
Cryptography (part 3): Discrete Logarithms in Cryptography (by Evan Dummit, 2016, v. 1.01)

Contents

2 Discrete Logarithms in Cryptography 1

2.1 Primitive Roots and Discrete Logarithms . 1

2.1.1 Primitive Roots . 1

2.1.2 Discrete Logarithms . 4

2.2 Di�e-Hellman Key Exchange . 5

2.3 The ElGamal Encryption System . 7

2.4 Computation of Discrete Logarithms . 8

2.4.1 The Pohlig-Hellman Algorithm . 9

2.4.2 Baby-Step Giant-Step . 11

2.4.3 Pollard's ρ-Algorithm for Logarithms . 12

2.4.4 Sieving Methods . 13

2 Discrete Logarithms in Cryptography

In the previous chapter, we introduced public-key cryptography and discussed how to construct several public-key
cryptosystems that relied on the computational di�culty of factoring large integers. In this chapter, we will introduce
and study another computationally di�cult number theory problem, that of computing discrete logarithms, with
an eventual goal of using that problem as the basis for cryptographic protocols. We will speci�cally discuss the
ElGamal public-key cryptosystem and the Di�e-Hellman key exchange procedure, and then give some methods for
computing discrete logarithms.

2.1 Primitive Roots and Discrete Logarithms

• Recall that if u is a unit modulo m, that the order of u is the smallest positive integer k such that uk ≡ 1
(mod m). Earlier, we proved a few basic properties about orders:

◦ If u is a unit modulo m and un ≡ 1 (mod m), then the order of u divides n.

◦ If u has order k modulo m, then the order of un modulo m is k/ gcd(n, k). In particular, if n and k are
relatively prime, then un also has order k.

◦ If ud ≡ 1 (mod m), and ud/p 6≡ 1 (mod m) for any prime divisor p of d, then u has order d modulo m.

◦ If u has order k and w has order l, where k and l are relatively prime, then uw has order kl.

2.1.1 Primitive Roots

• Euler's Theorem says that the order of any element modulo m divides ϕ(m). We might wonder: can the order
actually equal ϕ(m)? The answer is yes, and such elements are quite useful:

• De�nition: If u is a unit modulo m and the order of u is ϕ(m), we say that u is a primitive root modulo m.

◦ Example: The powers of 2 modulo 5 are 2, 4, 3, and 1, so 2 is a primitive root mod 5 (since it has order
4). Similarly, we can check that 3 is also a primitive root mod 5.

1

◦ Example: The powers of 2 modulo 9 are 2, 4, 8, 7, 5, and 1, so 2 is a primitive root mod 9 (since it has
order 6 = ϕ(9)).

◦ Non-Example: There is no primitive root modulo 15: the units are 1 (order 1), 2 (order 4), 4 (order 2),
7 (order 4), 8 (order 4), 11 (order 2), and 14 (order 2), and none of these is a primitive root.

• If there is a primitive root modulo m, then every unit can be written in terms of that primitive root (which
is the reason for the term �primitive root�):

• Proposition: A unit u is a primitive root modulo m if and only if every unit modulo m is congruent to a
power of u.

◦ We can see this in the examples above: for example, the units modulo 5 are 1, 2, 3, and 4, and they are
congruent mod 5 to 20, 21, 23, and 22 respectively.

◦ Proof: If u is a primitive root modulo m, then by de�nition each of u1, u2, · · · , uϕ(m) is distinct modulo
m. Since there are ϕ(m) elements in this list and they are all units, this means they represent each of
the invertible residue classes modulo m.

◦ For the other direction, if the powers of u exhaust all of the di�erent residue classes modulo m, then the
order of u must be at least ϕ(m) (since otherwise there would be fewer than ϕ(m) distinct powers of u
modulo m), but since the order of u divides ϕ(m) by Euler's Theorem, the order must be exactly ϕ(m).

• We would now like to know: when does there actually exist a primitive root modulo m? We start with primes:

• Theorem (Primitive Roots Mod p): For any prime p, there exists a primitive root modulo p.

◦ The proofs of this theorem (which we will omit) are somewhat nonconstructive: they prove the second
statement, and then show that a primitive root exists modulo p without actually constructing it explicitly.

◦ In practice, it is not that di�cult to �nd a primitive root (if one exists) by simply trying small values
and checking whether the order is equal to ϕ(p) = p− 1.

• Example: Find a primitive root modulo 11.

◦ We try checking whether 2 is a primitive root modulo 11.

◦ The order of 2 must divide ϕ(11) = 10, and we see that 22 6≡ 1 (mod 11) and 25 6≡ 1 (mod 11), so the
order divides neither 2 nor 5.

◦ Therefore, the order of 2 must be 10, so 2 is a primitive root modulo 11.

• If we have a primitive root modulo p, we can use it to obtain a primitive root modulo larger powers of p.

• Proposition: If a is a primitive root modulo p for p an odd prime, then a is a primitive root modulo p2

if ap−1 6≡ 1 (mod p2). In the event that ap−1 ≡ 1 (mod p2), then a + p is a primitive root modulo p2.
Furthermore, if b is a primitive root modulo p2, then b is a primitive root modulo pk for each k ≥ 3. If b is
odd then b is also primitive root modulo 2pk, and if b is even then b+ pk is a primitive root modulo 2pk.

◦ These results are fairly straightforward calculations using the binomial theorem. The details are not
especially enlightening, so we will omit them.

• Example: Find a primitive root modulo 112, modulo 2 · 112, and modulo 11100.

◦ We showed above that 2 is a primitive root modulo 11.

◦ We can easily compute 210 = 1024 ≡ 56 (mod 112), so the proposition above assures us that 2 is also
a primitive root modulo 112.

◦ Then by the proposition, 2 is also primitive root modulo 11d for any d ≥ 2 hence (in particular) for
d = 100.

◦ Likewise, since 2 is even, we see that 2 + 112 = 123 is a primitive root modulo 2 · 112.

• In general, the above results will allow us to �nd primitive roots modulo pk or 2pk for any k ≥ 1 and and odd
prime p. It turns out that these are essentially all the cases in which primitive roots exist:

2

• Theorem (Existence of Primitive Roots): There exists a primitive root modulo m if and only if m = 1, 2, 4 or
m is of the form pk or 2pk for an odd prime p and some k ≥ 1.

◦ The existence part follows essentially from the propositions above. The remaining part of the theorem
then requires showing that there do not exist primitive roots modulo m for any other such m: the idea is
simply to show that there are four elements whose square is equal to 1 modulo m. (We omit the details.)

◦ In practice, it is not that di�cult to �nd a primitive root (if one exists) by simply trying small values
and checking whether the order is equal to ϕ(m).

• When a primitive root exists, we can in fact say exactly how many there are:

• Proposition: If there exists a primitive root modulo m, then there are precisely ϕ(ϕ(m)) primitive roots
modulo m.

◦ Proof: Suppose that there exists a primitive root u modulo m, whose order is therefore ϕ(m).

◦ We know that the invertible residue classes modulo p are represented by u1, . . . , uϕ(m), so it su�ces to
determine how many of these have order ϕ(m).

◦ Since the order of uk is ϕ(m)/ gcd(k, ϕ(m)), we see that uk is a primitive root if and only if k is relatively
prime to ϕ(m).

◦ There are ϕ(ϕ(m)) such k, so there are ϕ(ϕ(m)) primitive roots modulo m.

• Example: Find a primitive root modulo 54 and the number of primitive roots modulo 54.

◦ Since 54 = 2 · 33 there is a primitive root modulo 54.

◦ It is easy to see that 2 is a primitive root modulo 3, and since 23−1 6≡ 1 (mod 9) we see that 2 is also a
primitive root modulo 9 and hence modulo 27 as well.

◦ Since 2 is even, we conclude that 29 is a primitive root modulo 54.

◦ The number of primitive roots is ϕ(ϕ(54)) = ϕ(18) = 6 . (Aside from 29, the others are 5, 11, 23, 41,
and 47.)

• In general, if p is prime then ϕ(ϕ(p)) will be roughly the same size as p, meaning that a reasonable proportion
of residue classes modulo p will be units.

◦ Speci�cally, ϕ(ϕ(p)) = ϕ(p−1) = (p−1) ·
∏

qi|p, qiprime

(1−1/qi), and the product on the right only depends

on the primes dividing p− 1.

◦ So for example, if p − 1 has at most 20 distinct prime divisors (which will be the case fairly often), at
least 15% of the residue classes modulo p will be primitive roots, and even if p− 1 has 40 distinct prime
divisors, over 10% of the residue classes will necessarily be primitive roots.

• For completeness we restate an earlier result which can be used easily to check whether a given residue class
is a primitive root modulo p, provided we know the factorization of p− 1:

• Proposition: If p is an odd prime and u is a unit with u(p−1)/q 6≡ 1 (mod p) for any prime divisor q of p− 1,
then u is a primitive root modulo p.

◦ The point is that the order of u divides p − 1 by Fermat's little theorem, and if the order of u were
smaller than p− 1 then u(p−1)/q would be congruent to 1 for at least one prime divisor q of p− 1.

• Example: Find a primitive root modulo p = 2394863, and the proportion of residue classes modulo p that are
primitive roots.

◦ First we factor p− 1 = 2 · 37 · 32363 using whichever factorization algorithm we prefer.

◦ Now we search for residues u such that none of u(p−1)/2, u(p−1)/37, and u(p−1)/32363 is congruent to 1
modulo p.

◦ Here is a short table of such a check:

3

u(p−1)/2 u(p−1)/37 u(p−1)/32363

u = 2 1 14871 23729
u = 3 1 50374 2128656
u = 5 −1 2184105 929101

◦ Since we see that u = 5 has each of u(p−1)/2, u(p−1)/37, and u(p−1)/32363 not congruent to 1 modulo p,
we see that 5 is a primitive root modulo p.

◦ We also compute ϕ(ϕ(p)) = 1 · 36 · 32362, so the proportion is ϕ(ϕ(p))/p ≈ 48.6% of the residue classes.
(From this perspective, the fact that we had to try 3 residues means we were less lucky than expected!)

2.1.2 Discrete Logarithms

• From our results, if u is a primitive root modulo m, then for any unit a there is a k such that a ≡ uk mod m.
We can generalize this idea:

• De�nition: If b is a unit modulo m and a is another unit with a ≡ bd (mod m), we say that d is the
discrete logarithm of a modulo m to the base b, and write d = logb(a).

◦ Note: Implicitly, we consider the discrete logarithm to be de�ned only modulo the order of b. Some
authors instead de�ne the discrete logarithm to be the smallest positive integer such that a ≡ bd (mod
m) provided one exists, but (like with the de�nition of modular congruence) this de�nition is somewhat
too restrictive.

◦ The reason this map is called the discrete logarithm is because its de�nition is analogous to that of the
usual logarithm: logb(a) = d (mod k) is equivalent to a ≡ bd (mod m), where k is the order of b modulo
m. (Compare to the de�nition of the real-valued logarithm: logb(y) = x is equivalent to y = bx.)

◦ Example: Modulo 14, we have log3 11 = 4 since 34 ≡ 11 (mod 14). It is better to write log3 11 ≡ 4 (mod
6), since the order of 3 modulo 14 is 6.

• As we would expect, it is easy to see that the discrete logarithm obeys the standard rules of logarithms.

◦ Speci�cally, suppose that k is the order of b modulo m.

◦ Then logb(ac) ≡ logb(a) + logb(c) (mod k) and logb(a
r) ≡ r logb(a) (mod k) for any integer r and any

residue classes a and c whose discrete logarithms to the base b are de�ned.

• Example: Find the discrete logarithms of each unit modulo 11 to the base 2.

◦ Since 2 is a primitive root modulo 11, we can write each unit as a power of 2. The simplest way to do
this is simply to compute each of the values 20, 21, ... , 210 modulo 11; here is a table of the results:

n 1 2 3 4 5 6 7 8 9 10
log2 n 0 1 8 2 4 9 7 3 6 5

◦ Observe, for example, that 3 · 6 ≡ 7 (mod 11), and log2(3) + log2(6) ≡ log2(7) (mod 10), since 10 is the
order of 2 modulo 11.

◦ Likewise, 33 ≡ 5 (mod 11), and 3 log2(3) ≡ log2(5) (mod 10).

• Having a table of discrete logarithms relative to a primitive root modulo m is very useful for computations.

◦ For example, it allows for very rapid multiplication and exponentiation, in the same manner as usual
logarithms do. This is not terri�cally helpful because there already exist fast algorithms for these
procedures.

◦ More usefully, having a table of discrete logarithms also allows us to compute nth roots, if they exist.

• Example: Solve the equation x4 ≡ 9 (mod 11).

◦ We could, of course, just try all of the units modulo 11 to see which ones work.

4

◦ A more e�cient general method is to take discrete logarithms to the base 2: we obtain log2(x
4) ≡ log2(9)

(mod 10), or 4 log2 x ≡ 6 (mod 10).

◦ Since gcd(4, 10) = 2 this congruence is equivalent to 2 log2(x) ≡ 3 (mod 5), which has the solution
log2(x) ≡ 4 (mod 5). Modulo 10 there are two solutions: 4 and 9.

◦ Exponentiating then yields that there are two solutions to the original congruence: x ≡ 24, 29 mod 11,
or equivalently x ≡ 5, 6 mod 11.

• In general, it is believed to be di�cult to evaluate discrete logarithms or to extract roots modulo m.

◦ Ultimately, the di�culty of extracting roots and evaluating discrete logarithms is at the heart of the
RSA cryptosystem, which relies on the di�culty of extracting an eth root modulo m.

◦ Our goal in the subsequent sections will be to show how to use discrete logarithms to design cryptographic
protocols.

2.2 Di�e-Hellman Key Exchange

• Public-key protocols are fast for small messages, but if Alice needs to send Bob gigabytes of encrypted data,
even a very fast implementation of RSA will take an unreasonably long time to encode and decode.

◦ Symmetric cryptosystems generally do not require nearly as much computation and can be done com-
paratively e�ciently even for large amounts of data.

◦ Thus, in practice, most e�cient cryptographic protocols will require some sort of �key exchange�, wherein
Alice and Bob must somehow decide what encryption key to use for their symmetric cryptosystem.

◦ One way to do this is to use an asymmetric cryptosystem to send the key: Alice chooses a key, encrypt
it using Bob's public key, and send it to Bob: then Bob can decrypt the message and obtain the key.

• We will now describe a di�erent procedure for key exchange. The general idea was initially conceived of by
Ralph Merkle and a speci�c implementation was published by Whit�eld Di�e and Ralph Hellman in 1976
(thus predating the unclassi�ed version of RSA by about 1 year).

• Their procedure, known as Di�e-Hellman key exchange, is as follows:

◦ First, Alice and Bob jointly choose a large prime number p, along with a primitive root g modulo p.

∗ Finding a pair (g, p) where p is a large prime and g is a primitive root mod p is fairly straightforward.

∗ For a particular choice of p it can be quite di�cult to �nd a primitive root unless the factorization of
p− 1 is known, so in practice one chooses p in such a way that p− 1 has a convenient factorization:
it is then easy to test whether a given element r is a primitive root modulo p using our previous
procedures.

∗ One way to �nd such a p is to choose a random large number and then search through primes
larger than that, attempting at each stage to factor p− 1 by removing small divisors less than some
particular bound (e.g., 106) and then checking the remaining term using a primality test.

◦ Alice chooses a secret integer a, and sends Bob the value of ga (mod p).

◦ Bob chooses a secret integer b, and sends Alice the value of gb (mod p).

◦ Then the secret key s is given by gab (mod p), which both Alice and Bob can compute.

∗ Alice knows a, and has the value of gb from Bob, so she needs only raise gb to the ath power.

∗ Similarly, Bob knows b and has the value of ga from Alice, so he needs only raise ga to the bth power.

• If Eve is eavesdropping on the conversation, she will have the values of p, along with g, ga, and gb modulo p,
and she wants to compute the secret key gab (mod p).

◦ In order to do this, Eve would essentially need to compute one of the exponents a and b; since g is a
primitive root, this is equivalent to calculating the discrete logarithm logg(g

a) or logg(g
b) modulo p− 1.

◦ Computation of discrete logarithms is very di�cult, in much the way that factoring large integers is
di�cult. (We will postpone our discussion of this question to a later section.)

5

◦ But in general, it is expected that if p is large enough, roughly on the order of computing arbitrary
discrete logarithms modulo p is computationally intractable.

• Example: Alice and Bob decide to construct a secret shared key modulo p = 227, using the primitive root
g = 2.

◦ Alice chooses her exponent to be a = 44, and computes 244 ≡ 171 (mod p). She sends the value ga ≡ 171
to Bob.

◦ Bob chooses his exponent to be b = 175, and computes 2175 ≡ 201 (mod p). He sends the value gb ≡ 201
to Alice.

◦ Alice now computes the shared key gab ≡ 20144 (mod p) and obtains the value s ≡ 160 (mod p).

◦ Bob also computes the shared key gab ≡ 171175 (mod p) and obtains the same value s ≡ 160 (mod p).

◦ Alice and Bob now can send each other messages encrypted (in whatever way they want) using their
shared secret key s = 160.

• We will also observe that Di�e-Hellman key exchange can be generalized to any number of participants.

◦ For example, if Alice, Bob, and Carol wish to construct a secret shared key together, they collectively
agree on a �xed prime p and primitive root g modulo p, and choose their own encryption exponents a,
b, and c.

◦ Alice publishes ga, Bob publishes gb, and Carol publishes gc (everything modulo p).

◦ Next, Alice uses gb and gc to compute gab and gac mod p, and publishes these values.

◦ Bob uses gc to compute gbc mod p, and publishes it.

◦ The secret key is then s = gabc: Alice uses gbc to compute s, Bob uses gac to compute s, and Carol uses
gab to compute s.

◦ If Eve is eavesdropping on the conversation, she has the values of g, ga, gb, gc, gab, gac, and gbc. However,
in order for her to compute gabc, she would need to compute the discrete logarithm of ga, gb, or gc, which
is still just as di�cult as it was before.

• Here are a few basic attacks on Di�e-Hellman:

• Attack 1 (Discrete logarithm computation): If Eve wants to determine gab given g, ga, gb, she could simply
evaluate the discrete logarithm logg(g

a) to compute a, and then evaluate (gb)a.

◦ Again, like with factorization, it is believed that general discrete logarithm computation is di�cult
with a standard (i.e., non-quantum) computer, provided the prime p is su�ciently large and not of any
particularly special form (e.g., not such that p− 1 only has small prime divisors).

• Attack 2 (Man-in-the-middle): A malicious individual, Mallory, could intercept the original key exchanges
and conduct separate key-exchanges with Alice (with Mallory pretending to be Bob) and Bob (with Mallory
pretending to be Alice).

◦ Then, Mallory will be able to decode messages sent from Alice, and then re-encrypt them to send to
Bob. As far as Alice and Bob can tell, they are communicating with each other, since their messages are
received correctly, at least as long as Mallory is in the middle decoding and re-encoding the messages.

◦ If at any point Mallory fails to do this (and a message is transmitted directly from Alice to Bob), Alice
and Bob's keys will not agree and they will realize that their communications have been intercepted,
since they will no longer be able to decode each other's messages.

◦ The problem is that the algorithm above does not authenticate Alice and Bob to one another before
creating the key. There are various modi�cations to the basic Di�e-Hellman algorithm that allow for
mutual authentication: they are su�ciently distinct from the basic algorithm that we will postpone their
discussion until later.

6

2.3 The ElGamal Encryption System

• The RSA public-key cryptosystem ultimately relies on the di�culty of integer factorization. We will now
describe the ElGamal public-key cryptosystem, �rst described by Taher Elgamal in 1985, whose security
relies on the di�culty of computing discrete logarithms.

• First, Bob must create his public key.

◦ To do this, he chooses a prime p and a primitive root a modulo p such that it is di�cult to compute
discrete logarithms modulo p. (Typically this is done by ensuring that p− 1 has a large prime divisor.)

◦ Bob also chooses an integer d with 0 < d < p− 1, and computes b = ad (mod p).

◦ Bob then publishes the three values (p, a, b), which serve as his public key.

• Now suppose that Alice wants to send Bob a message.

◦ Alice converts her message into an integer m modulo p in some agreed-upon manner.

◦ Alice then chooses a random integer k with 0 < k < p − 1 and computes r = ak (mod p) and t = bkm
(mod p).

◦ Finally, she sends the pair (r, t) to Bob.

• If Bob has received a ciphertext pair (r, t), he wishes to recover the value of m.

◦ To do this, Bob simply computes t · r−d ≡ (bkm)(a−kd) ≡ (akdm)(a−kd) ≡ m (mod p).

• Example: If Bob uses ElGamal with p = 44927, a = 7, d = 22105, �nd Bob's public key, encode the message
m = 10101, and then decode the associated ciphertext.

◦ First, we compute Bob's public key: we have b = ad ≡ 40909 (mod p), so Bob's public key is (p, a, b) =

(44927, 7, 40909) .

◦ To encode, we choose a random k with 0 < k < p − 1: let us take k = 6708. We then compute
r = ak ≡ 12510 (mod p) and t = bkm ≡ 12749 (mod p), so the ciphertext Alice sends Bob is

(r, t) = (12510, 12749) .

◦ To decrypt, Bob computes r−d ≡ 11355 (mod p) and multiplies it by t to obtain the result m = 10101 ,
as he should.

• Like with RSA, the only steps required to implement ElGamal are modular exponentiation and inversion (to
compute r−d) which are both very fast, but it is less obvious why the procedure is secure.

◦ Suppose Eve intercepts the transmitted information: she will obtain p, a, b, r, and t, and she wants to
compute m = t · b−k ≡ t · a−dk ≡ t · r−d modulo p.

◦ If Eve knows d then she can decrypt using the same procedure Bob uses. However, in order to �nd d
from Bob's public key, Eve would need to compute the discrete logarithm loga b, which we assume she
cannot do.

◦ Furthermore, since Alice chooses k randomly, r = ak will be a random integer modulo p, as will t = bkm
(since bk is likewise random) provided m 6= 0.

◦ Knowing r alone does not help, because in order to compute k Eve would need to evaluate the discrete
logarithm loga r. Knowing t does not help much either, because in order for Eve to compute m she would
have to know the value of bk, which in turn would require knowing the value of k.

• In order to compute any one of the desired quantities to decrypt an ElGamal ciphertext, it seems that Eve
would essentially have to evaluate a discrete logarithm.

◦ This is not a proof, of course, and it is not actually known whether breaking ElGamal encryption is
equivalent to evaluating discrete logarithms.

7

◦ However, it can be shown that breaking ElGamal encryption and breaking Di�e-Hellman are equivalent
to one another, in the sense that an algorithm for decrypting ElGamal ciphertexts modulo p can be used
to break Di�e-Hellman mod p, and vice versa:

• Proposition: The problems of decrypting arbitrary ElGamal ciphertexts modulo p and breaking arbitrary
Di�e-Hellman procedures mod p are equivalent.

◦ Proof: Suppose �rst that we have an algorithm that can decrypt an arbitrary ElGamal ciphertext (r, t)
with associated public key (p, a, b) to produce the message m ≡ t ·r− loga b (mod p), and we wish to break
a Di�e-Hellman problem of computing the value gxy (mod p) given the values (p, g, cx, cy) where cx = gx

(mod p), cy = gy (mod p).

◦ To do this, give the ElGamal algorithm the data (p, a, b, r, t) with a = g, b = cx, t = 1, and r = cy: it will

output the message m = 1 · (gy)− logg(g
x) ≡ g−xy (mod p). Then gxy ≡ m−1 (mod p) can be computed

immediately.

◦ Conversely, suppose we have an algorithm that can break an arbitrary Di�e-Hellman problem of com-
puting the value gxy (mod p) given the values (p, g, cx, cy) where cx = gx (mod p), cy = gy (mod p), and
we wish to decrypt an arbitrary ElGamal ciphertext (r, t) with associated public key (p, a, b) to produce
the message m ≡ t · r− loga b (mod p).

◦ To do this, give the Di�e-Hellman algorithm the data (p, g, cx, cy) where g = a, cx = b, and cy = r: it

will then output the value c
logg cy
x = bloga r = bk. We can then compute m ≡ t · b−k (mod p) immediately.

• We will also remark that, unlike the basic version of RSA where it is easy to verify that a given ciphertext c
has a claimed decryption m (we simply compute me (mod N) and check whether it is equal to c), it is not
so easy to determine whether a claimed ciphertext (r, t) for ElGamal encryption actually corresponds to a
particular decrypted message m.

◦ In fact, this problem is equivalent to the �decision Di�e-Hellman problem�: that of determining whether
a given set of numbers (p, g, cx, cy, cxy) has the property that cx = gx (mod p), cy = gy (mod p), and
cxy = gxy (mod p) for some values of x and y.

◦ The proof (which we will omit) is essentially the same as the one we gave above.

• There are several attacks on ElGamal encryption similar to those for RSA; we will mention a few basic ones:

• Attack 1 (Discrete logarithm computation): If Eve wants to determine m, she can �rst compute Alice's value
of k by evaluating the discrete logarithm k = loga r, and then compute m ≡ t · b−k (mod p), or she could
compute Bob's value of d by evaluating d = loga b and then compute m the same way Bob does.

◦ Again, like with factorization, it is believed that general discrete logarithm computation is di�cult
with a standard (i.e., non-quantum) computer, provided the prime p is su�ciently large and not of any
particularly special form (e.g., not such that p− 1 only has small prime divisors).

• Attack 2 (Duplicate k, partial known plaintext): Suppose Alice sends two messages m1 and m2 to Bob and
reuses the same value of k for each message.

◦ Eve would then intercept the two pairs (r1, t1) and (r2, t2) where t1 = bkm1 (mod p) and t2 = bkm2

(mod p).

◦ If Eve also knows the plaintext m1, she can easily compute the plaintext m2, since

t2t
−1
1 m1 = (bkm2)(b

km1)
−1m1 ≡ m2 (mod p).

2.4 Computation of Discrete Logarithms

• In this section we give a few methods for computing discrete logarithms. In general, discrete logarithm
computation appears to be of approximately comparable di�culty to factoring, and many of the algorithms
share the same kinds of underlying ideas.

8

• If we can solve discrete logarithm problems where the base is a given primitive root a, then the change-of-base
formula gives us a simple linear congruence loga x · logx y ≡ loga y (mod p − 1) which we can immediately
solve for logx y.

• Thus, we will assume throughout that we are seeking to compute a discrete logarithm whose base is a primitive
root, since that is the most general case.

• We will adopt the speci�c notation of solving the congruence ad ≡ b (mod p) where a is a primitive root
modulo the prime p and (a, b, p) are given.

2.4.1 The Pohlig-Hellman Algorithm

• Our �rst method for computing discrete logarithms is based o� a principle similar to Pollard's (p−1)-algorithm.

• Explicitly, suppose a and b are units modulo an odd prime p: then the value of the discrete logarithm d = loga b
is a residue class modulo p− 1.

◦ By the Chinese Remainder Theorem, it is therefore su�cient to compute the value of d modulo each
prime-power divisor of p− 1. In other words, if we have the prime factorization p− 1 =

∏
i q

ci
i , we want

to �nd d modulo qcii for each i. For ease of notation we will now drop the subscript i.

◦ Suppose the base-q expansion of d is d = d0 + d1q + d2q
2 + · · ·+ dc−1q

c−1 (mod qc), with each digit dj
satisfying 0 ≤ di ≤ q − 1: we then want to �nd each of the digits dj .

◦ The key observation is that

(
p− 1

q

)
(d− d0) = (p− 1)(d1 + d2q+ · · ·+ dc−1q

c−2) is a multiple of p− 1,

meaning that

(
p− 1

q

)
d and

(
p− 1

q

)
d0 are congruent modulo p− 1.

◦ Thus, by Fermat's little theorem, we see that ad0(p−1)/q ≡ ad(p−1)/q ≡ b(p−1)/q (mod p).

◦ Therefore, the digit d0 will be the unique value between 0 and q − 1 inclusive such that ad0(p−1)/q ≡
b(p−1)/q (mod p).

◦ To compute additional digits we can use the same idea: for d1, we can pull o� the �rst two terms to

write

(
p− 1

q2

)
(d − d0 − d1q) = (p − 1)(d2 + d3q + · · ·) so that

(
p− 1

q2

)
(d − d0) and

(
p− 1

q

)
d1 are

congruent modulo p− 1.

◦ Then by Fermat's little theorem, ad1(p−1)/q ≡ a(d−d0)(p−1)/q2 ≡ b(p−1)/q2a−d0(p−1)/q2 (mod p).

◦ Thus, the digit d1 will be the unique value between 0 and q − 1 inclusive such that ad1(p−1)/q ≡
b(p−1)/q

2

a−d0(p−1)/q2 .

◦ We can continue iterating this procedure to compute all of the remaining digits.

• Here is a more algorithmic procedure for computing the discrete logarithm d = loga b modulo p, where p is a
prime and a is a primitive root. (In fact a does not actually need to be a primitive root, although in most
cases that is what we are most interested in.)

• Algorithm (Pohlig-Hellman): Suppose that qc is a prime power dividing p − 1. To compute d modulo qc,
compute the values ak(p−1)/q for each 0 ≤ k ≤ q − 1. Set b0 = b and then take d0 to be the value for which

ad0(p−1)/q ≡ b(p−1)/q0 (mod p). Now for each 1 ≤ i ≤ c−1, set bi = bi−1 ·a−di−1q
i−1

and take di to be the value

for which adi(p−1)/q ≡ b(p−1)/q
i+1

i (mod p). Then the value d is then equal to d0+ d1q+ d2q
2+ · · ·+ dc−1qc−1.

Finally, to compute the discrete logarithm d = loga b, assemble all of the individual values d modulo qc via
the Chinese remainder theorem to obtain the value of d modulo p− 1.

◦ As with Pollard's (p− 1)-algorithm, the idea behind the Pohlig-Hellman algorithm is that if p− 1 only
has small prime divisors, then we can evaluate all of the ingredients in the computation rapidly.

◦ Explicitly, to compute d modulo qc, we need to evaluate the q values ak(p−1)/q for each 0 ≤ k ≤ q − 1,
and then match c values from this list. Therefore, the number of steps required to implement the Pohlig-
Hellman algorithm to compute a discrete logarithm modulo p is roughly equal to the largest prime divisor
q of p− 1.

9

• Example: Use the Pohlig-Hellman algorithm to �nd the discrete logarithm of b = 11850 to the base a = 5
modulo p = 24697.

◦ First, we factor p− 1 = 233273. (From here it is also easy to verify that a = 5 is a primitive root modulo
p.)

◦ We need to compute the discrete logarithm d modulo 23, 32, and 73.

◦ For qc = 23:

∗ First, we we pre-evaluate the quantities ak(p−1)/q for k = 0, 1, yielding the values 1 and −1 (mod p).

∗ Next we compute the required quantities bi and di for 0 ≤ i ≤ 2: if b
(p−1)/qi+1

i is 1 then di = 0, and

if b
(p−1)/qi+1

i is −1 then di = 1.

i 0 1 2
bi 11850 11850 474

b
(p−1)/qi+1

i 1 −1 1
di 0 1 0

∗ Then d = 0 + 1 · 2 + 0 · 22 = 2 modulo 8.

◦ For qc = 32:

∗ First, we we pre-evaluate the quantities ak(p−1)/q for k = 0, 1, 2, yielding the values 1, 3067, 21629
(mod p).

∗ Next we compute the required quantities bi and di for 0 ≤ i ≤ 3: if b
(p−1)/qi+1

i is 1 then di = 0, if it
is 3067 then di = 1, and if it is 21629 then di = 2.

i 0 1
bi 11850 2370

b
(p−1)/qi+1

i 3067 3067
di 1 1

∗ Then d = 1 + 1 · 3 = 4 modulo 9.

◦ For qc = 73:

∗ First, we we pre-evaluate the quantities ak(p−1)/q for k = 0, 1, . . . , 6:

k 0 1 2 3 4 5 6

ak(p−1)/q 1 8955 866 172 9046 770 4887

∗ Next we compute the required quantities bi and di for 0 ≤ i ≤ 3 using the table above:

i 0 1 2
bi 11850 7922 14275

b
(p−1)/qi+1

i 9046 9046 172
di 4 4 3

∗ Then d = 4 + 4 · 7 + 3 · 72 = 179 modulo 73.

◦ Finally, using the Chinese remainder theorem we can solve the simultaneous congruences d ≡ 2 (mod 8),

d ≡ 4 (mod 9), and d ≡ 179 (mod 73) to obtain the solution d ≡ 14242 (mod 24696).

◦ We can indeed see that this answer is correct by evaluating 514242 ≡ 11850 (mod p) using successive
squaring.

• We will remark that the speed of the Pohlig-Hellman algorithm depends on the size of the largest prime divisor
of p− 1, which can vary quite substantially even for primes p of approximately the same size.

◦ When generating a prime for use in Di�e-Hellman key exchange (or the ElGamal cryptosystem) it is
comparatively unlikely to choose one such that p− 1 has only small prime divisors by accident.

◦ For actual implementation of Di�e-Hellman, one requires a primitive root g modulo p: verifying that a
particular value g is actually a primitive root requires knowing the factorization of p− 1.

◦ Thus, for e�ective use of Di�e-Hellman, one should choose p such that p− 1 is easily factored but also
has a large prime divisor.

10

◦ If, for example, one wants to generate a 250-digit prime p such that p− 1 has a large prime divisor, one
could �rst generate a 200-digit prime p0 and a random 50-digit number k, and then test the numbers
p = (k + r)p0 + 1 for integers r ≥ 0 until a prime is found. By construction, p − 1 will then have the
200-digit prime p0 as a divisor. The remaining divisor of p − 1 is small enough that it can be factored
directly.

2.4.2 Baby-Step Giant-Step

• Another way we can try to compute discrete logarithms is by using a �meet in the middle� procedure that
exploits an idea similar to the birthday paradox used by Pollard's ρ-algorithm.

• Algorithm (Baby-Step Giant-Step): In order to �nd a solution to ad ≡ b (mod p), choose an integer N such
that N2 ≥ p. Then compute two lists: the values ax (mod p) for all 0 ≤ x ≤ N − 1 and the values ba−Ny

(mod p) for all 0 ≤ y ≤ N − 1. Then compare the two lists to �nd an element that is on both lists: then if
ax ≡ b a−Ny (mod p), we then obtain a solution d = x+Ny.

◦ The reason for the name of the algorithm is that the computations for the �rst list are the �baby steps�
(each step increases the exponent of a by 1) while the computations for the second list are the �giant
steps� (each step decreases the exponent of a by N).

◦ All that is necessary to explain is why we should expect the two lists to have an element in common.

◦ The reason is simple: if we write d in base N , then since N2 ≥ p > d we know that d has at most two
digits, so d = d0 + d1N for digits 0 ≤ d0, d1 ≤ N − 1.

◦ Then we will obtain the required collision when x = d0 and y = d1, and each of these values will be in
the range we test.

◦ Even if we chose the terms in the two lists randomly, we should expect to obtain a collision because we
are looking for a collision modulo p among roughly 2

√
p elements, so by our analysis of the birthday

paradox we should expect to see a collision with reasonably high probability.

◦ The algorithm will require computing two lists each having N ≈ √p elements, and then comparing them.
(It is not necessary to store the elements in the second list, since we only need to compare each individual
element on the second list to the �rst list.) Since modular exponentiation / multiplication is fast, the
total time and memory required are both roughly

√
p.

◦ We will note that this algorithm, unlike many of the others we have discussed, is completely deterministic:
it is guaranteed to return a result after its computation �nishes, and we know exactly how much time
and memory are required.

• Illustrating the method with a prime large enough to make direct computation di�cult is not so easy to do,
so rather than giving a realistic example, we will instead use a small prime that allows us to display all of the
required tables.

• Example: Use the baby-step giant-step algorithm to �nd the discrete logarithm of b = 188 to the base a = 3
modulo p = 223.

◦ Since
√
p ≈ 14.93 we can take N = 15. Here is a table of the two lists we must compare:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ax 1 3 9 27 81 20 60 180 94 59 177 85 32 96 65

b a−Nx 188 57 213 80 29 214 72 93 148 154 106 44 94 140 218

◦ We see that a8 ≡ 94 ≡ b · a−15(12) (mod p), from which we obtain a8+15(12) ≡ b (mod p). Thus, the

discrete logarithm is 188 . (The fact that it is also equal to b is merely an odd coincidence.)

11

2.4.3 Pollard's ρ-Algorithm for Logarithms

• Much as the baby-step giant-step algorithm is similar to Pollard's (p− 1)-algorithm, there is also an analogue
of Pollard's ρ-algorithm for computing discrete logarithms. However, it is more complicated, and does not
give an appreciably faster computation procedure. Here is a brief outline of the ideas:

◦ If we wish to �nd d for which ad ≡ b (mod p), it is essentially su�cient to �nd (s, t) and (x, y) such
that asbt ≡ axby (mod p): then by taking the discrete log and rearranging we obtain the congruence
(x− s) ≡ d(y − t) (mod p− 1) which we can solve for d.

◦ If y − t happens to have a common divisor with p− 1 we will not obtain a unique solution for d, but if
we �nd (s, t) and (x, y) �randomly�, it is unlikely that gcd(y − t, p − 1) will be very large, and we can
then search through the small number of possible values of d directly to determine the correct one.

◦ The idea is then to generate a list of �random� values (si, ti) and search for a collision asibti ≡ asj btj

(mod p).

◦ If we simply do this directly, then by our analysis of the birthday paradox we would need approximately
2
√
p pairs to be reasonably likely of obtaining a collision, but we would need to do roughly 2p comparisons

to �nd that match, which is less e�cient than simply trying all the residue classes directly.

◦ Like with the ρ-algorithm for factorization, Pollard's observation is that we can speed up this process by
generating the residue classes by iterating a �random function� and then searching for a repeated value
that occurs in a cycle.

• Algorithm (Pollard's ρ-Algorithm for Logarithms): Divide the residues modulo p into three subsets Sa, Sb, Ss

in some manner, and de�ne the three functions f(x) =


ax for x in Sa

bx for x in Sb

x2 for x in Ss

, ga(x, n) =


n+ 1 for x in Sa

n for x in Sb

2n for x in Ss

,

gb(x, n) =


n for x in Sa

n+ 1 for x in Sb

2n for x in Ss

. Choose random starting values a0 and b0, set x0 = aa0bb0 (mod p), and

then for each i ≥ 1, set xi = f(xi−1) (mod p), ai = ga(xi−1, ai−1) (mod p− 1), and bi = gb(xi−1, bi−1) (mod
p− 1). Compare the values of the two sequences {xi} and {x2i}: if xi = x2i for some i > 0, then the discrete
logarithm d = loga b satis�es the congruence (a2i − ai) ≡ d(b2i − bi) (mod p− 1). If no such match is found,
start over with a di�erent value for x0 or a di�erent partition Sa, Sb, Ss.

◦ There is a lot to unpack in this description, but the the idea is that f is a �random function� on the
nonzero residue classes mod p, while ga keeps track of the exponent of a and gb keeps track of the
exponent of b. In the set Sa, the exponent of a is increased by 1, in Sb the exponent of b is increased
by 1, and in Ss both exponents are doubled. (On the exponents themselves, the maps ga and gb are
generally unpredictable.)

◦ Absent any reason to expect otherwise, we would guess that the values xi should be essentially random
after the �rst few iterations. Our analysis of the birthday paradox then suggests we should expect to see
a match after roughly 2

√
p iterations.

◦ In the same way as for Pollard's ρ-algorithm for factorization, the advantage lies in the fact that if xi ≡ xj
(mod p), then xi+1 ≡ xj+1 (mod p): so if t ≥ i is any multiple of the period j− i, then xt ≡ x2t (mod p).
This means we can detect the periodicity of this sequence by looking only at pairs of the form (xt, x2t),
which is a vast improvement over having to search all pairs (xi, xj).

◦ Like with the factorization algorithm, we can reduce the memory requirements by de�ning a new sequence
yi = x2i, where we iterate twice at each step rather than once, and then compare the values xi and yi at
each stage.

◦ Implementing the algorithm in this manner requires only storing six values (the values xi, ai, bi and
x2i, a2i, b2i) and has time complexity approximately equal to

√
p: roughly the same amount of time as

the baby-step giant-step algorithm, though far less memory.

12

2.4.4 Sieving Methods

• There is also a procedure analogous to the quadratic sieve for computing discrete logarithms, known as the
index calculus algorithm. Here is an outline:

◦ First, we choose a bound B. We then compute ak modulo p for many values of k, and then attempt to
factor the result and write it as a product of primes less than B. If this is not possible, we discard the
result.

◦ If we can write ak ≡
∏
prii (mod p), then taking the discrete log of both sides gives a relation k ≡∑

ri loga(pi) (mod p− 1) in the discrete logarithms loga(pi) for the primes pi less than B.

◦ If we obtain enough such relations, we can then solve the resulting system of linear congruences to �nd
loga(pi) for each prime pi less than B.

◦ There are simple linear-algebra procedures for doing this by row-reducing an appropriate matrix (which
is quite computationally e�cient), although it is complicated slightly by the fact that the modulus p− 1
is not prime.

◦ Once we have computed the discrete logarithms loga(pi) for each prime pi less than B, we then try to
use the results to determine the desired discrete logarithm loga(b).

◦ To do this, we compute b · ak modulo p for many values of k and attempt to write it as a product of
primes less than B. If we �nd such a relation b · ak ≡

∏
psii (mod p), we can then compute loga b =

−k +
∑
si loga(pi) (mod p− 1).

• Notice also that the evaluations of loga(pi) can be reused in subsequent discrete logarithm computations
modulo p with the same base a (and using the discrete version of the change-of-base formula, for any other
base).

◦ The choice of the bound B will determine how much of the computation is done �ahead of time� and
how much must be repeated to evaluate a particular discrete logarithm.

◦ If B is large, then the initial step of the computation will take a long time, but the second stage will be
very fast, since it is likely that few evaluations b · ak modulo p will be required.

◦ If B is small, the initial step of the computation will be shorter (though perhaps not tremendously
shorter, since factorizations involving primes less than B will be correspondingly rarer as well), and the
second step will be longer.

◦ In practice, this sieving method is e�ective for primes p that are several hundred bits in length. Of
course, if a particular prime p is commonly used as a discrete logarithm modulus, it could potentially
become worthwhile to do the very lengthy �rst-stage computation with a large value of B, since the
results could then be reused many times to compute many discrete logarithms.

• Like with integer factorization, there is a re�nement of the quadratic sieve (the general number �eld sieve)
that can be adapted to compute discrete logarithms. (We will omit the details.)

• The sieving algorithms run in speed that is asymptotically far faster than other methods for su�ciently large
p.

◦ Speci�cally, the computational complexity for the index calculus algorithm is approximately e(2 ln p)1/2(ln ln p)1/2 .

◦ For large p, this is much smaller than the complexity p1/2 of the baby-step giant-step algorithm.

◦ Like with integer factorization, there are algorithms that could run on a quantum computer that can
compute discrete logarithms much more quickly, in time polynomial in ln p.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2016. You may not reproduce or distribute this
material without my express permission.

13

