ≡ b (modulo m)�.

◦ Notation: As shorthand we usually write �a ≡ b (mod m)�, or even just �a ≡ b� when the modulus m is
clear from the context.

◦ The statement a ≡ b (mod m) can be thought of as saying �a and b are equal, up to a multiple of m�.

◦ Observe that if m|(b − a), then (−m)|(b − a) as well, so we do not lose anything by assuming that the
modulus m is positive.

◦ Example: 3 ≡ 9 (mod 6), since 6 divides 9− 3 = 6.

◦ Example: −2 ≡ 28 (mod 5), since 5 divides 28− (−2) = 30.

◦ Example: 0 ≡ −666 (mod 3), since 3 divides −666− 0 = −666.
◦ If m does not divide b− a, we say a and b are not congruent mod m, and write a 6≡ b (mod m).

◦ Example: 2 6≡ 7 (mod 3), because 3 does not divide 7− 2 = 5.

• Modular congruences share a number of properties with equalities:

• Proposition (Modular Congruences): For any positive integer m and any integers a, b, c, d, the following are
true:

1. a ≡ a (mod m).

2. a ≡ b (mod m) if and only if b ≡ a (mod m).

3. If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

4. If a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+ d (mod m).

5. If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).

6. If a ≡ b (mod m), then ac ≡ bc (mod mc) for any c > 0.

7. If d|m, then a ≡ b (mod m) implies a ≡ b (mod d).

◦ Proof: Each of these follows in a relatively straightforward way from the de�nition of modular
congruence. The trickiest is (5), which follows by observing that if m divides b − a and m divides
d− c, then m divides bd− ac = b(d− c) + a(b− a).

• We would now like to study �arithmetic modulo m�. To do this, we need to de�ne the underlying objects of
study:

• De�nition: If a is an integer, the residue class of a modulo m, denoted a, is the collection of all integers
congruent to a modulo m. Observe that a = {a+ km, k ∈ Z}.

◦ Example: The residue class of 2 modulo 4 is the set {. . . ,−6,−2, 2, 6, 10, 14, . . . }.
◦ Example: The residue class of 2 modulo 5 is the set {. . . ,−8,−3, 2, 7, 12, 17, . . . }.
◦ Example: The residue class of 11 modulo 19 is the set {. . . , −27, −8, 11, 30, 49, 68, , . . . }.

• Here are a few fundamental properties of residue classes:

• Proposition (Properties of Residue Classes): Suppose m is a positive integer. Then

1. If a and b are integers with respective residue classes a, b modulo m, then a ≡ b (mod m) if and only if
a = b.

◦ Proof: If a = b, then by de�nition b is contained in the residue class a, meaning that b = a+ km for
some k. Thus, m divides b− a, so a ≡ b (mod m).

◦ Conversely, suppose a ≡ b (mod m). If c is any element of the residue class a, then by de�nition
c ≡ a (mod m), and therefore c ≡ b (mod m).
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◦ Therefore, c is an element of the residue class b, but since c was arbitrary, this means that a is
contained in b.

◦ By the same argument with a and b interchanged, we see that b is also contained in a, and thus
a = b.

2. Two residue classes modulo m are either disjoint or identical.

◦ Proof: Suppose that a and b are two residue classes modulo m. If they are disjoint, we are done, so
suppose there is some c contained in both.

◦ Then c ≡ a (mod m) and c ≡ b (mod m), so a ≡ b (mod b). Then by property (1), we conclude
a = b.

3. There are exactly m distinct residue classes modulo m, given by 0, 1, . . . , m− 1.

◦ Proof: By the division algorithm, for any integer a there exists a unique r with 0 ≤ r < m such that
a = qm+ r with q ∈ Z.
◦ Then a ≡ r (mod m), and so every integer is congruent modulo m to precisely one of the m integers
0, 1, ... , m − 1, which is to say, every integer lies in precisely one of the residue classes 0, 1, . . . ,
m− 1.

• If we apply results (2) and (3) from the proposition above when m = 2, we obtain (once again) the statement
that every integer either leaves a remainder of 0 or 1 when divided by 2: i.e., that every integer is either even
or odd, and no integer is both.

2.5.2 The Integers Modulo m, Modular Arithmetic

• De�nition: The collection of residue classes modulo m is denoted Z/mZ (read as �Z modulo mZ�).

◦ Notation: Many other authors denote this collection of residue classes modulo m as Zm. We will avoid
this notation and exclusively use Z/mZ (or its shorthand Z/m), since Zm is used elsewhere in algebra
and number theory for a di�erent object.

◦ By our properties above, Z/mZ contains exactly m elements 0, 1, . . . , m− 1.

• We can now write down �addition and multiplication� modulo m using the residue classes of Z/mZ.

◦ The fact that a ≡ b (mod m) and c ≡ d (mod m) imply a+ c ≡ b+ d (mod m) and ac ≡ bd (mod m) tell
us that if we want to compute a+ c modulo m, then no matter which element b in the residue class of a
and which element d in the residue class of c we take, the sum b+ d will lie in the same residue class as
a+ c, and the product bd will lie in the same residue class as ac.

◦ Thus, everything makes perfectly good sense if we label the residue classes with the integers 0 through
m− 1 and simply do the arithmetic with those residue classes.

• De�nition: The addition operation in Z/mZ is de�ned as a + b = a+ b, and the multiplication operation is
de�ned as a · b = ab.

◦ Here are the addition and multiplication tables for Z/5Z:
+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

◦ Note that, for example, the statement 2 + 4 = 1 is now perfectly acceptable (and correctly stated with
the equals sign): it says that if we take any element in the residue class 2 (modulo 5) and add it to any
element in the residue class 4 (modulo 5), the result will always lie in the residue class 1 (modulo 5).
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◦ Here are the addition and multiplication tables for Z/4Z:
+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

• Arithmetic modulo m is commonly described by ignoring residue classes entirely and only working with the
integers 0 through m− 1, with the result of every computation �reduced modulo m� to obtain a result lying
in this range.

◦ Thus, for example, to compute 3 + 10 modulo 12, we would add to get 13 and then �reduce�, yielding 1
modulo 12. Similarly, to �nd 3 · 10 modulo 12, we compute 3 · 10 = 30 and then reduce to obtain a result
of 6 modulo 12.

◦ However, this is a rather cumbersome and inelegant description. This de�nition is often used in pro-
gramming languages, where �a mod m�, frequently denoted �a%m�, is de�ned to be a function returning
the corresponding remainder in the interval [0,m− 1].

◦ Observe that with this de�nition, it is not true that (a + b)%m = (a%m) + (b%m), nor is is true that
ab%m = (a%m) · (b%m), since the sum and product may each exceed m. Instead, to obtain an actually
true statement, one would have to write something like ab%m = [(a%m) · (b%m)]%m.

◦ In order to avoid such horrible kinds of statements, the best viewpoint really is to think of the statement
a ≡ b (mod m) as a congruence that is a �weakened� kind of equality, rather than always reducing each
of the terms to its residue in the set {0, 1, . . . ,m− 1}.
◦ The other reason we adopt the use of residue classes is that they extend quite well to more general
settings where we may not have such an obvious set of �representatives�.

• The arithmetic in Z/mZ shares many properties with the arithmetic in Z (which should not be surprising,
since Z/mZ was constructed using Z):

• Proposition (Basic Arithmetic in Z/mZ): For any positive integer m the following properties of residue classes
in Z/mZ hold:

1. The operation + is associative: a+ (b+ c) = (a+ b) + c for any a, b, and c.

2. The operation + is commutative: a+ b = b+ a for any a and b.

3. The residue class 0 is an additive identity: a+ 0 = a for any a.

4. Every residue class a has an additive inverse −a satisfying a+ (−a) = 0.

5. The operation · is associative: a · (b · c) = (a · b) · c for any a, b, and c.
6. The operation · is commutative: a · b = b · a for any a and b.

7. The operation · distributes over +: a · (b+ c) = a · b+ a · c for any a, b, and c.
8. The residue class 1 is a multiplicative identity: 1 · a = a for any a.

◦ Proof: For (1), by de�nition we have a + (b + c) = a + b+ c = a+ (b+ c) and also (a + b) + c =
a+ b+ c = (a+ b) + c.

◦ But by the associative property [A1] in Z, we know that a+ (b+ c) = (a+ b) + c, so the associated
residue classes are also equal.

◦ The other properties follow in a similar way from the corresponding properties of the integers.

• The arithmetic in Z/mZ shares many properties with the arithmetic in Z. However, there are some very
important di�erences.

◦ For example, if a, b, c are integers with ab = ac and a 6= 0, then we can �cancel� a from both sides to
conclude that b = c.

◦ However, this does not always work in Z/mZ: for example, 2 · 1 = 2 · 4 modulo 6, but 1 6= 4 modulo 6.
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◦ The issue here is that 2 and the modulus 6 are not relatively prime: 6 divides 2(4 − 1), but 6 does not
divide 4− 1.

• We can explain the issue using modular congruences:

• Theorem (Invertible Elements in Z/mZ): If m > 0, then the residue class a has a multiplicative inverse in
Z/mZ, meaning that there exists some residue class x with x · a = 1, if and only if a and m are relatively
prime.

◦ Proof: First suppose that a and m are relatively prime. Then by our analysis of the Euclidean algorithm,
there exist integers x and y such that xa+ ym = 1: then xa ≡ 1 (mod m), which is to say x · a = 1, so
that a has a multiplicative inverse as claimed.

◦ Conversely, suppose a were invertible in Z/mZ with inverse x. Then we would have x · a = 1, or
equivalently xa ≡ 1 (mod m), and this is in turn equivalent to saying there exists an integer y with
xa+ ym = 1. But then the common divisor d would divide xa+ ym hence divide 1, and so a and m are
relatively prime.

• The proof above shows that we can �nd the inverse of an invertible residue class via the Euclidean algorithm.

• Example: Find the multiplicative inverse of 9 in Z/11Z.

◦ Using the Euclidean algorithm, we can obtain 1 = 5 · 11 − 6 · 9. Reducing both sides modulo 11 yields

1 = −6 · 9, and since −6 = 5, this shows that the multiplicative inverse of 9 in Z/11Z is 5 .

• The case where the modulus is prime is of particular importance:

• Corollary: If p is a prime number, then every nonzero residue class in Z/pZ has a multiplicative inverse.

◦ Proof: If p is prime, then p is relatively prime to each of 1, 2, ... , p − 1 and hence all of the nonzero
residue classes modulo p are invertible.

• This corollary states that when p is prime, Z/pZ has the structure of the algebraic object called a �eld.

◦ To summarize: a �eld is a set F together with two binary operations of addition (+) and multiplication
(·) both of which are associative and commutative and where · distributes over +, that also possesses an
additive identity 0 and a multiplicative identity 1 6= 0, and where every element has an additive inverse
and every nonzero element has a multiplicative inverse.

◦ Some familiar examples of �elds include Q, R, and C.

• Although we will end our discussion of modular arithmetic (and number theory more generally) here, well
before the true end of the story, we will remark that modular arithmetic is fundamental in many areas of in
mathematics, particularly abstract algebra, algebraic topology, and applied mathematics, as well as outside
mathematics.

◦ More speci�cally, modular arithmetic is deeply enmeshed in computer science and modern cryptography,
as many computational algorithms employ modular arithmetic, as do most current cryptosystems (e.g.,
RSA, AES, and elliptic-curve cryptography).

◦ Modular arithmetic also arises naturally in chemistry (in the study of molecular symmetries), music the-
ory (in the study of tuning systems), economics and game theory (in the study of fair division problems),
and the visual arts (in the study of various artistic designs), among other disciplines.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2022. You may not reproduce or distribute this
material without my express permission.
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