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1 Introduction to Dynamics

In this chapter, our goal is to provide an introduction to (discrete) dynamical systems on the real line. We begin by
introducing some examples of more general dynamical systems, and then restrict our attention to discrete dynamical
systems on R, which arise by repeatedly iterating a function f de�ned on a subset of the line. We study the structure
of the orbit of a point under a function, and how to classify the behavior of �xed points and cycles in terms of
whether they attract or repel nearby points as we iteratively apply f . We will then discuss Newton's method, a
procedure often familiar from calculus that provides a way to compute zeroes of di�erentiable functions numerically,
both because it is a computational aid and because it provides another source of interesting dynamical systems.

1.1 Examples of Dynamical Systems

• Vaguely speaking, a dynamical system consists of two things: a space, and an operator that acts on that
space.

• In a discrete dynamical system, the operator can be thought of as a transformation of the space. The goal is
to describe the behavior of points in the space as we iterate the transformation repeatedly.

◦ Example: The space is R and the transformation is the function f(x) = cos(x). What happens as we
apply f repeatedly to a particular value of x (e.g., x = 2π)?

◦ Example: The space is R and the transformation is the function f(x) = x2 − 1. What happens as we
apply f repeatedly?

◦ Example: The space is C and the transformation is the function f(z) =
z + i

z − i
. What happens as we

apply f repeatedly?

◦ Example: The space is R3 and the transformation is the map T (x, y, z) = (x+ 2y, sin(z), cos(x)). What
happens as we apply T repeatedly?

1



• In a continuous dynamical system, the operator can be thought of as a set of rules that tell the system how
to change (or �evolve�) over time.

◦ Any di�erential equation, such as f ′′(t) = e2tf(t) + f ′(t), gives a dynamical system (in the sense above)
� the goal is to solve the equation, or at least describe its solutions.

◦ Another example: consider a solar system containing 2 planets with some given initial positions and
velocities. As time goes forward, what kind of motion will the planets have? (This is called the 2-body
problem, and it was essentially solved by Newton.)

◦ More generally, consider a solar system with n planets and given initial information. What kind of
motion will the planets have? (This is called the n-body problem, and, perhaps surprisingly, its solutions
can behave very unpredictably, unlike the solutions to the 2-body problem.)

◦ Earth's climate is another example of a dynamical system: it is well known that predicting the weather
into the future with high accuracy is very computationally di�cult.

◦ Similar computational di�culties often arise in many other common models of physical phenomena.
Since any physical phenomenon that evolves over time gives rise to a dynamical system, it is worthwhile
to study abstract properties of dynamical systems.

• We will see later that even simple-seeming dynamical systems can exhibit extremely complicated and unpre-
dictable �chaotic� behavior. But we will give a taste of what is to come by analyzing the dynamics of a few
simple population models:

• Example (population model 1): A population of cats lives on an extremely large desert island with plentiful
food. When the population is small, the cats can essentially breed with no restrictions. If the population is
currently P , then the population one year later will be 4P (with one pair of cats producing eight o�spring
per year on average).

◦ In this case, the population at arbitrary number of years later can be found by iterating the function
f(P ) = 4P : f(f(P )) = 16P , f(f(f(P ))) = 64P , and so forth.

◦ Thus, if the population at year 0 is 2 cats, then after n years, there will be 4n · 2 cats: i.e., we observe
exponential population growth.

◦ If we change the starting population or the growth parameter slightly, the system will behave very
predictably over time: we will always get exponential growth (at least, assuming the growth constant
actually makes the population increase).

• Example (population model 2): On another much smaller desert island there is also a population of cats.
Since this island is smaller, when the population grows su�ciently large the cats will begin to compete for
resources and breed more slowly (or even decrease in population, if there are more cats than the island can
sustain). After careful study, it is determined that if the population is currently P , then the population one

year later will be 3.74P

(
1− P

1 000 000

)
.

◦ In this case, the population at arbitrary number of years later can be found by iterating the function

f(P ) = 3.74P

(
1− P

1 000 000

)
.

◦ Here are the results of a computer simulation for an initial population of 2 cats, and of 4 cats:
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800 000

1´106
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◦ After a few generations of nearly-exponential growth, the population for a starting population of 2 cats
seems to bounce around randomly for about 170 generations, but then settles into an extremely stable
pattern that oscillates between �ve population values which are (in order of how they appear from year
to year) equal to 227476, 657233, 842539, 496175, and 934945.

◦ For 4 cats, the behavior is very similar (and the cycling population values are the same), but the pattern
stabilizes much more quickly, after about 30 generations.

• Example (population model 3): On a very slightly di�erent desert island to the one considered above, the
cats breed a very tiny bit more rapidly: if the current population is P , then the next year's population is

3.75P

(
1− P

1 000 000

)
.

◦ Here are the results of a computer simulation for an initial population of 2 cats, and of 4 cats:
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◦ Unlike the previous example, the populations both appear to behave in a much less predictable manner.
There are some runs where the populations almost cycle between a small number of values, but they are
not stable and degenerate into seemingly random behavior quite rapidly.

◦ Later, we will study the dynamics of these types of maps, and give some explanations for the radically
di�erent behaviors of these two seemingly similar models.

1.2 Orbits, Fixed Points, and Cycles of Periodic Points

• Our primary aim is to study the following question: given a function f de�ned on a subset of the real line R,
and a point x0, describe the behavior of the sequence x0, f(x0), f(f(x0)), f(f(f(x0))), ....

• Notation: Since we will frequently speak of the iterate of a function, we de�ne fn(x) to be the result of
iterating f a total of n times on x. Thus, f1(x) = f(x), f2(x) = f(f(x)), f3(x) = f(f(f(x))), and in general,
fn(x) = f(fn−1(x)) for any n ≥ 2. We also adopt the convention that f0(x) = x, the result of applying f
�zero times�.

◦ This con�icts with the convention, often used elsewhere, that the expression sin2(x) is to be interpreted

as [sin(x)]
2
. In these notes we will therefore avoid the iterated function notation with explicitly-written

trigonometric functions, and write explicitly that a function is being squared (when such a thing occurs).

◦ Do not confuse the iterated function notation with the notation for higher-order derivatives: f3(x) means
the triple iterate f(f(f(x))), while f (3)(x) means the third derivative f ′′′(x).

1.2.1 De�nitions and Examples

• De�nition: The orbit of x0 under f is the sequence x0, x1, x2, x3, ... where xn = fn(x0). The value x0 is
called the seed or initial point of the orbit.

• Example: Describe the orbits of x0 = 2, 0, 1, and
1

2
under the function f(x) = x2.

◦ For x0 = 2, the orbit is 2, 4, 16, 256, 65536, and so forth. This orbit clearly grows to ∞.

◦ For x0 = 0, the orbit is 0, 0, 0, 0, 0, 0, and so forth. This orbit remains �xed at 0.

◦ For x0 = 1, the orbit is 1, 1, 1, 1, 1, 1, and so forth. This orbit remains �xed at 1.

3



◦ For x0 =
1

2
, the orbit is

1

2
,
1

4
,
1

16
,

1

256
,

1

65536
, and so forth. This orbit approaches the limiting value 0.

• Example: Describe the orbits of x0 = 2, 0, 1, and
1

2
under the function f(x) = x2 − 1.

◦ For x0 = 2, we get the orbit 2, 3, 8, 63, 3968, and so forth. This orbit clearly grows to ∞.

◦ For x0 = 0, we get the orbit 0, −1, 0, −1, 0, −1, and so forth. The values will clearly continue cycling
between 0 and −1 as we continue applying f .

◦ For x0 = 1, we get the orbit 1, 0, −1, 0, −1, 0, −1, and so forth. These values likewise will continue
cycling between 0 and −1.

◦ For x0 =
1

2
, we get the values (to four decimal places) 0.5, −0.75, −0.4375, −0.8086, −0.3462, −0.8802,

−0.2253, −0.9492, −0.0990, −0.0195, −0.9996, −0.0008. As we continue applying f , the values are
clearly approaching −1 and 0.

• The above examples demonstrate a number of typical orbit behaviors, which we now de�ne:

• De�nition: A �xed point of a function f(x) is a point x0 such that f(x0) = x0.

◦ Since �nding �xed points is equivalent to solving the equation f(x) = x, we can qualitatively search for a
function's �xed points by drawing the graphs of y = f(x) and y = x and looking for intersection points.

◦ Example: The function f(x) = x2 has two �xed points, namely x = 0 and x = 1, since the solutions to
x2 = x are x = 0 and x = 1.

◦ Example: The function f(x) = x + 1 has no �xed points, because there are no values of x satisfying
x+ 1 = x.

◦ Example: The function f(x) = x cos(πx) has in�nitely many �xed points, namely x = 2k for any integer
k: solving x cos(πx) = x produces x = 0 or cos(πx) = 1, and the solutions to the latter are πx = 2πk
for an integer k.

• De�nition: A value x0 is called a periodic point for f , and its orbit is called a periodic orbit (or an n-cycle),
if there is some value of n such that fn(x) = x. Any such value of n is called a period of x0, and the smallest
(positive) value of n is called the minimal period (or exact period).

◦ A periodic orbit of length n will repeat every n steps: it is x0, f(x0), f
2(x0), ... , f

n−1(x0), x0, f(x0),
f2(x0), ....

◦ Notice by de�nition that if x0 is periodic with period n, then so is fk(x0) for any k (since their orbits
will all cycle through the same n values). Also by de�nition, x0 is a periodic point of period n precisely
when x0 is a �xed point of fn, since both statements say that fn(x0) = x0.

◦ Example: Any �xed point of a function is a periodic point of exact period 1.

◦ Example: The point x0 = −1 is a periodic point of period 2 for the function f(x) = x2 − 1, since
f(−1) = 0 and f2(−1) = −1. Likewise, 0 is also a periodic point of period 2 for f(x).

◦ Example: The point x0 = 1 is a periodic point of period 3 for the function f(x) = 1− 1

2
x− 3

2
x2, since

f(1) = −1, f2(1) = 0, and f3(1) = 1.

◦ Example: The point x0 = 1 is a periodic point of period 4 for the function f(x) =
√
2 − 1

x
, since

f(1) =
√
2− 1, f2(1) = −1, f3(1) =

√
2 + 1, and f4(1) = 1.

◦ Note: Some authors use the term �prime period� for the minimal period. This is somewhat misleading,
because the length of the minimal period need not be a prime number, as the previous example shows.

• We record here a pair of basic facts about periodic points:

• Proposition: If x0 is a periodic point with minimal period n, then fm(x0) = fm+n(x0) for any m, and
fk(x0) = x0 holds if and only if n divides k.
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◦ Proof: For the �rst statement, simply apply fm to both sides of the statement fn(x0) = x0. For the
forward direction of the second statement, setting m = dn for d = 1, 2, 3, yields x0 = fn(x0) = f2n(x0) =
f3n(x0) = · · · , so fk(x0) = x0 if k is a multiple of n.

◦ For the reverse direction, suppose that n is the minimal period of x0 and that fk(x0) = x0 but n does
not divide k, so that k = qn+ r for some integer q and some integer r with 0 < r < n. By the de�nition
of the period, we have fr(x0) = fn+r(x0) = f2n+r(x0) = · · · = fqn+r(x0) = fk(x0) = x0, but this is a
contradiction because then r is a period for x0 that is smaller than n.

• Finding all the periodic points of order n for f requires solving fn(x) = x. For most functions this is
computationally quite di�cult: if f is a polynomial of degree d, then fn(x)− x is a polynomial of degree dn.

◦ For polynomials, we only have a hope of doing this (even with a computer) if f is a polynomial of small
degree and the order is small.

◦ However, if m|n, then every point of period m will satisfy fm(x) = x and hence also fn(x) = x. Thus,
we can save a small amount of e�ort by removing the factors of pn(x)−x that come from terms pm(x)−x
where m|n.

◦ This trick is especially helpful if f is a quadratic polynomial and n = 2: then f2(x) − x has degree 4,
but it is divisible by the quadratic f(x)− x, so we can take the quotient and obtain a quadratic, which
is then easy to solve.

• Example: Determine the values of λ, with 0 < λ ≤ 4, for which the logistic map pλ(x) = λx(1 − x) has a
real-valued 2-cycle.

◦ By the remarks above, p2λ(x) − x, whose zeroes are the points of period 1 or 2 for pλ, is necessarily
divisible by pλ(x)− x, whose zeroes are the points of period 1 (by properties of polynomials).

◦ Some algebra shows that p2λ(x) − x = −λ3x4 + 2λ3x3 − (λ2 + λ3)x2 + (−1 + λ2)x, so dividing it by
pλ(x)− x = −λx2 + (−1 + λ)x yields the quotient q(x) = λ2x2 − (λ+ λ2)x+ (1 + λ).

◦ We can straightforwardly compute that the roots of q are r1, r2 =
1 + λ± λ

√
λ2 − 2λ− 3

2λ
.

◦ If λ2 − 2λ − 3 is negative (which on the given range occurs whenever λ < 3), there are no real-valued
solutions and hence no real-valued 2-cycle.

◦ If λ = 3, then the �xed points are x = 0 and x =
2

3
, while the double root of the quadratic q is r =

2

3
.

So in this case, we do not get a 2-cycle (instead, one of the �xed points shows up repeatedly).

◦ If 3 < λ ≤ 4, then we get a 2-cycle: the polynomial pλ interchanges the two real roots r1 and r2 given

above. So, we get a 3-cycle precisely when 3 < λ ≤ 4 .

• The last kind of behavior is where an orbit is not periodic, but eventually falls into a repeating cycle.

• De�nition: A value x0 is called a preperiodic point for f (or eventually periodic) if there exist positive integers
m and n such that fm(x0) = fm+n(x0). Equivalently, x0 is preperiodic if there exists some m so that fm(x0)
is periodic. In the event that n = 1, we say x0 is an eventually �xed point.

◦ Example: The point x0 = 1 is a preperiodic point for the function f(x) = x2 − 1, since the orbit of 1 is
1, 0, −1, 0, −1, 0, −1, ....
◦ Example: The point x0 = −1 is an eventually �xed point for the function f(x) = x2, since the orbit of
−1 is −1, 1, 1, 1, 1, 1, ....

◦ Example: The point x0 =
1

3
is a preperiodic point for the function f(x) = 1− 1

2
x− 3

2
x2, since the orbit

of
1

3
is

1

3
,
2

3
, 0, 1, −1, 0, ....
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1.2.2 General Existence of Fixed and Periodic Points

• For complicated functions, it is not possible to solve for �xed points or periodic points exactly.

◦ For example, a graph will indicate that f(x) = cos(x) has a �xed point, but it is not possible to solve
the equation x = cos(x) algebraically.

◦ Solving for periodic points causes similar problems, even with polynomials of small degree. For example,
if f(x) = x2 − 1, then looking for periodic points of period 3 requires solving the degree-8 equation
f(f(f(x))) = x. It turns out that there are no real periodic points of period exactly 3 for this function,
but this is not at all easy to see!

• One way that we can show the existence of a �xed point (or a periodic point, since that is the same as a �xed
point of fn) is using the Intermediate Value Theorem.

◦ Recall that the Intermediate Value Theorem says that if f(x) is a continuous function on the interval
[a, b], then for any value y between f(a) and f(b), there is some value of c in (a, b) such that f(c) = y.

◦ To show the existence of a �xed point of a continuous function f , we want to invoke the Intermediate
Value Theorem to the function g(x) = f(x)−x to show that g takes the value zero. For this, it is enough
to �nd one value where g is negative and another where g is positive: then g must be zero somewhere in
between, and this location is a �xed point of f .

• Example: Show that f(x) = cos(x) has a �xed point.

◦ By looking at a graph, we can see that y = cos(x) and y = x intersect once, somewhere in the interval
[0, 1]:

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

◦ If g(x) = f(x)−x, then g(0) = 1 while g(π/2) = −π/2, so since cosine is continuous, the function cos(x)
has a �xed point in the interval (0, π/2).

◦ By using the graph to get a better guess for the interval where the �xed point lies, or using more
intelligent root-�nding algorithms such as Newton's method, we can rapidly approximate the value of
the �xed point. In this case, to six decimal places, the value of the �xed point is 0.739085.

• Example: Show that f(x) = x3−3x has a periodic point of order 2 lying in the interval (1, 1.5) and a periodic
point of order 3 lying in the interval (0.4, 0.5).

◦ The idea for the point of order 2 is to show that g(x) = f2(x) − x has a root in this interval but that
f(x)− x does not have a root in this interval: the �rst statement will imply the existence of a periodic
point of order dividing 2, and the second will imply it cannot have order 1.

◦ Similarly, for the point of order 3, we want to show that h(x) = f3(x) − x has a root in the interval
(0.4, 0.5) but that f(x)− x does not.

◦ Since f(x)− x = x3 − 4x has roots x = 0,±2, it does not have roots in either interval.

◦ Now we compute g(1) = f2(1)− 1 = −3 and g(1.5) = 0.451, so we conclude that g must be zero in this
interval, and thus that f has a periodic point of order 2. (In fact, one can show that this periodic point
is x0 =

√
2.)

◦ Similarly, h(0.4) = 1.098 but h(0.5) = −1.527, so h has a zero in this interval and f has a periodic point
of order 3. (Solving for its exact value would require factoring the polynomial h(x), which has degree
27. Not an easy task!)
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• An application of the Intermediate Value Theorem is to prove that any continuous function that maps some
interval into itself must have a �xed point:

• Proposition: If f : [a, b]→ [a, b] is a continuous function, then it has a �xed point.

◦ Note that the function need not be surjective (i.e., it does not need to have every point of [a, b] in its
image) � its image just needs to be contained in [a, b].

◦ Remark: This is the 1-dimensional case of a much more general theorem known as the Brouwer Fixed-
Point Theorem, one version of which states that any continuous function from a closed, bounded, convex
subset of Rn to itself must have a �xed point.

◦ Proof: Let g(x) = f(x) − x: we have g(a) = f(a) − a ≥ 0 since f(a) ∈ [a, b], and we also have
g(b) = f(b)− b ≤ 0 since f(b) ∈ [a, b]. Applying the Intermediate Value Theorem to g(x) on [a, b] shows
that g has a zero in [a, b], which is the desired �xed point of f .

• A natural question at this point is: what kinds of orders of periodic points can occur for a given function?
We will return to this question much later, but we will give a few examples illustrating di�erent kinds of
behaviors:

◦ A function f(x) need not have any �xed or periodic points at all: for example, f(x) = x+1 has no �xed
points nor any periodic points, since fn(x) = x+ n is clearly never equal to x for any n > 0.

◦ A function can have in�nitely many �xed points: an example is f(x) = x+ sin(x).

◦ A periodic point can have any given order: for example, there exists a polynomial of degree n which
sends 0 to 1, 1 to 2, 2 to 3, ... , n− 1 to n, and n to 0.

◦ Every point in the domain of a function can be a periodic point: an example is f(x) = a − x for any
constant a.

◦ It might seem as if there are no restrictions on what kinds of behaviors can occur, but this turns out not
to be the case.

• Proposition: If f(x) is a continuous function that has no �xed points, then f has no periodic or preperiodic
points at all.

◦ Proof: If f(x) − x is a continuous function that is never zero, then it must either be always positive or
always negative. Suppose it is always positive: then f(x) > x for all x. But then f2(x) > f(x) > x for
all x, and, iterating, we see that f3(x) > f2(x) > x, f4(x) > f3(x) > x, and in general, fn(x) > x for
any positive n. Thus, f cannot have any periodic points, or any preperiodic points. We get a similar
contradiction if f(x)− x is always negative, by the same argument with all of the inequalities reversed.

1.2.3 The Doubling Function, the Logistic Maps, and Computational Di�culties

• It is tempting to believe that, although we cannot necessarily solve for �xed points and periodic points
algebraically, if we simply use a computer with high enough accuracy, we will be able to study orbit behaviors
with no di�culty.

• However, there are a number of simple functions that demonstrates the fallacy of this belief.

• De�nition: The doubling function D : [0, 1) → [0, 1) is de�ned as D(x) =

{
2x if 0 ≤ x < 1/2

2x− 1 if 1/2 ≤ x < 1
. Equiva-

lently, D(x) is the residue of 2x modulo 1 (i.e., the result obtained by removing the �integer part� of 2x).

• It is simple to analyze orbits of rational numbers under the doubling function using exact arithmetic.

◦ Example: The orbit of 0 is 0, 0, 0, 0, ..., which is a �xed point. It is easy to see that 0 is the only �xed
point for D.

◦ Example: The orbit of
1

3
is

1

3
,
2

3
,
1

3
,
2

3
, ..., which is a 2-cycle.

◦ Example: The orbit of
3

7
is

3

7
,
6

7
,
5

7
,
3

7
,
6

7
,
5

7
, ..., which is a 3-cycle.
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◦ Example: The orbit of
1

8
is

1

8
,
1

4
,
1

2
, 0, 0, 0, ..., so

1

8
is an eventually �xed point.

• Indeed, there are a number of elementary facts one can make about the orbits of the doubling function.

◦ For example, every rational number
p

q
is a preperiodic point for f : it is easy to see that D

(
p

q

)
is also a

rational number in [0, 1) with denominator q, and there are only q such rational numbers, so eventually
they must start repeating.

◦ More speci�cally, any rational number with odd denominator is actually a periodic point for f : the

function D is a bijection from the set

{
0

q
,
1

q
,
2

q
, · · · , q − 1

q

}
to itself if q is odd, since T (a) = T (b) can

happen only if a and b are equal or di�er by
1

2
, and

1

2
cannot be written as

p

q
with q odd.

◦ Any rational number with an even denominator (in lowest terms), on the other hand, will be a strictly

preperiodic point, since T

(
p

q

)
will have denominator q/2 if q is even.

◦ The converse is also true: every preperiodic point for f is a rational number. This follows �rst by
observing (by a trivial induction) that Dn(x) = 2nx modulo 1: so if x is a preperiodic point with
Dm+n(x)−Dm(x) = 0, then 2m+nx− 2mx is congruent to 0 modulo 1. In other words, (2m+n − 2m)x
is an integer, meaning that x is rational.

• However, if we try to use a decimal approximation to analyze the orbits of D, we will get very erroneous
results:

◦ Suppose we try to describe the orbit of
1

3
by using di�erent decimal approximations of

1

3
.

◦ Here is a table of the orbits of two decimal approximations:
Term 0 1 2 3 4 5 6 7 8 9 10 11

x0 = 1/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3
x0 = 0.33 0.33 0.66 0.32 0.64 0.28 0.56 0.12 0.24 0.48 0.96 0.92 0.84
x0 = 0.333 0.333 0.666 0.332 0.664 0.328 0.656 0.312 0.624 0.248 0.496 0.992 0.984

◦ Notice that the �rst few elements of each approximate orbit are fairly close to the correct values. But
after 10 iterations, the orbits of 0.33 and 0.333 have wandered quite far away from the orbit of 1/3, and
from each other.

◦ Increasing the accuracy of the decimal approximation will not help signi�cantly, either: if ε is small and
x and x + ε are both either in (0, 1/2) or (1/2, 1), then it is easy to check that D(x + ε) − D(x) = 2ε.
Thus, each iteration will double the error (at least, until Dn(x+ ε) and Dn(x) are su�ciently far apart).

• Of course, for rational numbers, it is easy to use exact rational arithmetic, as we did above. But what can be
done to study orbits of irrational points under the map D?

◦ For example, how would one compute D20(
√
2− 1) to three decimal places?

◦ We would ultimately need to use a decimal approximation of
√
2− 1 at some stage, but we would need

to determine the proper number of decimal places to carry out computations to, in order to ensure that
we do not lose too much accuracy by iterating the map D.

◦ Such calculations become increasingly computationally expensive as we travel further out in the orbit,
since we will need to keep �nding better decimal approximations as we continue.

◦ There is something fundamental about the doubling function that resists numerical computation: it
is �sensitive to initial conditions�. (We will postpone further discussion of these issues until we de�ne
chaotic functions in a later chapter.)

• Another class of examples that cause computational problems are the logistic maps pλ(x) = λx(1− x), for a
�xed parameter 0 < λ ≤ 4. (The bound on λ is so that pλ is a map from [0, 1]→ [0, 1].)

◦ Let us attempt to compute the orbit of
1

3
under the map p4(x) = 4x(1 − x): the �rst six terms are

1

3
,

8

9
,
32

81
,
6272

6561
,
7250432

43056721
, and

1038154236987392

1853020188851841
.
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◦ Clearly, using rational arithmetic is not going to be computationally e�cient, because the number of
digits in both the numerator and denominator will double at every stage. It is fairly easy to show that
the denominator of fn(1/3) is 32

n

, but there is not a nice formula for the numerators.

◦ Here is a table of a computation of the orbit of
1

3
under this map, where each step's computation was

rounded to the stated number of decimal places. (The results are stated to 4 decimal places so as not to
make the table too large, but the computations retained the stated amount of data.):

Term 0 1 2 3 4 5 10 20 30 50
4 places 0.3333 0.8889 0.3950 0.9559 0.1686 0.5607 0.8669 0.5655 0.9558 0.4139
8 places 0.3333 0.8889 0.3951 0.9560 0.1684 0.5603 0.8747 0.0158 0.1025 0.3208
15 places 0.3333 0.8889 0.3951 0.9560 0.1864 0.5603 0.8747 0.0163 0.7531 0.8049

◦ As should be clear, the �rst few terms are stable with only a few digits, but the computations diverge
rapidly after 30 or so iterations of f .

◦ We can see, then, that it is a nontrivial problem in numerical analysis to determine the needed accuracy
to ensure that the orbit calculations are accurate, even for this simple quadratic polynomial.

1.3 Qualitative and Quantitative Behavior of Orbits

• We would like to describe orbits in a more precise way than �plug in some values and hope it's possible to
guess what happens�. There are a number of di�erent approaches, some geometric, some algebraic.

1.3.1 Orbit Analysis Using Graphs

• One way we can study the orbit of x0 when we iterate a function f is by using the graph of the function
y = f(x), in the following manner: �rst, we plot y = f(x) and y = x, and the initial point (x0, x0). Then we
alternate the following two steps to create a �staircase�:

1. Drawing a vertical line from the current point to the intersection with y = f(x), and

2. Drawing a horizontal line from the current point to the intersection with y = x.

This will construct the sequence of points (x0, x0), (x0, f(x0)), (f(x0), f(x0)), (f(x0), f
2(x0)), (f

2(x0), f
2(x0)),

(f2(x0), f
3(x0)), ...., whose coordinates describe the orbit of x0 under f .

• Example: Plot the orbit of x0 = 1 for the function f(x) = x+ sin(x) + 2.

◦ Here are plots of the �staircase� after 4 and 16 iterations (respectively) of f , along with the graphs of
y = f(x) and y = x:

1 2 3 4 5 6

2

3

4

5

6

7

8

5 10 15 20 25 30

5

10

15

20

25

30

◦ This function was intentionally chosen so that it would always lie above y = x (in order to emphasize
the �staircase� behavior).

◦ We can see that the orbit of x0 = 1 will blow up to ∞, since it will continue moving to the right as we
continue iterating.

• Example: Plot the orbits of x0 = 0.01 and x0 = 2 for the function f(x) =
√
x.
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◦ We obtain the following pictures for the two respective orbits:

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

◦ Note that the orbit of 0.01 travels to the right, while the orbit of 2 travels to the left. We can see quite
clearly that both orbits are moving toward the �xed point x0 = 1.

• Example: Plot the orbit of x0 =
1

2
for the function f(x) = x2 − 1.

◦ Here are plots of the orbits after 4 iterations and 16 iterations:

-1.0 -0.5 0.5 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

-1.0 -0.5 0.5 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

◦ From the picture, we can see that the orbit spirals outward and approaches the 2-cycle 0, −1, 0, −1, ....

• Example: Plot the orbit of x0 = 0.4 for the function f(x) = 4x− 4x2.

◦ Here are plots of the orbits after 4 iterations, 16 iterations, 100 iterations, and 500 iterations:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

◦ From the picture, we cannot really get any useful information about the orbit, except for the fact that it
seems to meander unpredictably around the interval [0, 1]. (It certainly does not appear to be converging
to anything obvious!)

◦ In fact, this is an example of a chaotic orbit (the speci�cs of which we will analyze in a later chapter).
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• Another graphical tool we can use to analyze orbits is the phase portrait: on a number line, we mark o� the
points in an orbit, and then draw arrows from one to the next.

◦ Example: Here is the phase portrait for the orbit of x0 = 0.9 under f(x) = x2:

0.0 0.2 0.4 0.6 0.8 1.0

◦ Example: Here is the phase portrait for the orbit of x0 = −0.5 under f(x) = x2 − 1:

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

• By combining phase portraits for several orbits, we can see some of the behaviors of the system.

◦ Example: Here is the phase portrait for the orbits of −0.9 and 0.9 under f(x) = x3:

-1.0 -0.5 0.0 0.5 1.0

◦ The portrait suggests that the other orbits lying in (−0.9, 0.9) are going to tend toward the �xed point
x = 0.

• Although they can be useful for getting intuition about long-term qualitative behavior of orbits, we cannot
really use these pictures (suggestive though they may be) to prove very much about the behavior of the
function in question. To prove anything, we need some stronger tools.

1.3.2 Attracting and Repelling Fixed Points

• We will begin by studying �xed points. As we have seen in the examples, some systems have orbits which
tend closer and closer to a �xed point (such as the map f(x) =

√
x and the �xed point x0 = 1), while other

systems have orbits which move away from certain �xed points (such as the map f(x) = x2 and the �xed
point x0 = 1).

◦ We would like to explain why some �xed points �attract� nearby orbits while others �repel� them.

◦ So suppose x0 is a �xed point of f , and x is a nearby point.

◦ Then f(x) will be closer to x0 than x is if |f(x)− x0| < |x− x0|.

◦ Since x0 = f(x0), we can equivalently write this as

∣∣∣∣f(x)− f(x0)x− x0

∣∣∣∣ < 1.

◦ As x approaches x0, notice that this quantity is the absolute value of the derivative f ′(x0), assuming
that f is di�erentiable.

◦ Thus, we see that the behavior of a �xed point is closely linked with the value of f ′(x0).

• De�nition: If x0 is a �xed point of the di�erentiable function f , we say x0 is an attracting �xed point if
|f ′(x0)| < 1, we say x0 is a repelling �xed point if |f ′(x0)| > 1, and we say x0 is a neutral �xed point if
|f ′(x0)| = 1.

11



◦ The key result is that an attracting �xed point will attract nearby orbits, and a repelling �xed point will
repel nearby orbits.

◦ If a �xed point x0 has f ′(x0) = 0, we sometimes call it a superattracting �xed point, because orbits will
approach it more quickly than a mere attracting �xed point.

• Theorem (Attracting Points): If x0 is an attracting �xed point of the continuously di�erentiable function
f , then there exists an open interval I containing x0 such that, for any x ∈ I, fn(x) ∈ I for all n ≥ 1.
Furthermore, for any x ∈ I, it is true that fn(x)→ x0 as n→∞, and the convergence is exponentially fast.
In fact, we can take I to be any interval containing x0 with the property that there exists a constant λ < 1
such that |f ′(x)| < λ for all x ∈ I.

◦ Remark: The speed of the convergence will depend on the value of |f ′(x0)|. From the argument at the
end of the proof below, we see that the smaller this value is, the faster the orbits will converge to x0. If
f ′(x0) happens to be equal to zero, then the convergence can be faster than exponential (hence the term
�superattracting� �xed point).

◦ Proof: Recall the statement of the Mean Value Theorem: if f is di�erentiable on the interval [a, b], then

there exists a value c ∈ [a, b] such that f ′(c) =
f(b)− f(a)

b− a
.

◦ Now, by hypothesis, |f ′(x)| is continuous and |f ′(x0)| < 1. Thus, by standard properties of continuous
functions, there exists a constant λ < 1 and an open interval I centered at x0 such that |f ′(x)| < λ for
all x ∈ I.

◦ Now for any x ∈ I, apply the Mean Value Theorem to f on the interval whose endpoints are x0 and x:

then there exists a value c between x0 and x for which
f(x)− f(x0)

x− x0
= f ′(c).

◦ Taking the absolute value gives

∣∣∣∣f(x)− x0x− x0

∣∣∣∣ = |f ′(c)| < λ, so that |f(x)− x0| < λ |x− x0|.

◦ Since λ < 1 this implies f(x) ∈ I. Now applying the result for f(x) ∈ I gives f2(x) ∈ I, and a trivial
induction gives fn(x) ∈ I for all n ≥ 1.

◦ Furthermore, we also have
∣∣f2(x)− x0∣∣ < λ |f(x)− x0| < λ2 |x− x0|, and again by a trivial induction

we see that |fn(x)− x0| < λn |x− x0| for all n ≥ 1. Since λ < 1, as n→∞ the right-hand term goes to
zero, so fn(x)→ x0, and the convergence is exponentially fast.

• We also have an analogous result for repelling points:

• Theorem (Repelling Points): If x0 is a repelling �xed point of the continuously di�erentiable function f , then
there exists an open interval I containing x0 such that, for any x ∈ I with x 6= x0, there exists a positive
integer n such that fn(x) 6∈ I. In fact, we can take I to be any interval I with the property that there exists
a constant λ > 1 such that |f ′(x)| > λ for all x ∈ I.

◦ Note that we cannot expect to say anything about the limit of fn(x) as n → ∞ (unlike in the case of
an attracting point) because there is nothing to prevent a repelling point from being sent back into the
�repelling interval� I once it escapes.

◦ Proof: By the same argument as for the theorem on attracting points, there exists a constant λ > 1 and
a �nite open interval I centered at x0 such that |f ′(x)| > λ for all x ∈ I.
◦ By the Mean Value Theorem, we can again conclude that |f(x)− x0| > λ |x− x0|, and then by a trivial
induction we see that |fn(x)− x0| > λn |x− x0|, assuming that fn−1(x) lies in I.

◦ If the orbit of x never left I, then we would have |fn(x)− x0| > λn |x− x0|, but since λ > 1, as n→∞
the right-hand side tends to in�nity. But fn(x) is assumed to lie in I for all n, meaning that I is an
in�nite interval: contradiction.

• Example: Find and classify the �xed points of f(x) = x3 as attracting, repelling, or neutral.

◦ It is easy to solve x3 = x to see that the �xed points are x = 0, x = 1, and x = −1.

◦ Since f ′(x) = 3x2, we see that x = 0 is attracting and x = ±1 are repelling .

12



◦ We can see the attracting and repelling nature of the �xed points by computing a few orbits.

◦ For example, the orbit of 0.9 is 0.9, 0.729, 0.387, 0.058, 0.0002, ..., while the orbit of 1.1 is 1.1, 1.331,
2.358, 13.110, 2253, ....

◦ Similarly, the orbit of −0.9 is −0.9, −0.729, −0.387, −0.058, ... and the orbit of −1.1 is −1.1, −1.331,
−2.358, −13.110, −2253, ....

• Example: For each positive value of λ, �nd and classify the �xed points of the logistic map pλ(x) = λx(1−x)
as attracting, repelling, or neutral.

◦ Setting λx(1− x) = x and solving yields x = 0 and x = 1− 1

λ
.

◦ We also have p′λ(x) = λ− 2λx, so p′λ(0) = λ and p′λ

(
1− 1

λ

)
= 2− λ.

◦ So, the point x = 0 is attracting for 0 < λ < 1, becomes neutral (and coincides with the other �xed
point) for λ = 1, and is repelling for λ > 1.

◦ Similarly, we see that x = 1− 1

λ
is repelling for 0 < λ = 1, becomes neutral (and coincides with x = 0)

for λ = 1, is attracting for 1 < λ < 3 , is neutral for λ = 3 , and is repelling for λ > 3 .

1.3.3 Attracting and Repelling Cycles

• We can extend our de�nitions of attracting and repelling behavior to periodic cycles: since a periodic point
of period n for f is the same as a �xed point of fn, there is a natural way to extend the de�nition:

• De�nition: We say that a periodic point x0 for f is attracting (respectively, repelling or neutral) if x0 is an
attracting (respectively, repelling or neutral) �xed point for fn.

◦ A natural and immediate question is: can it happen that some points on a cycle are attracting and others
are repelling?

◦ In fact, this cannot occur for attracting points: if x0 is an attracting �xed point for fn, then the sequence
fkn(x0) will have limit x0 as k →∞. Since a continuous function has the property that ai → L implies
f(ai) → f(L), applying this fact to f and the sequence with ai = fni(x0) shows that f

kn+1(x0) will
have limit x1. Repeating this argument shows that all of the other points in the cycle will attract nearby
orbits.

◦ However, the above argument cannot be easily adapted for repelling points.

• Using the chain rule, we can easily compute whether a periodic point is attracting, repelling, or neutral:

• Proposition (Attracting and Repelling Cycles): If x0, x1, ... , xn−1, xn = x0 is an n-cycle for f , then
d

dx
[fn(x)] at x = xi for any i is equal to f

′(xn−1) · f ′(xn−2) · · · f ′(x1) · f ′(x0). In particular, the points in the

n-cycle are either all attracting, all repelling, or all neutral.

◦ Proof: Let g(x) = fn(x). By an easy chain rule computation, g′(x) = f ′(fn−1(x)) · f ′(fn−2(x)) · · · · ·
f ′(f(x)) · f ′(x). Setting x = x0 yields g

′(x0) = f ′(xn−1) · f ′(xn−2) · · · f ′(x1) · f ′(x0): in other words, the
value g′(x0) is equal to the product of f ′ evaluated at each of the points in the cycle.

◦ Applying this result for each point in the n-cycle shows that g′(x0) = g′(x1) = · · · = g′(xn−1), so, by our
criteria for attracting and repelling points, this means all the points on the cycle are either all attracting,
all repelling, or all neutral.

• Example: Show that the 2-cycle {0,−1} for the function f(x) = x2 − 1 is attracting.

◦ We have f ′(x) = 2x, so we need to compute f ′(0)f ′(−1) = 0.

◦ This has absolute value less than 1, so the 2-cycle is attracting .
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• Example: Show that every periodic cycle lying in (0, 1) for the doubling functionD(x) =

{
2x if 0 ≤ x < 1/2

2x− 1 if 1/2 ≤ x < 1

is repelling.

◦ Observe that D′(x) = 2 for every x ∈ (0, 1) except for x = 1/2 (where the derivative is unde�ned, due
to the discontinuity). Notice also that 1/2 does not lie in a periodic cycle, so we can safely ignore it.

◦ Thus, on any n-cycle, the value of the derivative of Dn will be 2n. Since this has absolute value larger

than 1, every n-cycle is repelling .

◦ From this we can see another way to understand the �chaotic� behavior of the function: every rational
number with odd denominator lies on a repelling n-cycle, so as we iterate the function, any two nearby
points will be pushed away from one another.

• Example: Classify the periodic cycle containing 0 for the function f(x) = 1 − x

3
+ 2x2 − 2x3

3
as attracting,

repelling, or neutral.

◦ The orbit of 0 is 0, 1, 2, 3, 0, ... , so it is a 4-cycle.

◦ We have f ′(x) = −1

3
+ 4x− 4

3
x2, so f ′(0) = −1

3
, f ′(1) =

5

3
, f ′(2) = −1

3
, and f ′(3) = −19

3
.

◦ Thus, if g = f4, we have g′ =

(
−1

3

)(
5

3

)(
−1

3

)(
−19

3

)
= −85

81
at each point on the 4-cycle, so the

cycle is repelling .

• Example: Classify the periodic cycle containing −1

3
for the function f(x) = x2 − 7

9
as attracting, repelling,

or neutral.

◦ The orbit of 1 is

{
−1

3
,
2

3

}
, which is a 2-cycle.

◦ We have f ′(x) = 2x, so f ′(−1

3
) = −2

3
and f ′(

2

3
) =

4

3
.

◦ Thus, if g = f2, we have g′ = −8

9
at both points on the 2-cycle, so the cycle is attracting .

• Example: Classify the periodic cycle containing 1 for the function f(x) =
√
3− 1

x
as attracting, repelling, or

neutral.

◦ The orbit of 1 is

{
1,
√
3− 1,

1√
3 + 1

,−1,
√
3 + 1,

1√
3− 1

}
, which is a 6-cycle.

◦ We have f ′(x) =
1

x2
, so f ′(±1) = 1, f ′(

√
3± 1) =

1(√
3± 1

)2 , and f ( 1√
3± 1

)
=
(√

3± 1
)2
, where the

choices of ± correspond in each case.

◦ Thus, if g = f6, we have g′ = 1 at each point on the 6-cycle, so the cycle is neutral .

• Example: For 3 < λ ≤ 4, determine (in terms of λ) when the 2-cycle of the the logistic map pλ(x) = λx(1−x)
is attracting, neutral, or repelling.

◦ We computed earlier that the points on the 2-cycle are the two roots of the quadratic q(x) = λ2x2− (λ+

λ2)x+ (1 + λ), which (explicitly) are r1, r2 =
1 + λ± λ

√
λ2 − 2λ− 3

2λ
, and that they are real-valued on

the given range for λ.

◦ To determine the behavior of the 2-cycle, we need to compute p′λ(r1) · p′λ(r2) = 4λ2(
1

2
− r1)(

1

2
− r2).

◦ One can compute this by slogging it out, but a slicker way is to observe that λ2(x− r1)(x− r2) = q(x),

so, upon setting x =
1

2
, we obtain

λ2

4
− 1

2
(λ+ λ2) + (1 + λ) = λ2(

1

2
− r1)(

1

2
− r2). Multiplying through

by 4 gives p′λ(r1) · p′λ(r2) = −λ2 + 2λ+ 4.
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◦ On the interval (3, 4], this quadratic takes values in (−1, 1) for 3 < λ < 1+
√
6, is equal to −1 at 1+

√
6,

and is less than −1 for 1 +
√
6 < λ ≤ 4.

◦ Thus, we conclude that the 2-cycle is attracting for 3 < λ < 1 +
√
6 , is neutral when λ = 1 +

√
6 , and

is repelling when 1 +
√
6 < λ ≤ 4 .

1.3.4 Weakly Attracting and Weakly Repelling Points (and Cycles)

• We have determined the behaviors of attracting and repelling points and cycles. Let us now turn our attention
to studying orbits near neutral �xed points and cycles, after examining a few examples.

• Example: Examine the orbits near the neutral �xed point x0 = 0 of f(x) = x+ x2.

◦ The �rst ten terms in the orbit of 0.1 under f are 0.1, 0.11, 0.1221, 0.1370, 0.1558, 0.1800, 0.2125, 0.3240,
0.4289, 0.6129.

◦ Similarly, the �rst ten terms in the orbit of −0.1 under f are −0.1, −0.09, −0.0819, −0.075, −0.070,
−0.0605, −0.0569, −0.0536, −0.0507, −0.0482.
◦ We can see that the orbits with small positive x are repelled (slowly) from 0, while the orbits with small
negative x are attracted (slowly) from 0.

• Example: Examine the orbits near the neutral �xed point x0 = 0 of g(x) = x+ x3.

◦ For f , the �rst ten terms in the orbit of 0.1 is 0.1, 0.101, 0.1020, 0.1031, 0.1042, 0.1053, 0.1065, 0.1077,
0.1089, 0.1102.

◦ Similarly, the �rst ten terms in the orbit of −0.1 under f are −0.1, −0.101, −0.1020, −0.1031, −0.1042,
−0.1053, −0.1065, −0.1077, −0.1089, −0.1102.
◦ We can see that the orbits with near 0 seem to be repelled (quite slowly) from 0.

• Example: Examine the orbits near the neutral �xed point x0 = 0 of h(x) = x− x3.

◦ For f , the �rst ten terms in the orbit of 0.1 is 0.1, 0.099, 0.0980, 0.0971, 0.0962, 0.0953, 0.0944, 0.0936,
0.0928, 0.0920.

◦ Similarly, the �rst ten terms in the orbit of −0.1 under f are −0.1, −0.099, −0.0980, −0.0971, −0.0962,
−0.0953, −0.0944, −0.0936, −0.0928, −0.0920.
◦ We can see that the orbits with near 0 seem to be attracted (quite slowly) to 0.

• We de�ne the notion of weakly attracting / weakly repelling �xed point based on the behavior of nearby
orbits:

• De�nition: If x0 is a neutral �xed point of the di�erentiable function f , we say x0 is weakly attracting if there
exists an open interval I containing x0 such that for any x ∈ I, fn(x)→ x0 as n→∞. We also say a neutral
periodic point for f of period n is weakly attracting if it is a weakly attracting �xed point for fn.

◦ In other words, a weakly attracting �xed point (or cycle) is one that attracts nearby orbits. All of our
results for attracting �xed points (and cycles) that only invoke the �attracting orbit� property will also
hold for weakly attracting �xed points (and cycles).

◦ There is also a �one-sided� version of weak attraction that can occur when f ′(x0) = 1: a �xed point is
weakly attracting on the left if there is an ε > 0 such that every point x ∈ (x0 − ε, x0) has fn(x)→ x0.
(In other words, if it attracts orbits on its left.)

◦ Similarly, we say a point is weakly attracting on the right if there is an ε > 0 such that every point
x ∈ (x0, x0 + ε) has fn(x)→ x0. (In other words, if it attracts orbits on its right.)

• De�nition: If x0 is a neutral �xed point of the di�erentiable function f , we say x0 is weakly repelling if there
exists an open interval I containing x0 such that for any x ∈ I (except x = x0), there exists an n such that
fn(x) 6∈ I. We say a neutral periodic point for f of period n is weakly repelling if it is a weakly repelling �xed
point for fn.
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◦ In other words, a weakly repelling �xed point is one that repels nearby orbits.

◦ Like with weakly attracting points, there are also �one-sided� versions of weak repulsion (which, likewise,
only occurs when f ′(x0) = 1): we say x0 is weakly repelling on the left if there exists an ε > 0 such that
for every x ∈ (x0 − ε, x0), there exists an n such that fn(x) 6∈ (x0 − ε, x0], and similarly we say x0 is
weakly repelling on the right if there exists an ε > 0 such that for every x ∈ (x0, x0 + ε), there exists an
n such that fn(x) 6∈ [x0, x0 + ε).

◦ We would like to determine when a neutral �xed point is weakly attracting or repelling on each side.

• Theorem (Neutral Points): Suppose x0 is a neutral �xed point for a function f with f ′(x0) = 1. Furthermore,
assume that there is an integer k ≥ 2 such that (i) the (k + 1)st derivative of f is continuous at x0, (ii) the
value f (k)(x0) 6= 0, and (iii) that f (d)(x0) = 0 for all 1 < d < k. If k is odd, the point x0 is weakly attracting
if f (k)(x0) < 0 and it is weakly repelling if f (k)(x0) > 0. If k is even, the point x0 is weakly repelling on
the left and weakly attracting on the right if f (k)(x0) < 0, and it is weakly attracting on the left and weakly
repelling on the right if f (k)(x0) > 0.

◦ The statement requires some unpacking. Ultimately, it says that the behavior of a neutral �xed point is
controlled by the order and the sign of the �rst nonzero derivative of f (beyond f ′) at that point.

◦ The key ingredient in the proof is Taylor's theorem: we will �nd a polynomial approximation to f(x)
that is simple enough (but also accurate enough) for us to characterize the behavior of the orbits near
x0.

◦ Proof: For clarity, we make the change of variables y = x− x0, so that the �xed point is now at y = 0.

∗ Taylor's Theorem says: if f(y) is a function whose (k+1)st derivative is continuous, and Tk(x) is the

kth Taylor polynomial Tk(y) =

k∑
d=0

f (d)(0)

d!
yd for f(y) at y = 0, then |f(y)− Tk(y)| ≤ M · |y|

k+1

(k + 1)!
,

where M is any constant such that
∣∣f (k+1)(t)

∣∣ ≤M for all t in the interval [− |y| , |y|].
◦ In our case, everything except the 0th, 1st, and kth terms of the Taylor polynomial are zero, and we get

the simple expression Tk(y) = y +
f (k)(0)

k!
yk.

∗ Then, if we take a small enough interval around zero, we can arrange it so that the error term

|f(x)− Tk(x)| is less than
1

2

∣∣∣∣f (k)(0)k!
yk
∣∣∣∣.

∗ Explicitly: since f (k+1) is continuous, there is an open interval I around 0 and some M such that∣∣f (k+1)(t)
∣∣ ≤M on I. Then the subinterval of I where |y| < k + 1

2M

∣∣f (k)(0)∣∣ has the desired property.

∗ So, for all y in this interval, we can conclude that f(y) always lies between y +
1

2
· f

(k)(0)

k!
yk and

y +
3

2
· f

(k)(y)

k!
yk.

◦ In particular, for small enough |y|, f(y) lies on the same side of 0 as y does, and f(y)− y has the same
sign as f (k)(0) · yk. Thus, we just need to determine whether f(y) is closer or farther from 0 than y is,
which is to say, whether f(y)− y has the same or opposite sign as y, respectively.

∗ If k is even, then f (k)(0) · yk has the same sign as f (k)(0), so 0 is weakly repelling on the left and
weakly attracting on the right if f (k)(0) < 0, and weakly attracting on the left and weakly repelling
on the right if f (k)(0) > 0.

∗ If k is odd and f (k)(0) > 0, then f(y) − y has the same sign as y so 0 is weakly repelling. If
f (k)(0) < 0, then f(y)− y has the opposite sign as y, meaning that 0 is weakly attracting.

• Example: Classify the neutral �xed point x0 = 0 for a(x) = x + x2, b(x) = x − x2, c(x) = x + x3, and
d(x) = x− x3 as weakly attracting or weakly repelling for orbits on each side.

◦ For a, we have a′(0) = 1 and a′′(0) = 2, so k = 2 and then x0 is weakly attracting on the left and

weakly repelling on the right .
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◦ For b, we have b′(0) = 1 and b′′(0) = −2, so k = 2 and then x0 is weakly repelling on the left and

weakly attracting on the right .

◦ For c, we have c′(0) = 1, c′′(0) = 0, and c′′′(0) = 6, so k = 3 and then x0 is weakly repelling on both

sides.

◦ For d, we have d′(0) = 1, d′′(0) = 0, and d′′′(0) = −6, so k = 3 and then x0 is weakly attracting on

both sides.

• Example: Classify the neutral �xed point of f(x) = tan−1(x) as weakly attracting or weakly repelling for
orbits on each side.

◦ Notice that f(0) = 0 and f ′(x) =
1

1 + x2
, so the only neutral �xed point is x = 0. (In fact it is the only

�xed point.)

◦ Since f ′′(0) = 0 and f ′′′(0) = −2, we see that k = 3.

◦ By the classi�cation, we see that 0 is weakly attracting .

• Notice that the theorem above does not treat all possible neutral �xed points: we did not treat the case where
f ′(x0) = 1 but f (k)(x0) = 0 for all k ≥ 2, nor did we treat the case where x0 is a neutral �xed point with
f ′(x0) = −1.

◦ If we have a neutral �xed point with f ′(x0) = 1 but f (k)(x0) = 0 for all k ≥ 2, then the Taylor series of
f will just be T (x) = x, and so it will provide no useful information: some other kind of technique would
be needed to study the behavior of the orbits.

◦ Fortunately, aside from f(x) = x, whose orbits are obvious, it is rare to encounter such functions.

◦ For completeness, a standard example is f(x) =

{
x+ e−1/x

2

for x 6= 0

0 for x = 0
, which has f(0) = 0, f ′(0) = 1,

and f (n)(0) = 0 for all n ≥ 2. It is not completely obvious that the higher derivatives of f even exist,
but they can be computed using some careful limit computations.

• If we are given a neutral �xed point with f ′(x0) = −1, notice that we can apply the theorem to analyze the
behavior of x0 as a �xed point of g = f2, because we have g′(x0) = f ′(x0)f

′(x0) = 1 by the chain rule.

◦ Ultimately, these neutral �xed points carry the additional complication that a point on one side of x0
will �ip to the other side after applying f . In some cases it is easy to see that both sides are attracting
or repelling, so the ��ipping� does not make a di�erence.

◦ However, it can happen (e.g., with the function f(x) = −x + x2 below) that one side will move points
closer to x0, and the other side will move points farther away from x0. To decide which behavior wins
out, it is necessary to study x0 as a �xed point of f2.

◦ Explicitly: if x0 is weakly attracting as a �xed point of f2, then it is weakly attracting as a �xed point
of f , and similarly, if x0 is weakly repelling as a �xed point of f2, then it is weakly repelling as a �xed
point of f2.

• Example: Classify the neutral �xed point x0 = 0 of f(x) = −x+ x2 as weakly attracting or weakly repelling
for orbits on each side.

◦ Observe �rst that that if x is small and positive, then |f(x)| = x− x2, so f moves positive points closer
to zero. However, if x is small and negative, then |f(x)| = |x| + x2, so f moves negative points farther
away from zero. Since f maps small positive numbers to small negative numbers (and vice versa), it is
not clear whether the �attracting� behavior or the �repelling� behavior will win the race (so to speak) as
we continue iterating f .

◦ Notice that f(0) = 0 and f ′(0) = −1, so to classify the orbit behavior we should look at 0 as a �xed
point of g(x) = f2(x) = x− 2x3 + x4.

◦ We have g(0) = 0, g′(0) = 1, g′′(0) = 0, and g′′′(0) = −2, so k = 3 and thus 0 is weakly attracting as a
�xed point of g.
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◦ Thus, 0 is weakly attracting for f as well.

• Example: Classify the neutral �xed point x0 = 0 of f(x) = −x + x2 − x3 as weakly attracting or weakly
repelling for orbits on each side.

◦ Notice that f(0) = 0 and f ′(0) = −1, so to classify the orbit behavior we need to look at 0 as a �xed
point of g(x) = f2(x) = x+ 4x5 − 6x6 + 6x7 − 3x8 + x9.

◦ We have g(0) = 0, g′(0) = 1, g(2)(0) = g(3)(0) = g(4)(0) = 0, and g(5)(0) = 480, so k = 5 and thus 0 is
weakly repelling as a �xed point of g.

◦ Thus, 0 is weakly repelling for f as well.

◦ Notice that this example only di�ers from the previous one in the degree-3 term of f . In particular, we
can see that knowing the �rst two nonzero terms of the Taylor series for f is not enough to determine
the orbit behavior of x0 as attracting or repelling: later terms can also a�ect the result.

• We can also use the theorem to classify the behavior of orbits near a neutral periodic point x0: the starting
point is to determine the orbit behavior for x0 as a neutral �xed point of fn.

◦ In the event that x0 is weakly attracting (or weakly repelling) for fn, essentially by de�nition we can
conclude that x0 is a weakly attracting (or weakly repelling) periodic point for f .

◦ However, if x0 is weakly attracting in one direction and weakly repelling in the other direction as a �xed
point of fn, the behavior of the periodic cycle of f containing x0 is trickier:

∗ If the derivative of fn at x0 is +1, then cycles starting on one side of x0 will be attracting and cycles
on the other side will be repelling.

∗ If the derivative of fn at x0 is −1, then a point on the �attracting� side of x0 will �ip to the �repelling�
side after applying fn (and vice versa), so to decide which behavior wins out, it is necessary to study
x0 as a �xed point of f2n.

• Example: Show that 0 lies on a neutral 2-cycle for p(x) = 1+ x− 6x2 + 4x3, and classify the behavior near 0
as weakly attracting or repelling on each side.

◦ We have p(0) = 1, p(1) = 0, and also p′(x) = 1 − 12x + 12x2 so p′(0) = p′(1) = 1. Thus, the 2-cycle
{0, 1} is neutral.
◦ We can expand (ideally with a computer) to �nd p(p(x)) = x−64x3+192x4+192x5−1344x6+1920x7−
1152x8 + 256x9.

◦ Thus, by the neutral point classi�cation (here, k = 3, the �rst derivative is 1, and the third derivative is

negative) we see that the cycle is weakly attracting .

• Example: Show that q(x) = x2− 5

4
has a neutral 2-cycle, and classify the behavior near 0 as weakly attracting

or repelling on each side.

◦ We have
q(q(x))− x
q(x)− x

= x2 + x− 1

4
, whose roots are r1, r2 =

−1±
√
2

2
.

◦ Note that q′(x) = 2x, so q′(r1) = −1 +
√
2 and q′(r2) = −1 −

√
2, so since (−1 +

√
2)(−1 −

√
2) = −1,

the cycle is indeed neutral.

◦ To analyze the attracting behavior, we look at the behavior of r1 as a �xed point of g(x) = q2(x) =

x4 − 5

2
x2 +

5

16
.

◦ We have g(r1) = r1, g
′(r1) = −1, and g′′(r1) = 4−6

√
2. Thus, we have k = 2, and so the cycle is neither

weakly attracting nor weakly repelling: as a �xed point of g, we can check that r1 weakly attracting on
the left and weakly repelling on the right.

◦ To study the nearby orbits, we must look at h(x) = q4(x). Using a computer, we can evaluate h(r1) = r1,
h′(r1) = 1, h′′(r1) = 0, and h′′′(r1) = 120(

√
2− 2).
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◦ Thus, by the neutral point classi�cation (here, k = 3, the �rst derivative is 1, and the third derivative
is negative), we see that r1 is a weakly attracting �xed point of q4: thus, we conclude that the 2-cycle

{r1, r2} for f is weakly attracting .

◦ Using a computer, we can compute that r1 = 0.207107, r2 = −1.207107, and that the orbit of 0.2 (to six
decimal places) is 0.2, −1.21, 0.2141, −1.204162, 0.200004, −1.209998, −0.214096, −1.204163, 0.200008,
....

◦ We can see that, after every four repetitions, the orbit inches closer to the 2-cycle (as the above analysis
dictates it will) but the convergence is exceedingly slow!

• A natural question is: how fast does a weakly attracting �xed point attract nearby orbits?

◦ For simplicity, let us suppose that f(x) = x − c xk for some positive constant c and some k ≥ 2, and
study the orbits of small positive x.

◦ Equivalently, we want to estimate how fast the sequence xn+1 = xn − c xkn approaches zero, for a given
x0.

◦ If we rewrite the de�nition as xn+1 − xn = −c xkn, then because the sequence is nearly constant, we can

approximate this �di�erence equation� with the di�erential equation
dx

dt
= −c xk, with initial condition

x = x0.

◦ This is an easy separable equation whose solution has the form x(t) = (Ct + D)−1/(k−1) for constants
C and D in terms of x0, k, and c. (One can compute the constants, but we are only interested in the
rough behavior.)

◦ The solution to the di�erence equation is then approximately xn ≈ (Cn+D)−1/(k−1). As n →∞, this
does tend to zero as we claimed, but it does so rather slowly: for k = 2, it goes to zero like n−1, and
for k = 3, it goes to zero like n−1/2. This is very slow compared to the exponential convergence λ−n for
some λ < 1 possessed by attracting �xed points.

◦ We will remark that a change of variables combined with a Taylor's theorem argument much like the
one in the classi�cation proof will allow us to extend this analysis extends to all weakly attracting �xed
points. (We will not bother with the details.)

1.3.5 Basins of Attraction

• Our theorems on attracting �xed points and cycles are useful in describing the orbits of points �su�ciently
close� to the attracting point or cycle, but they su�er from the limitation that they do not tell us explicitly
what orbits will eventually fall towards them.

◦ It is possible to get actual numeric bounds out of the proof of the theorem for attracting �xed points,
namely: if x0 is an attracting �xed point, then on the largest interval I containing x0 with |f ′(x)| < 1
for all x ∈ I, every orbit will approach x0.

◦ Example: For the function f(x) = x3, clearly x0 = 0 is an attracting �xed point since f(0) = f ′(0) = 0.

Since f ′(x) = 3x2, our result implies that every orbit that starts in the interval

(
− 1√

3
,
1√
3

)
will tend

to 0 as we iterate f .

◦ But this is not the strongest possible result: in fact, any orbit in the larger interval (−1, 1) will tend to
0, since fn(x) = x3

n

clearly tends to 0 (quite rapidly!) for any such point.

◦ One reason we do not get this larger interval is that, in the proof of the attracting �xed point theorem

we gave, we actually wanted to analyze the function

∣∣∣∣f(x)− x0x− x0

∣∣∣∣, rather than |f ′(x)|. (For x near x0,

these two values are close together by the continuity of f ′(x), as we already saw.)

• De�nition: If x0 is an attracting (or weakly attracting) �xed point of f , the basin of attraction (or attracting basin)
for x0 is the set of all points x such that fn(x)→ x0 as n→∞. (In other words, it is the points whose orbits
attract to x0.) The immediate basin of attraction for x0 is the largest interval around x0 contained in the
basin of attraction.
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◦ In general, the structure of the basin of attraction can be quite complicated: it is frequently an in�nite
union of disjoint intervals.

◦ For example, here are a few plots (on di�erent scales) of the attracting basin for the attracting �xed

point x0 = 1 of the function f(x) =
2x2(1− 5x+ 2x2)

(3− 5x)(1 + 2x− x2)
:

◦ It is generally much easier to compute the immediate basin of attraction than the full basin (though of
course, if f is su�ciently complicated, we can usually only compute an approximation).

• A starting point for computing the immediate basin of attraction is to �nd the set of points that f moves
closer to x0:

• Proposition: Suppose that x0 is a (weakly) attracting �xed point of f and λ be any positive constant less

than 1. If S is the set of points x such that x = x0 or

∣∣∣∣f(x)− x0x− x0

∣∣∣∣ < λ, and I is the largest interval of the

form (x0 − c, x0 + c) lying in S, then I lies in the immediate basin of attraction for x0 under f .

◦ Proof: Let I be the interval de�ned above. By de�nition, if x ∈ I, then |f(x)− x0| < (1 − ε) |x− x0|:
thus f(x) is closer to x0 than x is. Furthermore, because I is symmetric about x0, we see that f(x) also
lies in I.

◦ We can then apply the result repeatedly to see that (by a trivial induction) |fn(x)− x0| < λn |x− x0|,
so fn(x) → x0 as n → ∞, meaning x is in the basin of attraction for x0. Since I is an open interval
around x0 and every point in it lies in the basin of attraction, I lies in the immediate basin.

• Example: Find the immediate basin of attraction for the attracting �xed point x0 = 0 of f(x) = x3.

◦ We start by determining when

∣∣∣∣f(x)− 0

x− 0

∣∣∣∣ = ∣∣x2∣∣ is less than 1. Clearly, this holds for −1 < x < 1, so

the immediate basin contains the interval (−1, 1).
◦ Observe that the basin is bounded by the points x = −1 and x = 1, which are both �xed points for f ,

so the immediate basin does not contain them. So, the immediate basin is actually (−1, 1) .

◦ In fact, the interval (−1, 1) is actually the entire basin of attraction for x0 = 0, because any value in
(−∞,−1) will have orbit tending to −∞, and any value in (1,∞) will have orbit tending to ∞.

• Example: Find the immediate basin of attraction for the weakly attracting �xed point of f(x) = x− x3.

◦ The �xed point is x = 0, so we start by �nding those x 6= 0 such that

∣∣∣∣f(x)x
∣∣∣∣ < 1: namely, such that∣∣1− x2∣∣ < 1.

◦ This relation is satis�ed whenever |x| <
√
2 (except for x = 0, but it is certainly in the immediate basin)

so the immediate basin of attraction contains
(
−
√
2,
√
2
)
.

◦ But now note that f(
√
2) = −

√
2 and f(−

√
2) =

√
2, so since these two points lie on a 2-cycle, neither

of them is in the basin of attraction.

◦ Thus, we conclude that the immediate basin is (−
√
2,
√
2) .

• In each of the above examples, the endpoints of the immediate basin for the (weakly) attracting �xed point
have been �xed points, or points lying in a 2-cycle. This is not a coincidence:

• Theorem (Immediate Attracting Basin): If x0 is a (weakly) attracting �xed point of the continuous function
f with immediate basin of attraction I, then I is an open interval of one of the following types: (i) (−∞,∞),
(ii) (−∞, a) or (a,∞) for a a �xed point, (iii) (a, b) for both a and b �xed points or with one a �xed point
and the other a preimage of it, or (iv) (a, b) where {a, b} is a 2-cycle.
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◦ Remark: Recall that we say x is a preimage (or inverse image) of y under the map f if f(x) = y.

◦ Proof: Note that I is always an interval containing x0, and it is also open because if it contained an
endpoint, continuity would allow us to extend the interval past the endpoint. Let I be the topological
closure of I: namely, I along with any �nite endpoints, so that (for example) we have (a, b) = [a, b].

◦ By continuity, f(I) is contained in I, since f(I) is contained in I by the de�nition of the immediate
basin. If a is a �nite endpoint of I (assuming it has one), then f(a) cannot be contained in I: otherwise
the orbit of a would attract to x0, contrary to the assumption that a is not in the attracting basin. Thus,
f(a) must also be a �nite endpoint of I.

◦ If I = (−∞,∞) we are done. If I = (a,∞) or (−∞, a), then we must have f(a) = a since a is the only
�nite endpoint of I.

◦ Now suppose I = (a, b). Then f(a) and f(b) are each either a or b. If f(a) = a and f(b) = b they are
both �xed points of f .

◦ If f(a) = f(b) = a or f(a) = f(b) = b one is a �xed point and the other is a preimage of it.

◦ Finally, if f(a) = b and f(b) = a, then {a, b} forms a 2-cycle. This exhausts all the possibilities, so we
are done.

• Using the theorem, we can compute the immediate basin of attraction of any (weakly) attracting point x0:
we need only compute all the �xed points of f , their preimages, and the 2-cycles of f . Then the closest such
points on each side of x0 will be the endpoints of the immediate basin. (Or −∞ or ∞, if there are no such
points.)

• Example: For 1 < λ < 3, �nd the immediate basin of attraction inside [0, 1] for the attracting �xed point of
the logistic map pλ(x) = λx(1− x).

◦ We computed earlier that the �xed point x0 = 1− 1

λ
is attracting when 1 < λ < 3, and we also showed

that there is no real-valued 2-cycle for these values of λ.

◦ We can also easily compute that the preimages of 0 are 0 and 1.

◦ Thus, the possible endpoints of the immediate basin are −∞, 0, 1, ∞. Since x0 = 1 − 1

λ
is between 0

and 1, the attracting basin must be (0, 1) , independent of λ.

◦ Note that this proof is essentially nonconstructive: we do not know anything about how long it will take
the orbit of any particular point in (0, 1) to move close enough that it will be exponentially attracted to
the �xed point. (All that we know is that it will eventually happen.)

• Example: Find the immediate basin of attraction for each attracting �xed point of f(x) = −1

2
x− 5

2
x2 − x3.

◦ Solving f(x) = x produces x = 0, −1, −3

2
. Since f ′(−1) =

3

2
it is repelling, but f ′(0) = −1

2
and

f ′(−3

2
) =

1

4
, so both 0 and −3

2
are attracting.

◦ To compute the immediate basins, we will look for possible endpoints. Numerically solving the degree-

6 polynomial
f(f(x))− x
f(x)− x

= 0 yields one real-valued 2-cycle: {−2.4275, 0.7867}. We can also easily

compute that the preimages of −1 are −1, 1
2
, and −2.

◦ Thus, the possible endpoints for the immediate basins are −∞, −2.4275, −2, −1, 0.5, 0.7867, ∞.

◦ Since 0 lies in (−1, 1
2
), the immediate basin of 0 must be (−1, 1

2
) . Similarly, since −3

2
lies in (−2,−1),

the immediate basin of −3

2
is (−2,−1) .

• Assuming we can compute an open interval lying in the immediate basin of attraction for a �xed point, we
can give a description of the entire basin of attraction:
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• Proposition: If x0 is a (weakly) attracting �xed point of the continuous function f and I is any open interval
containing x0 that lies in the immediate basin of attraction, then the full basin of attraction Bx0 is given by

Bx0
=

∞⋃
n=0

f−n(I) = I ∪ f−1(I) ∪ f−2(I) ∪ · · · .

◦ Recall that if S is a set, then f−1(S) = {x : f(x) ∈ S} is the inverse image (or preimage) of S under f ,
the set of all points which f maps into S. We then take f−n(S) to be the nth iterate of the preimage
operation, or, equivalently, f−n(S) = {x : fn(x) ∈ S}.
◦ Proof: Suppose x is in the basin of attraction of x0. Then f

n(x) → x0 so by de�nition, for su�ciently
large n we must have fn(x) ∈ I: but this is immediately equivalent to x ∈ f−n(I). Conversely, if
fn(x) ∈ I, then since I is in the immediate basin of attraction we see that fk(fn(x)) → x0 as k → ∞,
and this is equivalent to saying that fk(x)→ x0 as k →∞.

• What the previous proposition says is: we can compute the full basin of attraction simply by �nding an
interval I that lies in the immediate basin, computing the sequence of preimages f−n(I) as n → ∞, and
taking the union.

◦ In fact, each preimage will contain the previous one because f(I) ⊆ I, so taking the union is (vaguely)
super�uous.

◦ Computing preimages rapidly becomes intractable to do exactly (even for polynomials of small degree),
and the iterated inverse image can become very complicated. As a theoretical tool, the proposition is
therefore somewhat limited.

◦ Computationally, however, the proposition is quite useful: if f is continuous on I, then f−1([a, b]) is a
union of intervals whose endpoints lie in the sets f−1(a) and f−1(b): thus, computing the inverse image
reduces to solving the equations f(y) = a and f(y) = b, arranging the solutions in increasing order, and
then determining which of the resulting intervals are mapped into [a, b] by f .

◦ Here is a geometric picture of this procedure for computing the inverse image of [1, 2] under the function
f(x) = x3 − 3x+ 1:

• Example: Find three intervals lying in the attracting basin of the attracting �xed point x0 = 0 for the function

p(x) =
1

2
x+ 3x2 − 4x3 + x4.

◦ Clearly 0 is an attracting �xed point. As our starting point, we look for values of x for which

∣∣∣∣p(x)− 0

x

∣∣∣∣ <
1: namely, with

∣∣∣∣12 + 3x− 4x2 + x3
∣∣∣∣ < 1.

◦ Solving this inequality numerically gives three intervals, which are (−0.336, 0.237), (0.684, 1.675), and
(2.661, 3.078). We want the largest interval containing x0 = 0 that is symmetric about 0 contained in
one of those intervals, so we take I = (−0.237, 0.237), rounded to three decimal places.

◦ Now we numerically compute p−1(I), which is a union of three intervals, which we have rounded inward
to three decimal places: (−0.300, 0.237), (1.138, 1.307), and (2.894, 2.925). These three intervals all lie
in the attracting basin.
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◦ We could continue this process and compute p−1 of each of these intervals: we end up with seven
intervals (−0.717,−0.715), (−0.538,−0.513), (−0.300, 0.237), (1.138, 1.327), (2.890, 2.925), (2.980, 2.989),
(3.070, 3.071).

◦ If we continue computing the inverse images, the union of the resulting in�nite number of intervals will
be the full basin of attraction. Here is a plot of the results of �ve iterations of the inverse image map,
starting with the initial interval I:

◦ Notice that the immediate basin appears to have endpoints roughly given by −0.300 and 0.237. Indeed,
p(−0.300) = 0.237 and p(0.237) = 0.237, so one endpoint of the immediate basin is a �xed point and
the other is one of its preimages (which is indeed one of the possibilities given by our theorem about the
immediate basin).

1.4 Newton's Method

• Newton's method is an algorithm that (attempts to) give a numerical approximation of a zero of a di�erentiable
function f .

◦ It is immediately evident that any root-�nding algorithm provides us with a way to compute the locations
of �xed points and (pre)periodic points of functions numerically.

◦ Newton's method also provides us with another collection of dynamical systems to study, and we can
apply some of our techniques to analyze the results.

• The method is as follows: we begin at some starting point x0. Then we draw the tangent line at x0 to
y = f(x) and set x1 to be the x-intercept of the tangent line. Now we iterate the process, by setting xn to be
the x-intercept of the tangent line at x = xn−1 to y = f(x), for each n ≥ 2.

◦ The idea is that, if x0 is close to the root r, then the tangent line is a good approximation to the function
y = f(x), so the x-intercept of the tangent line (which is easy to compute) will, hopefully, be closer to
the root r than x0 is, as a typical picture suggests will be the case:

0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

0.8

1.0

◦ The tangent line has equation y − f(x0) = f ′(x0) · (x− x0), so the x-intercept is x1 = x0 −
f(x0)

f ′(x0)
.

◦ Thus, the points given by Newton's method are the same as the points in the orbit of x0 under the map

N(x) = x− f(x)

f ′(x)
.

• De�nition: If f(x) is a di�erentiable function, the Newton iteration function N(x) is de�ned as N(x) =

x− f(x)

f ′(x)
, and Newton's method is the result of computing the orbit of a point x0 under N(x).

◦ Observe that, as long as f is always de�ned and f ′(x) 6= 0, ∞, the �xed points of the Newton iteration
function are the same as the zeroes of f .
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• Example: Use Newton's method to approximate the value of
√
2.

◦ By de�nition,
√
2 is the positive root of f(x) = x2 − 2.

◦ Thus, the Newton iteration function is N(x) = x− f(x)

f ′(x)
=
x

2
+

1

x
.

◦ The orbit of 1 under N is 1, 1.5, 1.416667, 1.414216, 1.414214, 1.414214, ....

◦ The orbit of 3 under N is 3, 1.833333, 1.462121, 1.414998, 1.414214, 1.414214, ....

◦ We can see that the algorithm converges quite rapidly.

• Example: Use Newton's method to approximate the �xed point of cos(x).

◦ We want to �nd a zero of the function f(x) = cos(x)− x.

◦ Thus, the Newton iteration function is N(x) = x+
cos(x)− x
sin(x) + 1

.

◦ The orbit of 0 under N is 0, 1, 0.750364, 0.739113, 0.739085, 0.739085, ....

◦ So we see the �xed point is approximately 0.739085.

• Example: Use Newton's method to approximate the real root of f(x) = x3 − 2x− 5.

◦ Notice that f(2) = −1 and f(3) = 16, so f has a root in (2, 3) by the Intermediate Value Theorem.
(Using some calculus, we can show that this function only has one real root.)

◦ The Newton iteration function is N(x) = x− f(x)

f ′(x)
= x− x3 − 2x− 5

3x2 − 2
=

2x3 + 5

3x2 − 2
.

◦ The orbit of 2 under N is 2, 2.1, 2.094568, 2.094552, 2.094552, .... The root appears to have numerical
value 2.094552.

◦ The orbit of 3 under N is 3, 2.36, 2.127197, 2.095136, 2.094552, 2.094552, .... This orbit also approaches
the root.

◦ The orbit of 0 under N is 0, −2.5, −1.567, −0.503, −3.821, −2.549, −1.608, −0.576, .... The orbit does
not appear to be converging to the real root, since we chose an initial point that was too far away.

• Example: Use Newton's method to approximate the real root of f(x) = x3 − 4x+ 2 lying in (1, 2).

◦ Notice that f(1) = −1 and f(2) = 2, so f does have a root in (1, 2) by the Intermediate Value Theorem.
In fact f has three real roots: one in (−3,−2), one in (0, 1), and one in (1, 2).

◦ The Newton iteration function is N(x) = x− f(x)

f ′(x)
= x− x3 − 4x+ 2

3x2 − 4
.

◦ The orbit of 1 under N is 1, 0, 0.5, 0.538462, 0.539189, 0.539189, .... This does converge to a root of f ,
but not the one we were looking for!

◦ The orbit of 2 under N is 2, 1.75, 1.680723, 1.675166, 1.675131, 1.675131, .... This does converge to the
root we were looking for.

◦ For completeness, of course, we could also use Newton's method to �nd the last root: the orbit of −2 is
−2, −2.25, −2.215084, −2.214320, −2.214320, ....

• Example: Try to �nd the real root of f(x) = x1/3 using Newton's method. (Of course, the root is clearly
x = 0.)

◦ The Newton iteration function is N(x) = x− f(x)

f ′(x)
= −2x.

◦ The orbit of 0.1 under N is 0.1, −0.2, 0.4, −0.8, 1.6, −3.2, 6.4, ....
◦ Notice that this orbit does not converge to 0. In fact, we can see immediately that 0 is a repelling �xed
point for N , so no nearby orbit will converge to the real root of f .

◦ Ultimately, the problem in this example is that f ′(0) is in�nite.
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• We would naturally like to know under what conditions a given �xed point of the Newton iteration function
will be attracting.

◦ From our previous results, if the �xed point is attracting, then the convergence of nearby orbits will be
(at least) exponentially fast, with rate dictated by the value of N ′ at the �xed point.

◦ If the value x0 is a multiple root of f , then the analysis can be a bit trickier.

• De�nition: If x0 is a root of the continuous function f , the multiplicity of x0 (as a root of f) is the smallest
positive k such that there exists a continuous function g(x) such that f(x) = (x− x0)k · g(x) and g(x0) 6= 0,
if such a k exists. (If there is no largest k such that f(x) = (x − x0)k · g(x) for a continuous function g, we
say the multiplicity is ∞.)

◦ The multiplicity of a root of a general function agrees with the usual sense of �multiple root� when
referring to polynomials: for example, 1 is a root of multiplicity 2 for the function (x2 + 1)(x− 1)2 and
of multiplicity 3 for the function x(x− 1)3.

◦ Example: If f(x) = x4/3, then x0 = 0 is a root of multiplicity 4/3.

◦ Example: If f(x) = 0 is the identically zero function, then x0 = 0 is a root of in�nite multiplicity.

◦ Most reasonable functions will only have roots of �nite multiplicity. The standard example of a nontrivial

function having a root of in�nite multiplicity is f(x) =

{
e−1/x

2

for x 6= 0

0 for x = 0
: all the derivatives of f are

zero at x = 0.

• Proposition: If x0 is a root of f of multiplicity k, then f (d)(x0) = 0 for all d < k. Furthermore, if k ≥ 1 is an
integer, then x0 is a root of f of multiplicity k if and only if f (d)(x0) = 0 for all d < k and f (k)(x0) is nonzero
and �nite.

◦ This proposition provides an easy way to compute the multiplicity of a root for a di�erentiable function:
for example, if f(x) = sin(x), then x0 = kπ is a root of multiplicity 1 for each integer k, since the
derivative f ′(x0) is nonzero at each such point.

◦ Remark: Note the similarity to the statement of the classi�cation of neutral �xed points. (Indeed, the k
from that theorem is the multiplicity of the value x0 as a root of the function f(x)− x.)
◦ Proof: If f(x) = (x−x0)kg(x), then applying the product rule shows that f (d) is a sum of terms involving
the �rst d derivatives of (x− x0)k and g(x). For d < k all of the derivatives of (x− x0)k are zero, so we
see f (d)(x0) for d < k, giving the �rst statement. Also, if d = k then we will get a single term k! · g(x0),
so f (k)(x0) = k! · g(x0) is nonzero since g(x0) 6= 0.

◦ Conversely, if x0 is a root of f of integral multiplicity k, then by k applications of L'Hôpital's rule we see

that lim
x→x0

f(x)

(x− x0)k
= f (k)(x0), so the function

f(x)

(x− x0)k
(de�ned for x 6= x0) can be extended to be

continuous and nonzero at x = x0. We can then simply take g(x) to be the resulting continuous function.

• The multiplicity of a root will control how fast Newton's method will converge near that root:

• Theorem (Newton's Fixed Point Theorem): Suppose f is continuously di�erentiable and N is its Newton
iteration function. If x0 is a root of f of �nite multiplicity k ≥ 1, then x0 is an attracting �xed point of N ,
and if x0 is a root of multiplicity k = 1, then x0 is a superattracting �xed point of N .

◦ Proof: By de�nition, x0 will be an attracting �xed point of N if |N ′(x0)| < 1, and it will be superat-
tracting if N ′(x0) = 0. We also note that because f ′ is continuous, there are no points where f ′ is ∞, so
the only �xed points of N are the zeroes of f .

◦ By the quotient rule we see that N ′(x) =
f(x)f ′′(x)

[f ′(x)]
2 whenever f ′(x) 6= 0.

◦ So if f ′(x0) 6= 0, which occurs if x0 has multiplicity 1, we immediately see thatN(x0) = x0 andN
′(x) = 0,

so that x0 is a superattracting �xed point of N .

◦ If f ′(x0) = 0 and x0 has multiplicity k > 1, then by the proposition above we can write f(x) =
(x−x0)kg(x) for a function g with g(x0) 6= 0. To ease notation, make the change of variables y = x−x0
to move the �xed point to zero: then f(y) = ykg(y) where g(0) 6= 0.
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◦ Then f ′(y) = kyk−1g(y) + ykg′(y) and f ′′(y) = k(k− 1)yk−2g(y) + 2kyk−1g′(y) + ykg′′(y), so after some

algebra we see that N(y) = y − y g(y)

k g(y) + g′(y)
, so that N(0) = 0.

◦ Furthermore, N ′(y) =
k(k − 1)g(y)2 + 2kyg′(y)g(y) + y2g′′(y)g(y)

k2g(y)2 + 2kyg(y)g′(y) + y2g′(y)2
, so N ′(0) =

k(k − 1)g(y)2

k2g(y)2
= 1 − 1

k
,

since g(y) 6= 0 by assumption.

◦ Since this quantity has absolute value less than 1 as long as k ≥ 1, we see that y = 0 (i.e., x = x0) is an
attracting �xed point of N as claimed.

• Newton's �xed point theorem guarantees that (as long as f does not have any zeroes of in�nite or unde�ned
multiplicity) each of the zeroes of f will show up as an attracting �xed point of N , and that these are the
only �xed points of N .

◦ A natural question to ask is: what does the attracting basin for each �xed point of N look like?

◦ A fuller discussion of this topic belongs properly to a numerical analysis course, but from our results
about attracting points, we can say a few things.

◦ For example, the immediate basin for each �xed point will contain the interval on which |N ′(x)| =∣∣∣∣f(x)f ′′(x)f ′(x)2

∣∣∣∣ < 1. (Though this function is rather hard to analyze, as we just saw.)

◦ Also, the endpoint of any �xed point's immediate basin cannot be another �xed point, because every
�xed point is attracting. Thus, each �xed point's immediate basin either has endpoints that form a
2-cycle under N , or has endpoints that are ±∞ or points where N is unde�ned (i.e., zeroes of f ′).

◦ We also remark that by the mean value theorem, f ′ will have a zero between any two zeroes of f , N will
always be unde�ned somewhere in the interval between any two attracting �xed points.

◦ In general, the full attracting basin can be quite complicated (as with attracting basins of general
functions).

• If f does not have any roots at all, the Newton iteration function N has no �xed points: but this does not
mean its dynamics are uninteresting.

• Example: Try to �nd a real root of f(x) = x2 + 1 using Newton's method. (Of course, f has no real roots.)

◦ The Newton iteration function is N(x) = x− f(x)

f ′(x)
=
x

2
− 1

2x
.

◦ The orbit of 0.1 under N is 0.1, −4.95, −2.37399, −0.97638, 0.02391, −20.90272, −10.42744, −5.16577,
−2.48609, −1.04193, −0.04198, 12.14959, ....
◦ The orbit of 0.2 under N is 0.2, −2.4, −0.99167, 0.00837, −59.7477, −29.86402, −14.91527, −7.42411,
−3.64471, −1.68517, −0.54588, 0.64302, −0.45608, ....
◦ These orbits, of course, will not approach a �xed point, since N has no �xed points.

◦ It is not hard to show that orbits will behave as follows: orbits far from 0 will approach zero monotonically
until they land in the interval (−1, 1), at which point they will switch sign after each iteration until they
land inside (1 −

√
2,
√
2 − 1), where the next iteration will carry them outside (−1, 1) and the process

will repeat.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2015. You may not reproduce or distribute this material
without my express permission.
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